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Abstract

Shannon [Sha48, Sha49] in celebrated works had shown that n bits of shared key
is necessary and sufficient to transmit n-bit classical information in an information-
theoretically secure way, using one-way communication. Ambainis, Mosca, Tapp and
de Wolf in [AMTdW00] considered a more general setting, referred to as private quantum
channels, in which instead of classical information, quantum states are required to be
transmitted and only one-way communication is allowed. They show that in this case
2n bits of shared key is necessary and sufficient to transmit an n-qubit state. We con-
sider the most general setting in which we allow for all possible combinations, in one-way
communication, i.e. we let the input to be transmitted, the message sent and the shared
resources to be classical/quantum. We develop a general framework by which we are able
to show simultaneously tight bounds on communication/shared resources in all of these
cases and this includes the results of Shannon and Ambainis et al.

As a consequence of our arguments we also show that in a one-way oblivious remote
state preparation protocol for transferring an n-qubit pure state, the entropy of the com-
munication must be 2n and the entanglement measure of the shared resource must be
n. This generalizes on the result of Leung and Shor [LS03] which shows same bound on
the length of communication in the special case when the shared resource is maximally
entangled e.g. EPR pairs and hence settles an open question asked in their paper regarding
protocols without maximally entangled shared resource.

Key words: privacy, quantum channels, entropy, strong sub-additivity, remote state prepa-
ration, substate theorem.

1 Introduction

Suppose Alice is required to transmit an n-bit input string to Bob in an information theoreti-
cally secure way, i.e. without leaking any information about her input to an eavesdropper Eve
who has complete access to the channel between her and Bob. Shannon in [Sha48, Sha49] had
shown that using n bits of shared key and by using one-time pad scheme Alice and Bob can
accomplish this. He further showed that n bits of shared key are also required by any other
scheme which accomplishes the same using one-way communication. Later Maurer [Mau93]
extended this result to show that n bits of key is required even if two-way communication is
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allowed between Alice and Bob. Ambainis, Mosca, Tapp and de Wolf [AMTdW00] considered
a generalization of this question in which instead of classical input, Alice has quantum input
and only one-way of quantum communication between Alice to Bob is allowed. They referred
to this setting as a private quantum channel (PQCs). They showed that in this case the
requirement of shared key increases. Their main result was:

Theorem 1.1 2n bits of shared key are necessary and sufficient to transmit any n-qubit
quantum state in an information-theoretically secure way.

We further generalize the setting by letting the shared resource between Alice and Bob
to be quantum. A natural generalization of classical shared keys in the context of quantum
communication protocols is a pure quantum state |ψ〉AB shared between Alice and Bob. This
is referred to as shared entanglement or simply entanglement. We consider private quantum
channels that use entanglement between Alice and Bob to achieve security, and in order to
distinguish them from PQCs which use classical shared keys, we call them PQCEs (the added
E stands for entanglement). We formally define a PQCE as follows.

Definition 1.2 Let T be a subset of pure n-qubit states. Let |ψ〉AB be a bipartite pure state
shared between Alice and Bob and let ρ be a quantum state.

1. Alice’s operations: Alice gets an input pure state |φ〉 ∈ T . Alice’s operation consists of
attaching a few ancilla qubits in the state |0〉 to her input and her part of the bipartite
state |ψ〉AB. She then performs a unitary transformation on the combined quantum
system of all her qubits and sends a subset of the resulting qubits to Bob. Let A represent
Alice’s operations. For the input |φ〉, let E(|φ〉) represent the (encoded) quantum state
of the qubits sent to Bob. We have the following security requirement that ∀|φ〉 ∈
T, E(|φ〉) = ρ.

2. Bob’s operations: Bob on receiving the quantum message from Alice attaches a few
ancilla qubits in the state |0〉 to the combined system of the received message and his
part of the bipartite state |ψ〉AB. He then performs a unitary transformation on the
combined system of all her qubits and outputs a subset of the resulting qubits. Let B
represent Bob’s operations. Let for input state |φ〉 to Alice the final (decoded) output
of Bob be represented by D(|φ〉). We have the following correctness requirement that
∀|φ〉 ∈ T,D(|φ〉) = |φ〉〈φ|.
Then [T,A,B, |ψ〉AB, ρ] is called a private quantum channel with entanglement (PQCE).

Remarks:

1. From our description, the mapping E : |φ〉 7→ E(|φ〉) (and extended by linearity to mixed
states) from Alice’s input to her message forms a quantum operation (see Section 2 for
definition) since it is a composition of quantum operations, like attaching a fixed ancilla,
performing unitary transformation and tracing out a subsystem.

2. In the above definition of a PQCE, if we replace the bipartite shared pure state |ψ〉AB
with shared random strings between Alice and Bob, we get a PQC. We represent a PQC
by [T,A,B, P, ρ], where P is the distribution of the shared random strings between Alice
and Bob.
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3. In [AMTdW00] the authors made a comment that in the case of PQC’s, without loss of
generality, Alice’s operations can be thought of as the following. On receiving the input
she attaches a fixed mixed state ancilla ρ to it, applies a unitary Ui depending on the
shared random string i on the combined system of the input and the ancilla and sends
the resulting qubits to Bob. Please note that we do not make such an assumption here
which in any case does not apply for PQCE’s. Also it is clear from the above definition
that for both PQC’s and PQCE’s, the operations of Alice and Bob are as general as
possible.

4. It is easily seen that a PQCE/PQC for T is also PQCE/PQC respectively for T̃ which is
the closure of T under convex combinations.

5. PQCEs were also considered by Leung [Leu02] by the name of Quantum Vernam Cipher
who considered issues like security of key recycling and reliability of message transfer. In
this paper we are primarily concerned with bounds on communication and entanglement
requirements of PQCEs.

We consider the following measures of our various resources.

Definition 1.3 1. Measure of communication: For a PQC [T,A,B, P, ρ] and a PQCE
[T,A,B, |ψ〉AB, ρ], we let the measure of communication to be S(ρ), the von-Neumann
entropy of ρ (please refer to the next section for definition). When we say that it requires
‘n (qu)bits of communication’ we mean S(ρ) = n.

2. Measure of entanglement: For a bipartite pure state |ψ〉AB, consider its Schmidt
decomposition, |ψ〉AB =

∑k
i=1

√
λi|ai〉⊗ |bi〉, where {|ai〉} is an orthonormal set and so

is {|bi〉}, λi ≥ 0 and
∑

i λi = 1. The measure of entanglement of |ψ〉AB is defined to

be E(|ψ〉AB) def= −
∑

i λi log λi. For a PQCE [T,A,B, |ψ〉AB, ρ], we let the measure of
entanglement to be E(|ψ〉AB). When we say that it requires n ebits of entanglement we
mean E(|ψ〉AB) = n.

3. Measure of shared randomness: For a PQC [T,A,B, P, ρ], we let the measure of
shared randomness be S(P ). When we say that it requires n bits of shared randomness
we mean S(P ) = n.

We consider all possible cases i.e. when the input to Alice, the message sent by Alice
and the shared resource between Alice and Bob is either classical or quantum. We develop a
general argument by which we are able to show tight bounds simultaneously on communication
and shared resource usage in all the above cases. Following is a compilation of all the results
we obtain due to our analysis. Below when we say the ‘x,y,z’ case (e.g. classical, quantum,
classical case) we mean, Alice gets n-(qu)bits of x input, the communication is y and the
shared resource is z.

Theorem 1.4 1. In the classical, classical, classical case, n bits of communication and n
bits of shared key is required. The one-time pad scheme hence is simultaneously optimal
in both communication and shared key usage. This is basically Shannon’s result [Sha48,
Sha49].

2. In the classical, quantum, classical case, n qubits of communication and n bits of shared
key is required. Hence here again the one-time pad scheme is simultaneously optimal in
both communication and shared key usage.
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3. In the classical, classical, quantum case, n bits of communication and n ebits of en-
tanglement is required. Hence here again the one-time pad scheme is simultaneously
optimal in both communication and shared resource usage.

4. In the classical, quantum, quantum case, n/2 qubits of communication and n/2 ebits of
entanglement is required. The simultaneously optimal upper bound here is achieved by
the standard protocol for super-dense coding [BW92, NC00] which is a PQCE. In it,
Alice transfers n bits of classical input in an information-theoretically secure manner to
Bob using n/2 qubits of communication and n/2 EPR pairs [NC00] shared between them.
In this case the message of Alice is always in the maximally mixed state independent of
her input.

5. The quantum, classical, classical case is impossible.

6. In the quantum, quantum, classical case, n qubits of communication and 2n bits of
shared key is required. This is the main result of Ambainis et al. [AMTdW00]. In the
same paper they have exhibited a PQC which transfers an n-qubit state with n qubits
of communication and 2n bits of shared randomness and is therefore simultaneously
optimal in both communication and shared randomness.

7. In the quantum, classical, quantum case, 2n bits of communication and n ebits of entan-
glement are required. Here the simultaneously optimal scheme is the standard protocol
for teleportation [BGC+93, NC00] which is a PQCE. In this protocol Alice can transfer
n qubits to Bob in an information theoretically secure way by using 2n bits of commu-
nication and using n EPR pairs between them. In this case the message of Alice always
has uniform distribution independent of her input.

8. In the quantum, quantum, quantum case, n qubits of communication and n ebits of en-
tanglement is required. In this case simultaneously optimal upper bound is achieved
by a scheme using (2, 3) quantum secret sharing scheme by Cleve, Gottesman and
Lo [CGL99]. (This scheme was pointed out to us by Gottesman).

Remarks:

1. Many of the protocols mentioned above like teleportation, super-dense coding, (2, 3)
quantum secret sharing scheme etc. are known to be optimal with respect to different
resources like communication, entanglement usage etc. However these optimality proofs
can not be lifted in our setting in a straightforward manner since privacy is often not a
consideration in these settings.

2. We only consider perfect privacy in this work. It is known that if perfect privacy is not
required then many of the resource requirements can be reduced in different settings.
However considering imperfect privacy is beyond the scope of this work.

Consequence for remote state preparation: We also present a consequence of our results
for one-way, oblivious, remote state preparation (RSP) protocols. In an RSP protocol between
Alice and Bob, Alice is required to transport a known quantum state |φ〉 of n-qubits to Bob
using classical communication and some shared entanglement. An RSP is called oblivious if
at the end of the protocol, Bob gets a copy of Alice’s input |φ〉 and rest of his qubits are
independent of |φ〉. Leung and Shor [LS03] have shown that for one-way oblivious RSPs, if
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Alice and Bob start with a maximally entangled state then the worst case communication
required by them is 2n. We generalize on their result to provide bounds for all one-way
oblivious RSP protocols independent of which shared pure state they start with.

Theorem 1.5 For any one-way oblivious RSP protocol, the entropy of communication is
at least 2n and the entanglement measure of the shared pure state is at least n. Therefore
teleportation achieves both these bounds simultaneously.

Two-way channels: Finally we discuss two-way multiple round PQCs (MPQCs) and PQCEs
(MPQCEs). We show that an MPQC which can transfer an n-qubit state must use n-bits of
classical shared keys. Also an MPQCE which can transfer an n-qubit state must use Ω(n)
ebits of entanglement. Hence there is not much saving even when multiple rounds are allowed.

Organization of the paper: In the next section we make a few definitions and state a
few facts which we will be using later in our proofs. In section 3 we present the proofs of all
the parts of Theorem 1.4. In subsection 3.1 we prove our result, Theorem 1.5, for one-way
oblivious RSPs. In section 4 we discuss two-way multiple round private quantum channels
and conclude with some open questions.

2 Preliminaries

Let Hk represent the Hilbert space of dimension k. Let Ck represent the set of quantum
states corresponding to the standard basis of Hk, also referred to as the classical states. Let
Ik represent the identity transformation in a k dimensional space. For an operator A let
A ≥ 0 represent that A is a positive semi-definite operator. By a quantum operation we
mean a linear, completely positive, trace-preserving operation. Let H,K be Hilbert spaces.
For a state ρ ∈ K, we call a pure state |φ〉 ∈ H ⊗ K, a purification of ρ if TrH|φ〉〈φ| = ρ.
Vectors |φ〉, |ψ〉 etc. represent pure states for us. Let us represent the four Pauli operators in

the standard basis as σ0
def=
(

1 0
0 1

)
, σ1

def=
(

0 1
1 0

)
, σ2

def=
(

0 i
−i 0

)
, σ3

def=
(

1 0
0 −1

)
.

Let us identify a state in C22n as a string x(def= x1x2 . . . xn) ∈ {0, 1, 2, 3}n in the natural way
by pairing up the bits from left to right. Let σx

def= σx1 ⊗σx2 . . .⊗σxn . Let an EPR pair mean
the state |EPR〉 def= 1√

2
(|00〉+ |11〉). For s ∈ {0, 1, 2, 3}, the states (σs⊗I)|EPR〉 are referred to

as the four Bell states. Please note that all the four Bell states are orthogonal to each other.
For a quantum state ρ with eigenvalues λi its von-Neumann entropy is defined as S(ρ) def=

−
∑

i λi log λi. Given a joint quantum system AB, the mutual information between them

is defined as I(A : B) def= S(A) + S(B) − S(AB). Relative entropy between two states ρ
and σ is defined as S(ρ|σ) def= Trρ(log ρ − log σ). We require the following properties of von-
Neumann entropy, relative entropy and mutual information. Please refer to [NC00] for a good
introduction to quantum information theory.

Fact 2.1 1. S(A) + S(B) − S(AB) ≥ 0. This is called as sub-additivity property of von-
Neumann entropy. This implies I(A : B) ≥ 0.

2. S(ABC) + S(A) ≤ S(AB) + S(AC). This is called the strong sub-additivity property.
This implies I(E(A) : B) ≤ I(A : B), where E is a quantum operation.
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3. We have the following chain rule of mutual-information, I(A : BC) = I(A : B)+I(AB :
C)− I(B : C), which follows easily from definition.

4. S(AB) ≥ |S(A)− S(B)|. This is called as Araki-Lieb inequality.

5. Given a bipartite system ρAB, I(A : B) = S(ρAB|ρA ⊗ ρB), where ρA, ρB are the states
of the systems A and B respectively.

6. Given a joint system AB with A being a classical system, S(AB) ≥ max{S(A), S(B)}.

We will need the following theorem.

Theorem 2.2 (Local transition theorem [May97, LH97, LH98]) Let K,H be Hilbert
spaces. Let ρ be a quantum state in K. Let |φ1〉 and |φ2〉 be two purification of ρ in H⊗K.
Then there is a local unitary transformation U acting on H such that (U ⊗ I)|φ1〉 = |φ2〉.

We will also need the following substate theorem from [JRS09].

Fact 2.3 Let ρ, σ be quantum state. If S(ρ|σ) ≤ k then,

σ − ρ′

2O(k)
≥ 0

where Tr|ρ′ − ρ| ≤ 0.1.

3 Resource bounds

We first derive a few lemmas which will finally lead us to our results. In [AMTdW00] it is
shown that a PQC which can transmit n-qubit quantum states can be converted into a PQC
which uses the same amount of shared classical randomness to transmit any 2n bit classical
state. We show a similar thing for PQCE’s. Following lemma states the same.

Lemma 3.1 If there exists a PQCE, [H2n ,A,B, |ψAB〉, ρ] then there exists a PQCE,
[C22n ,A′,B′, |ψAB〉, I2n ⊗ ρ] which uses the same bipartite state as the shared entanglement
between Alice and Bob and uses an extra n qubits of communication.

In order to prove this lemma we first prove here another lemma which is very similar to
a lemma from [AMTdW00].

Lemma 3.2 Let H,K be Hilbert spaces. Let E be a quantum operation acting on H such
that ∀|φ〉 ∈ H, E(|φ〉〈φ|) = ρ. Let |φ1〉, |φ2〉 ∈ H be two orthogonal states, then E(|φ1〉〈φ2|) =
E(|φ2〉〈φ1|) = 0.

Proof: We note the following:

ρ = E(|φ1〉〈φ1|) = E(|φ2〉〈φ2|) (1)

ρ = E(
1
2

(|φ1〉+ |φ2〉)(〈φ1|+ 〈φ2|) (2)

ρ = E(
1
2

(|φ1〉+ i|φ2〉)(〈φ1| − i〈φ2|) (3)

Now (1) and (2) imply E(|φ1〉〈φ2|) + E(|φ2〉〈φ1|) = 0 and (1) and (3) imply E(|φ1〉〈φ2|) −
E(|φ2〉〈φ1|) = 0. Together the two imply E(|φ1〉〈φ2|) = E(|φ2〉〈φ1|) = 0.

We get the following corollary of the above lemma:
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Corollary 3.3 Let H,K be Hilbert spaces. Let E be a quantum operation acting on H such
that ∀|φ〉 ∈ H, E(|φ〉〈φ|) = ρ. Then ∀|ψ〉 ∈ K ⊗ H, (I ⊗ E)(|ψ〉〈ψ|) = (TrH|ψ〉〈ψ|) ⊗ ρ. This
also means that for all mixed states σ ∈ K ⊗H, (I ⊗ E)(σ) = (TrHσ)⊗ ρ.

Proof: Let |ψ〉 =
∑

i

√
λi|ai〉⊗ |bi〉, be as written in the Schmidt decomposition form. Then,

(I ⊗ E)(|ψ〉〈ψ|) = (I ⊗ E)(
∑
i

√
λi|ai〉 ⊗ |bi〉)(

∑
j

√
λj〈aj | ⊗ 〈bj |)

=
∑
i,j

(I ⊗ E)
√
λi
√
λj |ai〉〈aj | ⊗ |bi〉〈bj |

=
∑
i,j

√
λi
√
λj |ai〉〈aj | ⊗ E(|bi〉〈bj |)

=
∑
i

λi|ai〉〈ai| ⊗ E(|bi〉〈bi|) (from Lemma 3.2)

= (
∑
i

λi|ai〉〈ai|)⊗ ρ

= TrH|ψ〉〈ψ|)⊗ ρ

We are now ready to prove Lemma 3.1.
Proof of Lemma 3.1: In the PQCE, [C22n ,A′,B′, |ψAB〉, I2n ⊗ ρ], let x ∈ {0, 1, 2, 3}n corre-
spond to the input state. Alice prepares n EPR pairs and applies the unitary σx on combined
system of the first qubits of each pair. She then encrypts the combined system of the second
qubits of each pair using E , the encryption operation of the PQCE, [H2n ,A,B, |ψAB〉, ρ]. She
now sends all the resulting qubits to Bob. From above corollary, we can see that the state of
the message of this new PQCE will be I2n ⊗ρ for all inputs in C22n . The decryption operation
B′ of Bob now corresponds to first decrypting the second half of the received qubits using
B and then recovering the input classical state by making measurements on the n-Bell states.

Below we show a similar lemma which implies that a PQC/PQCE which transmits any
n-qubit quantum state can be converted into a PQCE which uses the same communication
and an extra n ebits of entanglement to transmit any 2n bit classical state. We show the
proof for PQCEs and a similar proof holds for PQCs as well.

Lemma 3.4 If there exists a PQCE, [H2n ,A,B, |ψAB〉, ρ] then there exists a PQCE,
[C22n ,A′,B′, |ψAB〉⊗ ( |00〉+|11〉√

2
)⊗n, ρ] which uses the same communication and an extra n EPR

pairs.

Proof: In [C22n ,A′,B′, |ψAB〉 ⊗ ( |00〉+|11〉√
2

)⊗n, ρ], let x ∈ {0, 1, 2, 3}n correspond to the input
state. Alice applies σx to her part of the extra n-EPR pairs, encodes them using the encoding
procedure of the earlier PQCE [H2n ,A,B, |ψAB〉, ρ], and sends the resulting qubits to Bob. The
security property of [H2n ,A,B, |ψAB〉, ρ] implies the security property of [C22n ,A′,B′, |ψAB〉⊗
( |00〉+|11〉√

2
)⊗n, ρ]. On receiving Alice’s message, Bob first applies the decoding procedure of

[H2n ,A,B, |ψAB〉, ρ], and recovers x by making measurements on the n-Bell states.
We will need the following lemma. Although parts of this lemma can be found in standard

texts, we state and prove all parts here for completeness.
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Lemma 3.5 Let ABX be a tripartite system. Then,

1. S(AX) + S(BX)− S(ABX)− S(X) ≤ min{2S(A), 2S(B)}.

2. If AX is a classical system then we have the stronger inequality S(AX) + S(BX) −
S(ABX)− S(X) ≤ min{S(A), S(B)}.

3. I(A : B) ≤ min{2S(A), 2S(B)}.

Proof:

1.

S(AX)− S(ABX) + S(BX)− S(X) ≤ S(AX)− S(ABX) + S(B)
≤ S(B) + S(B) = 2S(B)

Above, the first inequality comes from part (1) and second inequality comes from part
(4) of Fact 2.1. Similarly we get S(AX) + S(BX)− S(ABX)− S(X) ≤ 2S(A).

2.
S(AX)− S(ABX) + S(BX)− S(X) ≤ S(BX)− S(X) ≤ S(B)

Above, the first inequality arises from part (6), since AX is a classical system, and the
second inequality comes from part (1) of Fact 2.1. Again, since A is a classical system,
we get

S(AX)− S(X) + S(BX)− S(ABX) ≤ S(AX)− S(X) ≤ S(A)

Above, the first inequality comes from part (6) and the second inequality comes from
part (1) of Fact 2.1.

3.
I(A : B) = S(A) + S(B)− S(AB) ≤ S(A) + S(A) = 2S(A)

The inequality above follows from part (4) of Fact 2.1. Similarly I(A : B) ≤ 2S(B).

We now have the following theorem.

Theorem 3.6 If [C2n ,A,B, |ψAB〉, ρ] is a PQCE then,

1. S(σB) ≥ n/2, where σB is the quantum state corresponding to Bob’s part of |ψAB〉. We
note from definitions that S(σB) = E(|ψ〉AB).

2. S(ρ) ≥ n/2.

Proof: Let X be a random variable which takes values in {1, 2, ...., 2n} uniformly. Suppose
Alice is able to communicate X to Bob through the PQCE. We can assume that the operations
of Alice are safe on X which means that at the beginning Alice makes a copy of X (since
it is a classical state) and then her subsequent operations do not touch the original copy of
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X. Let M1 be the quantum state corresponding to the message of Alice and let M2 be the
quantum state corresponding to Bob’s part of |ψ〉AB. Then from Fact 2.1,

n = H(X) = I(D(X) : X) = I(B(M1M2 ⊗ |0〉〈0|ancilla) : X)
≤ I(M1M2 ⊗ |0〉〈0|ancilla : X) = I(M1M2 : X)
= I(M1 : X) + I(M2 : M1X)− I(M1 : M2)
= I(M1 : X) + I(M2 : X) + I(M2X : M1)− I(M1 : X)− I(M1 : M2)
≤ 0 + 0 + I(M2X : M1)− I(M1 : X)
= S(M2X) + S(M1X)− S(M1M2X)− S(X)
≤ min{2S(M2), 2S(M1)}

Above, the first inequality comes from part (2) of Fact 2.1. I(M1 : X) = 0 because of the
privacy property of the channel. I(M2 : X) = 0 because they were independent to begin with
and Alice’s operations are safe on X. The last inequality follows from part (1) of Lemma 3.5.

We note in the proof of Theorem 3.6, due to part (2) of Lemma 3.5, that if either M2 is a
classical system (as in a PQC) or if M1 is a classical system (when the message is classical),
then we get n ≤ min{S(M2), S(M1)}. Therefore we have the following corollary:

Corollary 3.7 1. If [C2n ,A,B, P, ρ] is a PQC then, S(P ) ≥ n and S(ρ) ≥ n.

2. If [C2n ,A,B, |ψAB〉, P ] is a PQCE with classical communication then, S(σ) ≥ n, where
σ is Bob’s part of |ψAB〉, and S(P ) ≥ n.

We are now set to show various parts of Theorem 1.4.
Proof of Theorem 1.4:

1. Follows from part (1) of Corollary 3.7.

2. Follows from part (1) of Corollary 3.7.

3. Follows from part (2) of Corollary 3.7.

4. Follows from Theorem 3.6.

5. Easy to see.

6. From PQC [H2n ,A,B, P, ρ], using Lemma 3.1 we get a PQC [C22n ,A′,B′, P, I2n⊗ρ]. Part
(1) of Corollary 3.7 now implies S(P ) ≥ 2n. The lower bound on communication follows
from the fact that a PQC for H2n is also a PQC for C2n and Part (1) of Corollary 3.7.

7. The lower bound on communication follows from Lemma 3.4 and Part (2) of Corol-
lary 3.7. The lower bound on entanglement follows from the fact that a PQCE for H2n

is also a PQCE for C2n and Part (2) Corollary 3.7.

8. From [H2n ,A,B, |ψAB〉, ρ] using Lemma 3.1 we get a PQCE [C22n ,A′,B′, |ψAB〉, I2n ⊗ρ].
Theorem 3.6 now implies E(|ψAB〉) ≥ n. Similarly the lower bound on communication
follows from the Lemma 3.4 and Theorem 3.6.
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3.1 Consequence for one-way oblivious remote state preparation problem

In a remote state preparation (RSP) protocol between Alice and Bob, Alice wants to trans-
port a known n-qubit pure state |φ〉 to Bob using classical communication and shared prior
entanglement. Such a protocol is called oblivious if at the end of the protocol, Bob gets a
single copy of Alice’s input |φ〉 and other than that all his qubits are independent of |φ〉.

Proof of Theorem 1.5: Let us consider an oblivious RSP protocol. Let Alice want to
transmit an n-qubit state |φ〉 to Bob. Let ρ be Bob’s part of the initial pure state shared
between Alice and Bob. Let the state of the shared part of the entanglement on Bob’s side
after receiving message m to be ρ|φ〉m . Since the protocol is oblivious, the probability with
which a particular message m comes to Bob is independent of |φ〉, which we denote by pm.
Therefore we note

∑
m pmρ

|φ〉
m = ρ for all |φ〉, since the entanglement part of Bob’s qubits has

not changed due to Alice’s operations.
Bob on receiving message m attaches ancilla |0〉 to his qubits and performs unitary Um to

them. Again since the protocol is oblivious, his state at the end of the unitary is |φ〉〈φ| ⊗σm,
where σm is independent of |φ〉. Using these properties we now construct a PQC between
Alice and Bob. Let Alice and Bob share classical randomness between them in which m is
appears with probability pm. Conditioned on the shared string being m, Alice attaches σm to
|φ〉〈φ|, applies U †m and sends the resulting state ρ|φ〉m ⊗|0〉〈0| to Bob. Now since

∑
m pmρ

|φ〉
m = ρ

for all |φ〉, Alice’s message is independent of |φ〉 and hence the privacy requirement is satis-
fied. Bob on receiving the quantum message applies Um to it and discards σm. Therefore now
from part 6 of Result 1.4 we get S(ρ) ≥ n and S(P ) ≥ 2n, where P is the distribution {pm}.

Remark: To the best of our knowledge, the reduction we present here from oblivious remote
state preparation to private quantum channels is original and has not appeared in any previous
works.

4 Multiple round private quantum channels

When we consider two-way multiple round PQCs, denoted MPQC, or multiple round PQCEs,
denoted MPQCE, we note that keeping the privacy of individual messages cannot be the only
criteria. For example let us consider a protocol in which in the first message Alice transfers
EPR pairs followed by a junk message of Bob and then Alice transfers her quantum state
privately using the earlier sent EPR pairs. In this protocol none of the individual messages
give any information about the transfered state but it does not mean that Eve, who can
access the channel in all rounds, cannot get any information about the transfered state. If
all the messages are classical, the entire message transcript can be considered together for
security requirement. However if some of the messages are quantum, then all of the messages
cannot even be considered together. Therefore, we consider following security criterion for
MPQC/MPQCE with n-bit (uniformly distributed) classical input: the probability with which
an interfering Eve should be able to guess the input of Alice is at most 2−n.

Below we discuss the resource requirements of MPQCs and MPQCEs with classical inputs.

Lemma 4.1 Let P be the distribution of the shared random strings between Alice and Bob
in an MPQC for C2n. Then S(P ) ≥ n.
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Proof: Let s be a string which has highest probability according to P , say p. Consider an
attack of Eve where she starts acting like Bob (to Alice) and assumes the shared string to be
s. In the event that the shared random string between Alice and Bob is s, which happens
with probability p, Eve gets to know Alice’s input at the end of the protocol. Hence from the
security criterion p should be at most 2−n, which implies S(σ) ≥ n.

We show a similar statement for MPQCEs.

Lemma 4.2 Let |ψ〉AB be the prior shared pure state between Alice and Bob in an MPQCEs
for C2n. Let σAB = |ψ〉〈ψ|. Let σA and σB denote state of Alice’s and Bob’s parts respectively
in σAB. Then E(|ψ〉AB) = S(σA) = S(σB) = Ω(n).

Proof: Let S(σB) = k. As in the proof of the previous lemma, let us consider a cheating
strategy of Eve in which she imitates Bob. She starts with the state σB in the register which
holds Bob’s part of the entanglement and then behaves exactly like Bob. Let M1 and M2

represent Alice and Bob’s parts in σAB. Then, from Lemma 3.5 we get

S(σAB|σA ⊗ σB) = I(M1 : M2) ≤ 2S(σB) = 2k

From the substate theorem, there exists state σ′AB such that

σA ⊗ σB − σ′AB

2O(k)
≥ 0

andTr|σ′AB − σAB| ≤ 0.1
This implies that, in case Alice and Bob start with σ′AB as the prior entangled state, Eve’s

output equals the input of Alice with probability at least 2−O(k). Since Tr|σ′AB−σAB| ≤ 0.1,
Eve’s output will be equal to the input of Alice with probability at least (0.8)2−O(k). Because
of the security criterion (0.8)2−O(k) should be at most 2−n which implies k = Ω(n).

Remark: Consider an implementation of a private quantum channel in which Alice and
Bob first use quantum key distribution (QED) protocols like BB84 for key generation and
then use these keys to transfer quantum states privately. However it is not strictly an MPQC
according to our definition, because current implementations of QEDs require the existence
of a classical broadcast channel which is unjammable by Eve. Also such a protocol would
not be perfectly secure and there would still be a small amount of information that Eve can
obtain even in case Alice does not abort the protocol.

4.1 Conclusion

We have considered private quantum channels with one-way communication of all possible
kinds and in all the cases we have shown simultaneously optimal resource requirements. Even
when we allow two-way communication but if Eve is allowed arbitrary access to the channel,
we show that there is not much saving possible on prior entanglement/shared randomness.

It will be interesting to further investigate MPQC/MPQCEs and determine tight resource
bounds in different cases as considered for PQC/PQCEs. In connection with RSPs it will be
interesting to show similar bounds on resources when we do not have the oblivious condition
or for two-way multiple round (non)-oblivious protocols.
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