Rahul Jain

18-Oct-2010

Q1: Let $\text{Infinite}_{\mathsf{DFA}} = \{ \langle A \rangle : A \text{ is a DFA and } L(A) \text{ is an infinite language} \}$. Show that Infinite_{\mathsf{DFA}} is decidable.

Q2: Let $A = \{\langle M \rangle : M \text{ is a DFA which doesn't accept any string containing an odd number of 1s}. Show that A is decidable.$

Q3: Let A and B be two disjoint languages. Say that language C separates A and B if $A \subseteq C$ and $B \subseteq \overline{C}$. Show that any two disjoint co-Turing-recognizable languages are separable by some decidable language.

Q4: Let $\text{PAL}_{\mathsf{DFA}} = \{ \langle M \rangle : M \text{ is a DFA that accepts some palindrome} \}$. Show that $\text{PAL}_{\mathsf{DFA}}$ is decidable.

Q5: Let A be a Turing-recognizable language consisting of descriptions of Turing machines $\{\langle M_1 \rangle, \langle M_2 \rangle, \ldots\}$, where every M_i is a decider. Prove that some decidable language D is not decided by any decider M_i whose description appears in A.

Q6: Let *B* be a Turing-recognizable language consisting of TM descriptions. Show that there is a decidable language *C* consisting of TM descriptions such that every machine described in *B* has an equivalent machine in *C* and vice versa.

Q7: Show that $\{\langle G \rangle : G \text{ is a } \mathsf{CFG} \text{ over } \{0,1\} \text{ and } 1^* \subseteq L(G) \}$ is decidable.