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Why are we interested in primes?
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. Introduction

9965468763136528274628451

Why are we interested in primes?
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. Primality Testing

→ Input: A positive number n in binary
→ Prime? Yes or No
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. Primality Testing

The algorithm we present is
→ Unconditional
→ Deterministic
→ Polynomial Time
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. Fermat's Little Theorem

For any prime number p, and any number a not
divisible by p,

ap−1 = 1 (mod p)

→ Efficient to calculate ⌣̈

→ However, many composites n also satisfy
this for some a's ⌢̈

→ Carmichael Numbers: 561, 1105, 1729, . . .
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. Other Approaches

Uncond Det Poly
Miller × X X
Miller-Rabin X × X
Solovay Strassen X × X
APR∗ X X ×
Goldwasser & Kilian × × X

∗APR = Adleman, Pomerance & Rumely
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. Computional Complexity

The problem is in

NP ∩ co-NP

→ Why in NP?
→ Why in co-NP?
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. Primes in Times . . .

The New York Times (August 8, 2002) article

→ Gödel Prize ('06)
→ Fulkerson Prize ('06)

..10

http://www.nytimes.com/2002/08/08/science/08MATH.html


The Idea

Shweta Shinde



. The million dollar question

→ Is n prime or composite?

→ Is there a litmus test? YES!

Child's Binomial Theorem

→ a ∈ Z, n ∈ N, n ≥ 2 and gcd(a, n) = 1

→ Then n is prime iff,

(x+ a)n = xn + a (mod n)
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. The Litmus Test

Given n and a such that gcd(a, n) = 1 should
(x+ a)n = xn + a (mod n)?

→ If n is prime, then yes

→ If n is composite, then no

How do we prove it?

→ Substitute (x+ a)n = xn +
∑

0<i<n

(n
i

)
xian−i + an

→ [(x+ a)n − xn − a] (mod n) = 0?
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. The Litmus Test: Proof

→ [xn +
∑

0<i<n

(n
i

)
xian−i + an − xn − a] (mod n)

≡ [
∑

0<i<n

(n
i

)
xian−i] (mod n) + [an − a] (mod n)

→ Since an (mod n) = a,

≡ [
∑

0<i<n

(n
i

)
xian−i] (mod n)

..14



. ⇒: If n is prime

→ [
∑

0<i<n

(n
i

)
xian−i] (mod n) = 0

≡ ∀0 < i < n,[ n!
i!(n−i)!] (mod n) = 0

→ n− i < n and i < n and n is prime

≡ No factor of n in denominator

→ [ (i+1)(̇i+2)...n
(n−i)! ] (mod n)

≡ [( (i+1)(̇i+2)...(n−1)
(n−i)! ) ∗ n] (mod n)

≡ 0
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. ⇐: If n is composite

→ q: prime factor of n

→ ∃k such that qk ∥ n

→ Coefficient of xn−qaq in (x+ a)n

≡ [( n!
(n−q)!·q!)x

n−qaq] (mod n)

≡ [( (n−q+1)...(n)
q! )xn−qaq] (mod n)
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. ⇐: If n is composite

→ q: prime factor of n

→ ∃k such that qk ∥ n

→ Coefficient of xn−qaq in (x+ a)n

≡ [( n!
(n−q)!·q!)x

n−qaq] (mod n)

≡ [( (n−q+1)...(n)
q! )xn−qaq] (mod n)
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. ⇐: If n is composite

[( (n−q+1)...(n)
q! )] (mod n)

→ [( (n−q+1)...(n)
q! )] (mod n) ̸= 0

→ The only term q divides in the numerator is n

→ The only term q divides in the denominator
is q

→ qk−1 is the highest power of q that divides(n
q

)
→ ∴ qk ̸ |

(n
q

)
⇒ n ̸ |

(n
q

)
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. ⇐: If n is composite

aq (mod n)

→ gcd(a, n) = 1

→ gcd(a, qk) = 1

→ gcd(aq, qk) = 1
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. Outline

→ Given n, a and gcd(a, n) = 1

→ Calculate f(x) := (x+ a)n − (xn + a)

→ As f(x) (mod n) = 0

→
∑

0<i<n

(n
i

)
Xian−i - each term should be zero

→ Computation of n coefficients

→ Ω(n): horribly inefficient!
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. AKS: The Idea

→ Can we reduce the number of coefficients to
be calculated?

xn +
∑

0<i<n

(n
i

)
xian−i + an (mod n)

⇓
xr +

∑
0<i<r

(r
i

)
xian−i + an (mod n)
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. AKS: The Idea

→ The algorithm finishes in polynomial time

→ Only r number of calculations

→ For a small r, check if

(x+ a)n = xn + a (mod xr − 1,n)

(we refer to this as the AKS Equation)

→ Necessary and Sufficient!
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. Group

Integers Z = {. . . ,−2,−1, 0, 1, 2, . . . } under
addition forms a group, denoted (Z,+).

→ Closure: a+ b ∈ Z
→ Associativity: (a+ b) + c = a+ (b+ c)

→ Identity element: z+ 0 = z

→ Inverse element: n+ (−n) = 0

(Z,+) is also an abelian group since it satisfies:

→ Commutativity: a+ b = b+ a
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. More Group Examples

For any n ∈ N+

→ Integers modulo n forms a group under
addition modulo n

→ Identity element is 0
→ Inverse element of x is (n− x) mod n

For n = 6, the abelian group is {0̄, 1̄, 2̄, 3̄, 4̄, 5̄}

1̄+ 2̄ = 3̄
3̄+ 4̄ = 1̄
5̄+ 1̄ = 0̄

. . .
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. More Group Examples

For any prime p,

→ Integers modulo p is a multiplicative group

→ Elements: integers 1 to p− 1

→ Group operation: multiplication modulo p

→ It's an abelian group, too

For example, if p = 5, group elements are
1, 2, 3, 4
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. More Group Examples

When p = 5, the table of inverse elements:

× 1 2 3 4
1 1 2 3 4
2 2 4 1 3
3 3 1 4 2
4 4 3 2 1

It is a cyclic group since the whole group can be
generated by 2:

21 = 2, 22 = 4, 23 = 3, 24 = 1
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. Ring

Integers modulo n form a ring under modular
add and mult, denoted Zn = {0̄, 1̄, . . . , n− 1}
→ Abelian Additive Group: Zn is an abelian

group under modular addition

→ Mult. Closure: x · y ∈ Zn

→ Mult. Associativity: (x · y) · z = x · (y · z)
→ Mult. Identity: x · 1̄ = x

→ Distributivity: x · (y+ z) = (x · y) + (x · z)
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. Ring Example: Polynomial Ring

The polynomial ring, K[x], in x over a ring K is the
set of polynomials in x, of the form

cmxm + cm−1xm−1 + · · ·+ c2x2 + c1x+ c0

where ci ∈ K and x, x2, . . . are formal symbols

→ +: Polynomial addition

→ ×: Polynomial multiplication

Concretely, all polynomials over ring Zn

(denoted Zn[x]) form a polynomial ring
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. Field

→ Intuitively, a field F is a generalization of
concept of R:

We can do +,−,×,÷ in F

→ Formally, a field is a ring whose nonzero
elements form an abelian group under ×

→ Q, R and C are all fields

..29



. Field Example: Prime Field

For any prime p, integers modulo p form a field
called prime field, denoted Fp

Addition in F5

+ 0 1 2 3 4
0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

Multiplication in F5

× 0 1 2 3 4
0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1
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. Irreducible Polynomial

→ x2 − 1 is reducible over Z since
x2 − 1 = (x− 1)(x+ 1)

→ x2 − 5 is irreducible over Q but reducible
over R since x2 − 5 = (x−

√
5)(x+

√
5)

→ x2 + 1 is irreducible over Q but reducible
over F2

→ In F2[x], (x+ 1)2 = x2 + 2x+ 1 = x2 + 1
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. Irreducible Polynomial

→ If p is prime and h(x) is a polynomial of
degree d and irreducible over Fp, then
Fp[x]/(h(x)) is a finite field of order pd

→ Two fields of order 8 are
F2[x]/(x3 + x+ 1) and F2[x]/(x3 + x2 + 1)
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. Modular Operations on Polynomials

→ We can calculate P(x) mod Q(x) using
polynomial long division:

x5 + x3 + x
x2 − 1

)
x7 + 6x− 7

− x7 + x5

x5
− x5 + x3

x3 + 6x
− x3 + x

7x
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. Modular Operations on Polynomials

→ So x7 + 6x− 7 = 7x− 7 (mod x2 − 1)

→ f(x) = g(x) (mod h(x), n) means
f(x) = g(x) in Zn[x]/(h(x))
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. Cyclotomic Polynomial

→ A nth cyclotomic polynomial Φn(x) is the
unique irreducible polynomial with integer
coefficients

→ Divisor of xn − 1, not a divisor of xk − 1 for
any k < n

Φn(x) =
∏

1≤k≤n
gcd(k,n)=1

(x− e2iπ
k
n )
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. Cyclotomic Polynomial: Examples

→ Φ15(x) = x8 − x7 + x5 − x4 + x3 − x+ 1

→ Φ11(x) =
x10+ x9+ x8+ x7+ x6+ x5+ x4+ x3+ x2+ x+1
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. Order of a modulo r

→ Given gcd(a, r) = 1, the order of a modulo r
is the smallest number k such that
ak = 1 (mod r)

→ It is denoted as or(a)
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. Order of a modulo r

→ Why does k exist?

→ For a given r, {a | (a, r) = 1 ∧ a < r} forms a
finite abelian group under multiplication
modulo r

→ For a specific a, ∃k1 < k2, such that
ak2 = ak1 (mod r).
So, ak2−k1 = 1 (mod r)
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. Order of a modulo r: Example

→ For r = 20, a = 7, o20(7) = 4 since

72 = 49 = 9 (mod 20)

73 = 343 = 3 (mod 20)

74 = 2401 = 1 (mod 20)

..39



TheAlgorithm

Akshay Narayan



. The Main Algorithm

Input: integer n > 1

(1) Preliminary test

(2) Find a suitable r

(3) Search for non co-prime elements

(4) if n ≤ r, return PRIME

(5) for a = 1, 2, . . . , ⌈
√
r log n⌉ do

(6) if (X− a)n ̸= Xn − a (mod Xr − 1, p) then
return COMPOSITE

(7) return PRIME
..41



. The Process

(1) Preliminary test

If n is perfect power

→ Given n, if n = ab(b > 1), n is composite

→ b < log n+ 1

Then for every b, we can find such a using binary
search

..42



. The Process

(2) Find suitable r

Find the smallest r such that or(n) > (log n)2

→ Recall, order or(n) is smallest j such that
nj = 1 (mod r)

for q = 1, 2, · · · , ⌈(log n)5⌉ do
if nj ̸= 1 (mod q) for j = 1, 2, . . . , ⌈(log n)2⌉
r = q

(Why r ≤ ⌈(log n)5⌉? We shall see later!)
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. The Process

(3) Search for non co-prime elements

If gcd (a, n) > 1 for some a ≤ r, COMPOSITE

Use Euclidean algorithm for each a to check if
gcd (a, n) > 1
If such an a exists, then n is composite
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. The Process

(5--6) Main loop

for a = 1 to ⌈
√
r log n⌉ do

if (X+ a)n ̸= Xn + a (mod Xr − 1, n) then
return COMPOSITE

Use standard mod calculation with fast
exponentiation
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. Putting it all together

Input: integer n > 1
(1) if n = ab, for a, b ≥ 2 && b < log n+ 1 then

return COMPOSITE
(2) choose smallest r such that or(n) > (log n)2

(3) if ∃gcd(a, n) < n for some a < r
return COMPOSITE

(4) if n ≤ r, return PRIME
(5) for a = 1, 2, . . . , ⌈

√
r log n⌉ do

(6) if (X+ a)n ̸= Xn + a (mod Xr − 1, p) then
return COMPOSITE

(7) return PRIME
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. Arithmetic Computation & Õ

→ If a and b are two positive integers, each
with no more than m digits in binary

→ + and − take O(m) bit operations

→ × takes O(m(logm)O(1))

We define Õ(m) = O(m(logm)O(1))

→ For two d degree polynomials with m bit
coefficients, multiplication takes Õ(d ·m)
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. Complexity Analysis

(1) Given n, if n = ab(b > 1), n is composite

→ Bound on b: b < log n+ 1 ⇒ O(log n)

→ For every b, find a using binary search ⇒
O(log n)

→ To compute ab ⇒ Õ(log n)

Complexity of Step 1: Õ((log n)3) bit operations
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. Complexity Analysis

(2) Find the smallest r such that or(n) > (log n)2

for q = 1, 2, · · · , ⌈(log n)5⌉ do
if nj ̸= 1 (mod q) for j = 1, 2, · · · , ⌈(log n)2⌉
r = q

→ First for loop ⇒ O(r); worst case O((log n)5)

→ Second for loop ⇒ Õ((log n)2)

Complexity of Step 2: Õ(r(logn)2) = Õ((logn)7)
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. Complexity Analysis

(3) If gcd (a, n) > 1 for some a ≤ r, n is
COMPOSITE

→ Euclidean algorithm complexity ⇒ O(log n)

→ As a ≤ r, in worst case need O(r)
computation

This can be done in O(r(log n)) = O((logn)6)
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. Complexity Analysis

(5) for a = 1 to ⌈
√
r log n⌉ do

(6) if (X+ a)n ̸= Xn + a (mod Xr − 1, n) then
return COMPOSITE

We have, a degree r polynomial with log n bits

→ Bitwise multiplication ⇒ Õ(r(log n)2)

→ for loop runs from 1 to
√
r log n

→ Now, the complexity is: Õ(r(log n)2 ·
√
r log n)

= Õ(r
3
2 (log n)3) = Õ((log n)

21
2 )
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. Complexity Analysis

Overall complexity

→ Step 1: Õ((log n)3)

→ Step 2: Õ(r(log n)2)

→ Step 3: O(r(log n))

→ Final loop: Õ((log n)
21
2 )

Complexity of the final loop dominates all others

Hence, overall complexity: Õ((logn)
21
2 )
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. AKS Theorem

For the smallest r such that or(n) > (log n)2

n is prime iff

→ n is not a perfect power,

→ n does not have any prime factor ≤ r,

→ (x+ a)n = xn + a mod (n, xr − 1) for each
integer a, 1 ≤ a ≤ A = ⌈

√
r log n⌉
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. If n is prime

→ If n is prime, steps (1) and (3) can never
return COMPOSITE

→ The for loop can not return COMPOSITE
either

→ Hence the algorithm will output PRIME

We are only left with the other side of the proof!
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. If the Algorithm Returns PRIME

Proof by contradiction

→ Let's assume n is composite

→ Thus, there exists a prime p such that p|n

We assume

→ n is not a perfect power

→ n does not have any prime factor ≤ r
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. If the Algorithm Returns PRIME

The master plan:

→ We show that there exists a suitable r

→ We construct a nice group G assuming p|n
→ We prove a contradiction on the size of G

⇒ There is no such G
→ Hence, n is not composite

We assume lcm {1, · · · ,m} ≥ 2m for m ≥ 7
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. Existence of a Suitable r

There exists an r ≤ max (3, ⌈(log n)5⌉) such that

or(n) > (log n)2

→ When n = 2, r = 3. We assume n > 2, thus
⌈(log n)5⌉ > 10

→ Consider {r1, r2, · · · , rt} such that either
or(n) ≤ (log n)2 or ri|n

→ Thus, every ri divides

n ·
⌈(log n)2⌉∏

i=1
(ni − 1) < n(log n)4 ≤ 2(log n)5
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. Existence of a Suitable r

But the lcm of the first ⌈(log n)5⌉ numbers is at
least 2⌈(log n)

5⌉

Thus, ∃s ≤ ⌈(log n)5⌉, such that s ̸∈ {r1, · · · , rt}

→ If gcd(s, n) = 1, then os(n) > (log n)2

→ If gcd(s, n) > 1, then since s ̸ |n and
(s, n) ∈ {r1, · · · , rt}, r = s

gcd(s,n) ̸∈ {r1, · · · , rt}
and so or(n) > (log n)2
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. Find a Nice GroupG

For each integer a, 1 ≤ a ≤ A,

→ We know

(x+ a)n = xn + a (mod xr − 1,n)

→ p|n, hence
(x+ a)n = xn + a (mod xr − 1, p)

→ Let h(x) be an irreducible factor of Φr(x)
(mod p) (i.e. in (Z/pZ)[x]), then

(x+ a)n = xn + a (mod h(x), p)
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. Find a Nice GroupG

→ Given F = Z[x]/(p, h(x)), non-zero elements
of F form a cyclic group of order pm − 1

→ Let H be the multiplicative group modulo
(xr − 1, p) generated by
x, x+ 1, x+ 2, · · · , x+ A

→ Let G be the (multiplicative) subgroup of F
generated by x, x+ 1, x+ 2, · · · , x+ A

→ All the elements of G are non-zero
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. Bounds on |G|

g(x) =
∏

0≤a≤A(x+ a)ea ∈ H, then

g(x)n =
∏
a

((x+ a)n)ea (mod xr − 1, p)

=
∏
a

(xn + a)ea (mod xr − 1, p)

=g(xn) (mod xr − 1, p)
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. Bounds on |G|

Define S to be the set of positive integers k for
which g(xk) = g(x)k (mod xr − 1, p) for all g ∈ H

→ p, n ∈ S

A few properties of S:

→ If a, b ∈ S, ab ∈ S (Lemma 1)

→ If a, b ∈ S and a = b (mod r),
then a = b (mod |G|) (Lemma 2)
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. Upper Bound on |G|

→ Let R be the subgroup of (Z/rZ)∗ generated
by n and p

→ There exist more than |R| integers of the
form nipj with distinct 0 ≤ i, j ≤

√
|R|

→ Two of them must be congruent (mod r)

→ Say, nipj = nIpJ (mod r)

→ |G| ≤ |nipj − nIpJ| ≤ (np)
√

|R|−1 ≤ n2
√

|R|−1

→ If n/p ∈ S, |G| ≤ n
√

|R|−1
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. Lower Bound on |G|

→ The products
∏

a∈T(x+ a) give distinct
elements of G for every proper subset T of
{0, 1, 2, · · · , ⌈

√
|R| log n⌉}

→ |G| ≥ 2⌈
√

|R| log n⌉+1 − 1 > n
√

|R| − 1

The upper and lower bounds conflict, thus
making our only assumption wrong
There exists no such G
Hence, n is not composite, completing the proof
of correctness
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. Supplementary Material

If a, b ∈ S, ab ∈ S
→ If g(x) ∈ H, g(xb) = g(x)b (mod xr − 1, p)
→ Replacing x by xa, we get

g((xa)b) = g(xa)b (mod (xa)r − 1, p) and
hence (mod xr − 1, p)

→

g(x)ab = g((x)a)b . . . (a ∈ S)

= g((xa)b) . . . (b ∈ S)

= g(xab) (mod xr − 1, p)
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. Supplementary Material

If a, b ∈ S and a = b (mod r), then a = b
(mod |G|)
→ (xr − 1)|(xa−b − 1) and (xa−b − 1)|(xa − xb)

→ (xa − xb)|(g(xa)− g(xb))

→ (xr − 1)|(g(xa)− g(xb))

→ g(x) ∈ H, then g(x)a = g(x)b (mod xr − 1, p)

→ If g(x) ∈ G, g(x)a−b = 1 in F
→ Since G is cyclic, taking generator g, |G|

divides a− b
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. Statements Not Proved

→ lcm {1, · · · ,m} ≥ 2m for m ≥ 7

→ n/p ∈ S

→ Two distinct polynomials of the form∏
a
(x+ a) of degree < |R| will map to

different elements of G
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. Usefulness

9965468763136528274628451

AKS in SAGE∗ takes ≈ 70 min for the above
number!

∗(Software for Algebra and Geometry Experimentation)
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. Comparison

Practical alternatives

→ APR primality runs in Õ((log n)(log log log n))

and yet performs better than AKS

→ Miller-Rabin and other randomized
algorithms, which takes average time
Õ(log n)3, are used in practice
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. Agrawal’s Conjecture

→ The for loop in the algorithm (in step 5)
runs ⌈(

√
r log n)⌉ times

→ This can be reduced assuming the following
conjecture:

If r is a prime number that does not divide n and
if (x+ 1)n = xn + 1 (mod xr − 1, n) then either n
is prime or n2 = 1 (mod r)
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. Agrawal’s Conjecture: Consequences

→ We can modify the algorithm to search for
an r which does not divide n2 − 1

→ Such an r exists in [2, 4 log n] (product of
prime numbers less than x is at least ex)

→ Verifying the congruence takes Õ(r(log n)2).

→ Overall complexity: Õ(log n)3
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. Agrawal’s Conjecture: Progress

→ 2003: Lenstra and Pomerance gave a
heuristic argument that suggested that the
conjecture is false.

→ 2005: A group at UT Austin proved that the
conjecture is true if r > n/2
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. Other Improvements

Possible improvements in implementation

→ Mapping the polynomial rings onto integer
rings

→ Using suitable libraries (NTL better than
LiDIA)
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. Summary

→ Efficient to work with Child's Binomial
Theorem by reducing its degree by a factor r

→ Use this for primality test which runs in
polynomial time

→ Possible improvements
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. Take Away

The ground breaking AKS Primality Test is

→ unconditional

→ deterministic

→ polynomial time
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Thank You!
Questions?


