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Abstract. We show lower bounds of Ω(
√
n) and Ω(n1/4) on the ran-

domized and quantum communication complexity, respectively, of all n-
variable read-once Boolean formulas. Our results complement the recent
lower bound ofΩ(n/8d) by Leonardos and Saks [LS09] andΩ(n/2O(d log d))
by Jayram, Kopparty and Raghavendra [JKR09] for randomized commu-
nication complexity of read-once Boolean formulas with depth d.
We obtain our result by “embedding” either the Disjointness problem or
its complement in any given read-once Boolean formula.

1 Introduction

A read-once Boolean formula f : {0, 1}n → {0, 1} is a function which can
be represented by a Boolean formula involving AND and OR such that
each variable appears, possibly negated, at most once in the formula.
An alternating AND-OR tree is a layered tree in which each internal
node is labeled either AND or OR and the leaves are labeled by vari-
ables; each path from the root to the any leaf alternates between AND
and OR labeled nodes. It is well known (see eg. [HW91]) that given a
read-once Boolean formula f : {0, 1}n → {0, 1} there exists a unique
alternating AND-OR tree, denoted Tf , with n leaves labeled by input
Boolean variables z1, . . . , zn, such that the output at the root, when the
tree is evaluated according to the labels of the internal nodes, is equal
to f(z1 . . . zn). Given an alternating AND-OR tree T , let fT denote the
corresponding read-once Boolean formula evaluated by T .
Let x, y ∈ {0, 1}n and let x ∧ y, x ∨ y represent the bit-wise AND,OR
of the strings x and y respectively. For f : {0, 1}n → {0, 1}, let f∧ :
{0, 1}n × {0, 1}n → {0, 1} be given by f∧(x, y) = f(x ∧ y). Similarly let
f∨ : {0, 1}n×{0, 1}n → {0, 1} be given by f∨(x, y) = f(x∨ y). Recently
Leonardos and Saks [LS09], investigated the two-party randomized com-
munication complexity with constant error, denoted R(·), of f∧, f∨ and
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showed the following. (Please refer to [KN97] for familiarity with basic
definitions in communication complexity.)

Theorem 1 ([LS09]) Let f : {0, 1}n → {0, 1} be a read-once Boolean
formula such that Tf has depth d. Then

max{R(f∧),R(f∨)} ≥ Ω(n/8d).

In the theorem, the depth of a tree is the number of edges on a longest
path from the root to a leaf. Independently, Jayram, Kopparty and
Raghavendra [JKR09] proved randomized lower bounds ofΩ(n/2O(d log d))
for general read-once Boolean formulas and Ω(n/4d) for a special class
of “balanced” formulas.
It follows from results of Snir [Sni85] and Saks and Wigderson [SW86]
(via a generic simulation of trees by communication protocols [BCW98])
that for the read-once Boolean formula with their canonical tree being
a complete binary alternating AND-OR trees, the randomized communi-
cation complexity is O(n0.753...), the best known so far. However in this
situation, the results of [LS09,JKR09] do not provide any lower bound
since d = log2 n for the complete binary tree. We complement their result
by giving universal lower bounds that do not depend on the depth. Below
Q(·) represents the two-party quantum communication complexity.

Theorem 2 Let f : {0, 1}n → {0, 1} be a read-once Boolean formula.
Then,

max{R(f∧),R(f∨)} ≥ Ω(
√
n).

max{Q(f∧),Q(f∨)} ≥ Ω(n1/4).

Remark:

1. Note that the maximum in Theorem 1 and 2 is necessary since for
example if f is the AND of the n input bits then it is easily seen that
R(f∧) is 1.

2. The randomized lower bound in the above theorem is easy to observe
for balanced trees, as is also remarked in [LS09].

3. We obtain our result by “embedding” either the Disjointness prob-
lem or its complement in any given read-once Boolean formula. This
simple idea was also used by Zhang [Zha09] and independently by
Sherstov [She10] to show some relations between decision tree com-
plexity and communication complexity.

2 Proofs

In this section we show the proof of Theorem 2. We start with the fol-
lowing definition.



Communication Complexity of Read-Once Boolean Formulas 3

Definition 1 (Embedding) We say that a function

g1 : {0, 1}r × {0, 1}r → {0, 1}

can be embedded into a function g2 : {0, 1}t × {0, 1}t → {0, 1}, if there
exist maps ha : {0, 1}r → {0, 1}t and hb : {0, 1}r → {0, 1}t such that
∀x, y ∈ {0, 1}r, g1(x, y) = g2(ha(x), hb(y)).

It is easily seen that if g1 can be embedded into g2 then the communi-
cation complexity of g2 is at least as large as that of g1.
Let us define the Disjointness problem DISJn : {0, 1}n × {0, 1}n →
{0, 1} as DISJn(x, y) =

∧
i=1,...,n(xi ∨ yi) (where the usual negation of

the variables is left out for notational simplicity). Similarly the Non-
Disjointness problem NDISJn : {0, 1}n × {0, 1}n → {0, 1} is defined as
NDISJn(x, y) =

∨
i=1,...,n(xi ∧ yi). We shall also use the following well-

known lower bounds.

Fact 1 ([KS92,Raz92]) R(DISJn) = Ω(n),R(NDISJn) = Ω(n).

Fact 2 ([Raz03]) Q(DISJn) = Ω(
√
n),Q(NDISJn) = Ω(

√
n).

Recall that for the given read-once Boolean formula f : {0, 1}n → {0, 1}
its canonical tree is denoted Tf . We have the following lemma which we
prove in Section 2.1.

Lemma 3 1. Let Tf have its last layer consisting only of AND gates.
Let m0 be the largest integer such that DISJm0 can be embedded into
f∨ and m1 be the largest integer such that NDISJm1 can be embedded
into f∨. Then m0m1 ≥ n.

2. Let Tf have its last layer consisting only of OR gates. Let m0 be the
largest integer such that DISJm0 can be embedded into f∧ and m1

be the largest integer such that NDISJm1 can be embedded into f∧.
Then m0m1 ≥ n.

With this lemma, we can prove the lower bounds on max{R(f∧),R(f∨)}
and max{Q(f∧),Q(f∨)} as follows. For an arbitrary read-once formula
f with n variables, consider the sets of leaves

Lodd = {leaves in Tf on odd levels}, Leven = {leaves in Tf on even levels}

At least one of the two sets has size at least n/2; without loss of generality,
let us assume that it is Lodd. Depending on whether the root is AND or
OR, this set consists only of AND gates or OR gates, corresponding to case
1 or 2 in Lemma 3. Then by the lemma, either DISJ√

n/2
or NDISJ√

n/2

can be embedded in f (by setting the leaves in Leven to 0’s). By Fact 1
and 2, we get the lower bounds in Theorem 2.
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2.1 Proof of Lemma 3

We shall prove the first statement; the second statement follows similarly.
We first prove the following claim.

Claim 1 For an n-leaf (n > 2) alternating AND-OR tree T such that
all its internal nodes just above the leaves have exactly two children (de-
noted the x-child and the y-child), let s(T ) denote the number of such
nodes directly above the leaves. Let m0(T ) be the largest integer such that
DISJm0 can be embedded into fT and m1(T ) be the largest integer such
that NDISJm1 can be embedded into fT . Then m0(T )m1(T ) ≥ s(T ).

Proof. The proof is by induction on depth d of T . When n > 2, the
condition of the tree makes d > 1, so the base case is d = 2.

Base Case d = 2: In this case T consists either of the root labeled AND
with s(T ) (fan-in 2) children labeled ORs or it consists of the root labeled
OR with s(T ) (fan-in 2) children labeled ANDs. We consider the former
case and the latter follows similarly. In the former case fT is clearly
DISJs(T ) and hence m0(T ) = s(T ). Also m1(T ) ≥ 1 as follows. Let us
choose the first two children v1, v2 of the root. Further choose the x child
of v1 and the y child of v2 which are kept free and the values of all other
input variables are set to 0. It is easily seen that the function (of input
bits x, y) now evaluated is NDISJ1. Hence m0(T )m1(T ) ≥ s(T ).

Induction Step d > 2: Assume the root is labeled AND (the case when
the root is labeled OR follows similarly). Let the root have r children
v1, . . . , vr which are labeled OR and let the corresponding subtrees be
T1, . . . , Tr rooted at v1, . . . , vr respectively. Without loss of generality let
the first r′ (with 0 ≤ r′ ≤ r) of these trees be of depth 1 in which case
the corresponding s(·) = 0. It is easily seen that

s(T ) = r′ +

 r∑
i=r′+1

s(Ti)

 .

For i > r′, we have from the induction hypothesis that m1(Ti)m0(Ti) ≥
s(Ti).

It is clear that m0(T ) ≥
∑r

i=1m0(Ti), since we can simply combine the
Disjointness instances of the subtrees. Also we have

m1(T ) ≥ max{m1(Tr′+1), . . . ,m1(Tr), 1},

because we can either take any one of the subtree instances (and set all
other inputs to 0), or at the very least can pick a pair of x, y leaves (as
in the base case above) and fix the remaining variables appropriately to
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realize a single AND gate which amounts to embedding NDISJ1. Now,

m0(T )m1(T ) ≥

(
r∑

i=1

m0(Ti)

)
· (max{m1(T1), . . . ,m1(Tr), 1})

≥ r′ +

 r∑
i=r′+1

m0(Ti)m1(Ti)


≥ r′ +

 r∑
i=r′+1

s(Ti)

 = s(T ) .

Now we prove Lemma 3: Let us view f∨ : {0, 1}2n → {0, 1} as a read-
once Boolean formula, with input (x, y) of f∨ corresponding to the x-
and y- children of the internal nodes just above the leaves. Note that in
this case Tf∨ satisfies the conditions of the above claim and s(Tf∨) = n.
Hence the proof of the first statement in Lemma 3 finishes.

3 Concluding Remarks

1. The randomized communication complexity varies between Θ(n) for
the Tribesn function (a read-once Boolean formula whose canonical
tree has depth 2) [JKS03] and O(n0.753...) for functions correspond-
ing to completely balanced AND-OR trees (which have depth logn).
It will probably be hard to prove a generic lower bound much larger
than

√
n for all read-once Boolean formulas f : {0, 1}n → {0, 1},

since the best known lower bound on the randomized query com-
plexity of every read-once Boolean formula is Ω(n.51) [HW91] and
communication complexity lower bounds immediately imply slightly
weaker query complexity lower bounds (via the generic simulation
of trees by communication protocols [BCW98]).

2. Ambainis et al. [ACR+07] show how to evaluate any alternating
AND-OR tree T with n leaves by a quantum query algorithm with
slightly more than

√
n queries; this also gives the same upper bound

for the communication complexity of max{Q(f∧
T ),Q(f∨

T )}. On the
other hand, it is easily seen that the parity of n bits can be com-
puted by a formula of size O(n2) involving AND,OR. Therefore it
is easy to show that the function Inner Product modulo 2 i.e. the
function IPm : {0, 1}m × {0, 1}m → {0, 1} given by IPm(x, y) =∑m

i=1 xiyi mod 2, with m =
√
n can be reduced to the evaluation

of an alternating AND-OR tree of size O(n) and logarithmic depth.
Since it is known that Q(IP√

n) = Ω(
√
n) [CvDNT99], we get an

example of an alternating AND-OR tree T with n leaves and logn
depth such that Q(f∧

T ) = Ω(
√
n). Since the same lower bound also

holds for shallow trees such as OR, hence Θ(
√
n) might turn out

to be the correct bound on max{Q(f∧
T ),Q(f∨

T )} for all alternating
AND-OR trees T with n leaves regardless of the depth.



6 Rahul Jain, Hartmut Klauck, and Shengyu Zhang

Acknowledgments: Research of Rahul Jain and Hartmut Klauck is
supported by the internal grants of the Centre for Quantum Technologies
(CQT), which is funded by the Singapore Ministry of Education and the
Singapore National Research Foundation. Research of Shengyu Zhang is
partially supported by the Hong Kong grant RGC-419309, and partially
by CQT for his research visit.

References

[ACR+07] A. Ambainis, A. Childs, B. Reichardt, R. Spalek, and
S. Zhang. Any AND-OR formula of size n can be evaluated
in time n1/2+o(1) on a quantum computer. In Proceedings of
the 48th Annual IEEE Symposium on Foundations of Com-
puter Science, pages 363–372, 2007.

[BCW98] H. Buhrman, R. Cleve, and A. Wigderson. Quantum vs.
classical communication and computation. In Proceedings
of the Thirtieth Annual ACM Symposium on the Theory of
Computing (STOC), pages 63–68, 1998.

[CvDNT99] R. Cleve, W. van Dam, M. Nielsen, and A. Tapp. Quantum
entanglement and the communication complexity of the in-
ner product function. Lecture Notes in Computer Science,
1509:61–74, 1999.

[HW91] R. Heiman and A. Wigderson. Randomized vs. determinis-
tic decision tree complexity for read-once boolean functions.
In Proceedings of the 6th Structures in Complexity Theory
Conference, pages 172–179, 1991.

[JKR09] T.S. Jayram, S. Kopparty, and P. Raghavendra. On the com-
munication complexity of read-once ac0 formula. In Proceed-
ings of the 24th Annual IEEE Conference on Computational
Complexity, pages 329–340, 2009.

[JKS03] T. S. Jayram, R. Kumar, and D. Sivakumar. Two appli-
cations of information complexity. In Proceedings of the
thirty-fifth annual ACM symposium on Theory of comput-
ing (STOC), pages 673–682, 2003.

[KN97] E. Kushilevitz and N. Nisan. Communication Complexity.
Cambridge University Press, Cambridge, UK, 1997.

[KS92] B. Kalyanasundaram and G. Schnitger. The probabilistic
communication complexity of set intersection. SIAM Journal
on Discrete Mathematics, 5(4):545–557, 1992. Earlier version
in Structures’87.

[LS09] N. Leonardos and M. Saks. Lower bounds on the random-
ized communication complexity of read-once functions. In
Proceedings of the 24th Annual IEEE Conference on Com-
putational Complexity, pages 341–350, 2009.

[Raz92] A. Razborov. On the distributional complexity of disjoint-
ness. Theoretical Computer Science, 106(2):385–390, 1992.

[Raz03] A. Razborov. Quantum communication complexity of sym-
metric predicates. Izvestiya of the Russian Academy of Sci-
ence, mathematics, 67(1):159–176, 2003. quant-ph/0204025.



Communication Complexity of Read-Once Boolean Formulas 7

[She10] A. Sherstov. On quantum-classical equivalence for composed
communication problems. Quantum Information and Com-
putation, 10(5-6):435–455, 2010.

[Sni85] M. Snir. Lower bounds for probabilistic linear decision trees.
Theoretical Computer Science, 38:69–82, 1985.

[SW86] M. Saks and A. Wigderson. Probabilistic boolean decision
trees and the complexity of evaluating game trees. In Pro-
ceedings of the 27th Annual IEEE Symposium on Founda-
tions of Computer Science, pages 29–38, 1986.

[Zha09] S. Zhang. On the tightness of the Buhrman-Cleve-Wigderson
simulation. In Proceedings of the 20th International Sympo-
sium on Algorithms and Computation, pages 434–440, 2009.


