
  

CS3230R Presentation
(13 Mar 2012)

Text Searching
Algorithms

Presented by: Aldrian Obaja



  

What is Text Searching?
● "... to find within a text t a match for a pattern p, where 

text, pattern, and match can be interpreted in different 
ways"

● The different ways:
● Simple text searching
● Rabin-Karp algorithm
● Knuth-Morris-Pratt algorithm
● Boyer-Moore(-Horspool) algorithm
● Approximate matching
● Regular expression



  

Why do we want Text Searching?
● Search for a student's name in a students list
● Search for a word or phrase in a document
● Search for approximate file name in a directory
● Search for a phone number in a form



  

Assumptions and Notations
● We are searching on English documents, 

containing English alphabets and punctuations
● Notations we will use in this presentation (and 

also in the book):
● Big-O notation for time complexity
● p for pattern to be searched, t for source 

text
● m = |p| and n = |t|



  

Simple Text Searching
● The simplest to implement
● Compare t against p letter by letter until match 

or end of text is found
● Example we are going to search for "001" in 

"010001"



  

Example

j = 1
    |
   001
010001
   |
i = 3

j = 0
   |
   001
010001
   |
i = 3

j = 2
    |
  001
010001
  |
i = 2

j = 1
   |
  001
010001
  |
i = 2

j = 0
  |
  001
010001
  |
i = 2

j = 0
 |
 001
010001
 |
i = 1

j = 1
 |
001
010001
|
i = 0

j = 0
|
001
010001
|
i = 0

Match 
found at 
i=3

j = 2
     |
   001
010001
   |
i = 3



  

Too slow!
● This algorithm runs in O(m*n) since for each 

character in t we need to start matching with p 
until mismatch or until end of text

● For large documents and length of the pattern, 
this can be really slow

● Say look up for term "text searching" in the 
book "Algorithms"

● Can we do better than this?



  

Rabin-Karp Algorithm
● Idea: create a fingerprint for every substring in t 

that has the same length as p
● Compare the letters only when the fingerprint 

match
● We need to find fingerprint function that fulfills:

● Maps strings with length m to q values
● Distribute the string evenly among the q 

values
● Easy to compute



  

Example

i 0 1 2 3 4 5 6 7 8 9
t[i] 0 0 0 1 0 0 1 0 0 0
f[i] 1 1 1 0 1 1 1

Since the parity of p is 0, we check for matching 
only at those positions where f[i]=0
In this case, it is only at i=3, which  after 
checking it doesn't match p. So return -1

p = "0011", t = "0001001000"
f[i] = parity of the string t[i..i+3]

Table 1: calculation of f[i]



  

Complexity Analysis
● Assuming the fingerprint for p and t can be 

calculated in O(m) and O(n) respectively and 
the fingerprint distributes the substring into q 
values evenly, this algorithm is expected to 
compare p only with 1/q of the total substring 
in t, resulting in O(m + m*n/q) = O(m+n) on 
average if q > m

● Note that this is expectation only, since the 
substring might not be evenly distributed



  

Knuth-Morris-Pratt Algorithm
● During searching, often we have found partial 

match, which means we already have some 
information about the text and the pattern, can 
we use this information to speed up the search?

● Idea: Use the information of the pattern and the 
text to shift the position of comparison 
hopefully more than 1 position



  

Example
Searching for "Tweedledum" in "Tweedledee and 
Tweedledum"

Tweedledum
Tweedledee and Tweedledum

        Tweedledum
Tweedledee and Tweedledum

Shift 8 positions since the partial text "Tweedled" 
does not contain any "T" after the first "T" to be 
matched with the "T" in the pattern



  

Example
Searching for "pappar" in "pappappapparrassan"
pappar
pappappapparrassan

   pappar
pappappapparrassan

Shift 3 positions

      pappar
pappappapparrassan

Shift 3 positions



  

Shift Table
● The idea is to use partial match so that after 

shifting either we shift the pattern entirely or 
there are still partial match

● If p[0..k] has matched t[i..i+k], then shifting s 
position means p[0..k-s] should match
t[i+s..i+k]

● Since p[0..k-s] = t[i+s..i+k] = p[s..k], then the 
shift table at index k contains the number 
minimum s > 0 such that p[0..k-s] = p[s..k]



  

Algorithm
knuth_morris_pratt_search(p,t){
1 m = p.length
2 n = t.length
3 knuth_morris_pratt_shift(p,shift)
4 i=0, j=0
5 while(i+m<=n){
6 while(t[i+j]==p[j]){
7 j=j+1
8 if(j>=m) return i
9 }
10 i = i+shift[j-1]
11 j = max(j-shift[j-1],0)
12 }
13 return -1
}



  

Algorithm
knuth_morris_pratt_shift(p,shift){
1 m = p.length
2 shift[-1] = 1, shift[0] = 1
3 i=1, j=0
4 while(i+j<m){
5 if(p[i+j]==p[j]){
6 shift[i+j] = i
7 j=j+1
8 } else {
9 if(j==0) shift[i] = i+1
10 i = i+shift[j-1]
11 j = max(j-shift[j-1],0)
12 }
13 }
}



  

Complexity Analysis
● The algorithm runs in O(n+m) time
● Proof: tracing the value of 2i+j at line 6

- If the condition is true, then j, and hence 2i+j 
increases by 1
- If the condition is false, then 2i+j increases by 
at least shift[j-1], which is at least 1
- Since 2i+j < 2(n-m)+m, then line 6 can be 
executed at most 2n-m times, which is O(n), 
and combined with the preprocessing of pattern 
in O(m), total the algorithm runs in O(n+m)



  

Boyer-Moore
● Idea: why don't search from right to left?
● Algorithm: Implemented with simple text 

searching plus two heuristics: occurence and 
match

● Occurence: If we know the character in
t[i+m-1] is not contained in the pattern, then we 
can shift over this position to i=i+m

● Match: Use partial match – similar to Knuth-
Morris-Pratt shift table, but for reverse pattern



  

Boyer-Moore-Horspool
● Horspool suggested the use of shifting based on 

the last compared letter in the text, to match the 
last occurence of that letter to the left of p[m-1]

● In practice, this runs fast, although the worst 
case runtime is O(mn)



  

Examples
     |
kettle
tea kettle
     |

    |
kettle
tea kettle
    |

         |
    kettle
tea kettle
         |

   |
date
detective
   |

 |
date
detective
 |

       |
    date
detective
       |



  

Approximate Pattern Matching
● Search not for exact match, but for close match
● Mainly use "Edit distance":

● The distance between two strings defined 
as the number of edits required to 
transform one string to the other

● Best approximate match:
● From a text to find a substring with lowest 

edit distance from the pattern



  

Examples
● The result of searching "retrieve" in 

"retreive,retreeve,retreev" will result in the 
substring "retreeve" at position 9 with distance 
1 (the minimum possible for this text)



  

Don't Care Match
● A variant of text searching, using additional 

symbol '?' that can match any character.
● Assume we have algorithm that find exact 

match of a set of pattern, in a text that runs in 
O(m+n) (Aho and Corasick algorithm)

● Then we can search for the don't care match by 
splitting the pattern into set of pattern by the '?' 
symbol and then running the modified version 
of above algorithm



  

Regular Expression
● To search for strings that follow a specific 

pattern
● Examples: phone number (90589284), master 

card number (1234-5678-9012-3456), file 
extension (any.jpg, some.txt,home.html), e-
mail address (somebody@somedomain.com)

● Uses three features: concatenations, 
alternations, and repetitions



  

Features of Regular Expression
● concatenations: simplest feature, allow a 

search for a concatenated list of characters: 
"html", "abcd". Simbolized as "·"

● alternations: allows a search from a list of 
options, example: (jpg|gif) would match the 
string "jpg" and the string "gif"

● repetition: allows a search for repetitive 
pattern, which makes the query pattern easier. 
Example: "(0|1)*" will match any binary text 
such as "000011" or "11001"



  

Notations
● Empty string: a string that has no length
● Candidates: the set of nodes that can be 

matched with next letter



  

Regex Tree
● To do matching using regex, we use the tree 

representation of the query pattern
● A node may be either one of these:

● Concatenation node (2 children)
● Alternation node (2 children)
● Repetition node (1 child)
● Leaf node (no children)



  

Regex Tree

·

0 .

* 0

0 1

|

eps

cand

The regex tree for query 
pattern: 0(0|1)*0



  

Regex Matching

Require four methods:
● eps: to mark trees that can match empty string
● start: to mark the initial candidates
● match_letter: to match a letter with the 

candidates
● next: to find the next candidates



  

next Algorithm
next(t,mark){
1 if(t.value=="."){
2 next(t.left,mark)
3 if(t.matched || (t.eps && mark)){
4 next(t.right,true)
5 } else {
6 next(t.right,false)
7 }
8 } else if (t.value=="|"){
9 next(t.left,mark), next(t.right,mark)
10 } else if (t.value=="*"){
11 if(t.matched)next(t.left,true)
12 else next(t.left,mark)
13 } else {
14 t.cand = mark
}



  

match_letter Algorithm
match_letter(t,a){
1 if(t.value=="."){
2 match_letter(t.left,a)
3 t.matched = match_letter(t.right,a)
4 } else if (t.value=="|"){
5 t.matched = match_letter(t.left,a) ||

  match_letter(t.right,a)
6 } else if (t.value=="*"){
7 t.matched = match_letter(t.left,a)
8 } else {
9 t.matched = t.cand && (a==t.value)
10 t.cand = false
11 }
12 return t.matched
}



  

Matching Algorithm
match(w,t){
1 n = w.length
2 epsilon(t)
3 start(t)
4 i=0
5 while(i<n){
6 match_letter(t,w[i])
7 if(t.matched)
8 return true
9 next(t,false)
10 i=i+1
11 }
12 return -1
}



  

Example

·

0 .

* 0

0 1

|

eps

matched

cand

cand

cand

·

0 .

* 0

0 1

|

eps

matched

cand cand

cand

matched

matched

matched

After matching 0
and call to `next`

Try to match the text "010"

After matching 1
and call to `next`

·

0 .

* 0

0 1

|

eps

matched

cand cand
matched

matched

matched

matched

matched

matched

After matching 0
and call to `next`



  

Regex Search
● Similar to regex match, the difference is just in 

determining the next candidate after matching 
(refer to the `match` algorithm)

● In searching, the match might not be from the 
initial, so after matching we want to still 
include the start candidates as candidates

● Minor change at line 9 to next(t,true)



  

References
● This presentation is adapted from the Chapter 9 

of the book Algorithms by Richard 
Johnsonbaugh and Marcus Schaefer



  

Thank You


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

