Local Search

Local Search

1. Introduction
2. The gradient descent Algorithm
3. The Metropolis Algorithm and Simulated Annealing

4. Application of Local Search to the Hopfield Neural Networks

5. Maximum-Cut Approximation

6. Best Response Dynamics and Nash Equilibrium

1.Introduction

Local Search describes any algorithm that explores the space of
possible solutions in a sequential way, moving in one step from

a current solution to a nearby one.

+ * Itis not difficult to design a local search approch to almost
any hard problem.

o * Itis often very difficult to say anything provable about the
solutions that it finds.

1.Introduction

Local Search approch is used as an approch to solve
Computational optimization problems.

In a typical such problem we have :

* Large set S of possible solutions
* A cost function c(s) that measures the quality of a solution s

* The goalis to find s* for which c(s*) is as small/large as
possible

* A neighbor relation on the set of solutions :
s’ is a neighboring solution of s (s’ =s) if s’ can be obtained
with a small modification of s.

1.Introduction

A Local Search approch follows this general scheme :

* |t maintains a current solution s at all times.
* Chooses a neighbor solution s’ to s and sets it as the new

current solution.
* |t saves the best solution cost and try compare it to the

current one.

The crux of a Local Search Algorithm is in two crucial points :

* The choice of the neighbor relation
* The rule for choosing a neighboring solution

2.The gradient Descent Algorithm

The Gradient Descent Algorithm is a very simple algorithm.

It starts with a trivial current solution and do the following :

Let s denote the current solution. If there is a neighbor s’ of s
with strictly lower cost, then choose the neighbor whose cost is
as small as possible. Otherwise terminate the algorithm.

This algorithm terminates precisely at solutions that are Local Minimum

2.The gradient Descent Algorithm

Application of this algorithm to a concrete problem : Vertex Cover Problem :

We are given a graph G = (V, E), The set of possible solutions S is the set of
all subset s of V that form Vertex covers.

- For any s of S, the cost C(s) is defined as the size of s
-s=s’ if s’ can be obtained from s by adding or deleting a single node

In this problem, the algorithm starts with the trivial solution V.

2.The gradient Descent Algorithm

In a graph with no edges, the
best solution is the empty set.
C(s)=0

2.The gradient Descent Algorithm

The algorithm finds the empty set.
In this case, the local minimum is
also a global minimum.

2.The gradient Descent Algorithm

The algorithm finds the empty set.

In this case, the local minimum is
also a global minimum.

In a star graph, the best
solution is the {x}.
C(s)=1

2.The gradient Descent Algorithm

The algorithm finds the empty set.

In this case, the local minimum is
also a global minimum.

The solution found depends
on the first deleted node.

A local minimum has a high
cost relative to the global
minimum cost.

3. Metropolis Algorithm and Simulated Annealing

The Metropolis Algorithm keeps the same neighbor relation, but changes the
rule of choosing a neighboring solution.

The Metropolis algorithm is biased toward downhill moves , but will also
accept uphill moves with certain probablity.
- So it can correct some wrong choices it took.

3. Metropolis Algorithm and Simulated Annealing

Start with a solution s, and constants k and T
In one step :
let s be the current solution
let s’ be chosen uniformly at random among the neighbors of s.
if c(s”) < c(s) then update s :=¢’
else
with probablity exp(- (c(s’)-c(s)) / k.T) update s:=s’
otherwise leave s unchanged
end if

3. Metropolis Algorithm and Simulated Annealing

If the central node is deleted,
it can be put back with
positive probability

3. Metropolis Algorithm and Simulated Annealing

Q Q
e ® o
Q
When it reaches a solution with If the central node is deleted,
c(s) = c << n, the neighboring it can be put back with
solution will have a higher cost and positive probability

can be accepted with a positive
probability.

3. Metropolis Algorithm and Simulated Annealing

The probability of having an uphill move is exp(- (c(s’)-c(s)) / k.T)

- if Tissmall, uphill moves are never accepted : Gradient Descent
Algorithm

- if Tis too large, Metropolis is having random walk , independently from
the cost.

3. Metropolis Algorithm and Simulated Annealing

The probability of having an uphill move is exp(- (c(s’)-c(s)) / k.T)
* if Tissmall, uphill moves are never accepted : Gradient Descent

Algorithm
* if Tistoo large, Metropolis is having random walk , independently from

the cost.

Simulated Annealing :
It executes the Metropois Algorithm but decreases T as the algorithm.

* At the begenning, T is large : helps escaping from local minimum
e Attheend, Tissmall: helps stucking in a minimum.

4. Hopfield Neural Networks

We are given a graph G = (V,E) , every edge e has a weight w..
A configuration s of the network is assigning a value s for each node u.
s, can be-1or1.

An edge e = (u,v) is good either : w,<0and s, =5,
or:w,>0and s, #s, (w,s,.s, <0)
Otherwise e is bad.

4. Hopfield Neural Networks

We are given a graph G = (V,E) , every edge e has a weight w..
A configuration s of the network is assigning a value s for each node u.
s, can be-1or1.

An edge e = (u,v) is good if: w,<0and s, =5,
or:w,>0and s, #s, (w,s,.s, <0)
Otherwise e is bad.

A node u is satisfied if : Z W,s,.5,<0 (Z |lw,| > Z |we|)

e=(u,v e good e bad

Finally, we say a configuration is stable if all nodes are satisfied

4. Hopfield Neural Networks

Result :
Every Hopfield network has a stable configuration, and which can be found in
time polynomial in nand W = 2. |we |

4. Hopfield Neural Networks

Result :
Every Hopfield network has a stable configuration, and which can be found in

time polynomial in nand W =). |we |

The stable configuration in fact arise as the local optimum of a certain local
search procedure.

4. Hopfield Neural Networks

The State-Flipping Algorithm :

While the current configuration is not stable
There must be an unsatisfied node
Choose an unsatisfied node u
Flip the state of u

End while

4. Hopfield Neural Networks

The State-Flipping Algorithm :

While the current configuration is not stable
There must be an unsatisfied node
Choose an unsatisfied node u
Flip the state of u

End while

- If the algorithm terminates, we will have a stable configuration.

- To proove the algorithm terminates, we will look for a measure (progress)
that increases in every flipping step and is upper bounded.

4. Hopfield Neural Networks

We define O(s) Z |w, |

e good

* @inincreasing
* @ inupper bounded by W

4. Hopfield Neural Networks

We define O(s) : Z |w,|

e good

* O®inincreasing
* @ inupper bounded by W

- The algorithm terminates in at most W iteration, every iteration take a
number of operations polynomial in n.

4. Hopfield Neural Networks

We define @(s) : Z |w,|
e good
* O@inincreasing
* @ inupper bounded by W

- The algorithm terminates in at most W iteration, every iteration take a
number of operations polynomial in n.

- The existance proof for stable configurations was really about local search
 We set up a function @ to maximize
e Configurations are the possible solutions for the problem
* We define a neighbor relation between solutions.
* We identified that every local maximum for @ is a stable
configuration.

5. Maximum-Cut Approximation

We are given a graph G = (V,E) , every edge e has a weight w_>0.

For a partition (A,B) of V, we denote W(A,B) the total weight of edges with
one end in A and one end in B.

The goal is to find a partition that maximizes W(A,B)

5. Maximum-Cut Approximation

We are given a graph G = (V,E) , every edge e has a weight w_>0.

For a partition (A,B) of V, we denote W(A,B) the total weight of edges with one
end in A and one end in B.

The goal is to find a partition that maximizes W(A,B)

- A close relation with Hopefield Neural Networks
* Configuration in nodes state corresponds to a partition (A,B)
e AnodeisinAiff its state is -1
* Anodeisin Biff its stateis 1

5. Maximum-Cut Approximation

We are given a graph G = (V,E) , every edge e has a weight w_>0.

For a partition (A,B) of V, we denote W(A,B) the total weight of edges with one
end in A and one end in B.

The goal is to find a partition that maximizes W(A,B)

- A close relation with Hopefield Neural Networks
* Configuration in nodes state corresponds to a partition (A,B)
* Anodeisin A iff its state is -1
* Anodeisin Biff its stateis 1
 W(A,B) is exactly ®
* Aflipping step corresponds to moving a node from A to B or from B to A

5. Maximum-Cut Approximation

We are given a graph G = (V,E) , every edge e has a weight w_>0.

For a partition (A,B) of V, we denote W(A,B) the total weight of edges with one
end in A and one end in B.

The goal is to find a partition that maximizes W(A,B)

- A close relation with Hopefield Neural Networks
* Configuration in nodes state corresponds to a partition (A,B)
* Anodeisin A iff its state is -1
* Anodeisin Biff its stateis 1
 W(A,B) is exactly ®
* Aflipping step corresponds to moving a node from A to B or from B to A

- Single-flip neighborhood algorithm finds a local maximum of W(A,B)

5. Maximum-Cut Approximation

Result :

Let (A,B) be a local maximum for Maximum-cut obtained by the single-flip
neighborhood, and (A*,B*) be a global maximum.
Then W(A,B) > W(A*,B*) /2

6. Best Response Dynamics and Nash Equilibria

So far, we are considering Local Search approch to solve a single objective,
but in some problems, we can consider it to solve different objectives.

- Different agents, each one has his own objective

6. Best Response Dynamics and Nash Equilibria

So far, we are considering Local Search approch to solve a single objective,
but in some problems, we can consider it to solve different objectives.

- Different agents, each one has his own objective
Multicast Rooting Problem :

Let a Graph G = (V,E) each edge e has a cost c.>0,

and let t; t,..t, kagents each agent residing in one node,

a server s is located in one node.

— Each agent wants to construct a path to the server

6. Best Response Dynamics and Nash Equilibria

So far, we are considering Local Search approch to solve a single objective,
but in some problems, we can consider it to solve different objectives.

- Different agents, each one has his own objective
Multicast Rooting Problem :

Let a Graph G = (V,E) each edge e has a cost c.>0,

and let t; t,..t, kagents each agent residing in one node,
a server s is located in one node.

— Each agent wants to construct a path to the server

Each agent pays c./n instead of c_, where n is the number of agents using the
path.

6. Best Response Dynamics and Nash Equilibria

We introduce new concepts, related to the context of multi-objective problems:

* Best Response Dynamics : Each agent iscontinually prepared to improve his
solution in response to changes made by other(s) agents.

* Nash Equilibrium : a stable solution when all agent don’t need to change their
actual solutions.

6. Best Response Dynamics and Nash Equilibria

We introduce new concepts, related to the context of multi-objective problems:

* Best Response Dynamics : Each agent iscontinually prepared to improve his
solution in response to changes made by other(s) agents.

* Nash Equilibrium : a stable solution when all agent don’t need to change their
actual solutions.

— Social Optimum : It is a solution that minimizes the total cost of all the agents.

6. Best Response Dynamics and Nash Equilibria

* Some Nash Equilibrium can have a total cost worse than the Social Optimum

* Question :is a Social Optimum always a Nash Equilibium solution ?

6. Best Response Dynamics and Nash Equilibria

e Some Nash Equilibrium can have a total cost worse than the Social Optimum

* Question :is a Social Optimum necessarily a Nash Equilibium solution ?

The answer is no
—> Price of stability : cost of the best Nash Equilibrium/ cost of Social Optimum

6. Best Response Dynamics and Nash Equilibria

Question : Is a Nash Equilibrium always exist ?

Best Response Dynamics always leads to a set of paths that forms a Nash
Equilibria.

6. Best Response Dynamics and Nash Equilibria

Question : Is a Nash Equilibrium always exist ?

Best Response Dynamics always leads to a set of paths that forms a Nash
Equilibria.

D (Py,P,y....,P)= Z c, h(x,) where h(x)=1+1/2 +.... + 1/x

@ decreases strictly in a finite set of values and is bounded by 0.

