Q1: Let $\text{Infinite}_{\text{DFA}} = \{ \langle A \rangle : A \text{ is a DFA and } L(A) \text{ is an infinite language} \}$. Show that $\text{Infinite}_{\text{DFA}}$ is decidable.

Q2: Let $A = \{ \langle M \rangle : M \text{ is a DFA which doesn’t accept any string containing an odd number of 1s} \}$. Show that A is decidable.

Q3: Let A and B be two disjoint languages. Say that language C separates A and B if $A \subseteq C$ and $B \subseteq \overline{C}$. Show that any two disjoint co-Turing-recognizable languages are separable by some decidable language.

Q4: Let $\text{PAL}_{\text{DFA}} = \{ \langle M \rangle : M \text{ is a DFA that accepts some palindrome} \}$. Show that PAL_{DFA} is decidable.

Q5: Let A be a Turing-recognizable language consisting of descriptions of Turing machines $\{ \langle M_1 \rangle, \langle M_2 \rangle, \ldots \}$, where every M_i is a decider. Prove that some decidable language D is not decided by any decider M_i whose description appears in A.

Q6: Let B be a Turing-recognizable language consisting of TM descriptions. Show that there is a decidable language C consisting of TM descriptions such that every machine described in B has an equivalent machine in C and vice versa.

Q7: Show that $\{ \langle G \rangle : G \text{ is a CFG over } \{0, 1\} \text{ and } 1^* \subseteq L(G) \}$ is decidable.