Group 4:

COMPRESSED SENSING

Equations

 $y = \Phi x$

 $y = \Phi \Psi \alpha$

 $x=\Psi\alpha$

Magnitudes

- N The dimensionality (size) of the signal, e.g., pixels in an image.
- $\begin{array}{ll} K & \mbox{ Sparsity of the signal } x \\ & K \ll N \end{array}$
- $M \qquad \text{The dimensionality of the measurement} \\ K \leq M \ll N$

Variables

- y The compressed measurement A $M \times 1$ vector
- $\Phi \qquad \text{The sensing matrix} \\ A M \times N \text{ matrix} \end{cases}$
- x The original signal A $N \times 1$ vector
- \hat{x} The reconstructed signal A $N \times 1$ vector
- α The signal represented in a base in which it is sparse A $N \times 1$ vector
- Ψ Transformation matrix, that transforms the signal into a sparse base A $N \times N$ matrix