PRIMES is in P

Abha, Akshay, Ratul, Pratik, Shengyi, Shweta, Shruti

January 27, 2014

1 Algorithm

Input: integer n > 1

- (1) if $n = a^b$, for $a, b \ge 2$ && $b < \log n + 1$ then return COMPOSITE
- (2) choose smallest r such that $o_r(n) > (\log n)^2$
- (3) if $\exists \gcd(a, n) < n \text{ for some } a < r$ return COMPOSITE
- (4) if $n \leq r$, return PRIME
- (5) for $a=1,2,\ldots,A=\lceil \sqrt{r}\log n \rceil$ do
- (6) if $(X+a)^n \neq X^n + a \pmod{X^r 1, p}$ then return COMPOSITE
- (7) return PRIME

2 Time Complexity

We define $\widetilde{O}(m) = O(m(\log m)^{O(1)})$. The total time complexity: $\widetilde{O}((\log n)^{\frac{21}{2}})$

3 Basics

Definition 1 $\mathbb{Z}/n\mathbb{Z} = \mathbb{Z}_n = \{\overline{0}, \overline{1}, \dots, \overline{n-1}\}$

Definition 2 $f(x) \pmod{x^r-1}$, n) can be defined as two successive operations

- 1. $f(x) \pmod{x^r-1}$ [on polynomials]
- 2. $f(x) \pmod{n}$ [on coefficients]

Definition 3 Child's Binomial Theorem: $a \in \mathbb{Z}$, $n \in \mathbb{N}$, $n \geq 2$ and gcd(a, n) = 1. Then n is prime iff

$$(X+a)^n = X^n + a \pmod{n}$$

Definition 4 Order of a modulo r: Given gcd(a, r) = 1, the order of a modulo r is the smallest number k such that

$$a^k = 1 \pmod{r}$$

It is denoted as $o_r(a)$.

Definition 5 Cyclotomic Polynomial: A n^{th} cyclotomic polynomial $\Phi_n(x)$ is the unique irreducible polynomial with integer coefficients

$$\Phi_n(x) = \prod_{\substack{1 \le k \le n \\ \gcd(k,n)=1}} \left(x - e^{2i\pi \frac{k}{n}}\right)$$

4 Notations related to the Proof of Correctness

Notation 1 $r \leq \lceil (\log n)^5 \rceil$.

Notation 2 For each integer a, $1 \le a \le A$, Let h(x) be an irreducible factor of $\Phi_r(x) \pmod{p}$ (i.e. in $(\mathbb{Z}/p\mathbb{Z})[x]$), then

$$(x+a)^n = x^n + a \pmod{h(x), p}$$

Notation 3 $\mathbb{F} = \mathbb{Z}[x]/(p, h(x))$.

Notation 4 *H* is the multiplicative group modulo $(x^r - 1, p)$ generated by $x, x + 1, x + 2, \dots, x + A$.

Notation 5 \mathbb{G} *is the (multiplicative) subgroup of* \mathbb{F} *generated by* $x, x + 1, x + 2, \dots, x + A$.

Notation 6 S is the set of positive integers k for which $g(x^k) = g(x)^k \pmod{x^r - 1, p}$ for all $g \in H$.