An Unconditional, Deterministic Polynomial Time Algorithm for Primarility Testing

Abha Belorkar (A0120126) Akshay Narayan (A0095686) Ratul Saha (A0110031) Pratik Shah (A0107576) Wang Shengyi (A0120125) Shweta Shinde (A0109685) Shruti Tople (A0109720)

PRIMES is in P By Manindra Agrawal, Neeraj Kayal and Nitin Saxena

Introduction

Pratik Shah

Introduction

9965468763136528274628451

Introduction

9965468763136528274628451

Why are we interested in primes?

→ Input: A positive number *n* in *binary*→ Prime? Yes or No

Primality Testing

The algorithm we present is

- → Unconditional
- \rightarrow Deterministic
- → Polynomial Time

Fermat's Little Theorem

For any prime number *p*, and any number *a* not divisible by *p*,

$$a^{p-1} = 1 \pmod{p}$$

- ightarrow Efficient to calculate $\ddot{-}$
- \rightarrow However, many composites *n* also satisfy this for some *a*'s $\ddot{\neg}$
- \rightarrow Carmichael Numbers: 561, 1105, 1729, ...

Other Approaches

	Uncond	Det	Poly
Miller	×	\checkmark	\checkmark
Miller-Rabin	\checkmark	×	\checkmark
Solovay Strassen	\checkmark	×	\checkmark
APR*	\checkmark	\checkmark	×
Goldwasser & Kilian	×	×	\checkmark

*APR = Adleman, Pomerance & Rumely

Computional Complexity

The problem is in

NP \cap co-NP

- \rightarrow Why in NP?
- \rightarrow Why in co-NP?

The New York Times (August 8, 2002) article

- \rightarrow Gödel Prize ('06)
- \rightarrow Fulkerson Prize ('06)

The Idea

Shweta Shinde

The million dollar question

- \rightarrow Is *n* prime or composite?
- \rightarrow Is there a litmus test? YES!

Child's Binomial Theorem

 $\rightarrow a \in \mathbb{Z}$, $n \in \mathbb{N}$, $n \geq 2$ and gcd(a, n) = 1

 \rightarrow Then *n* is prime iff,

 $(x+a)^n = x^n + a \pmod{n}$

The Litmus Test

Given *n* and *a* such that gcd(a, n) = 1 should $(x + a)^n = x^n + a \pmod{n}$?

- ightarrow If n is prime, then yes
- \rightarrow If n is composite, then no

How do we prove it?

 \rightarrow Substitute $(x + a)^n = x^n + \sum_{0 \le i \le n} {n \choose i} x^i a^{n-i} + a^n$

 $\rightarrow [(x+a)^n - x^n - a] \pmod{n} = 0?$

The Litmus Test: Proof

$$\rightarrow [x^n + \sum_{0 < i < n} {n \choose i} x^i a^{n-i} + a^n - x^n - a] \pmod{n}$$

$$\equiv [\sum_{0 < i < n} {n \choose i} x^i a^{n-i}] \pmod{n} + [a^n - a] \pmod{n}$$

$$\rightarrow \text{ Since } a^n \pmod{n} = a, \\ \equiv \left[\sum_{0 < i < n} {n \choose i} x^i a^{n-i}\right] \pmod{n}$$

\Rightarrow : If n is prime

$$\rightarrow \left[\sum_{0 < i < n} {n \choose i} x^i a^{n-i}\right] \pmod{n} = 0$$
$$\equiv \forall 0 < i < n, \left[\frac{n!}{i!(n-i)!}\right] \pmod{n} = 0$$

- \rightarrow *n i* < *n* and *i* < *n* and *n* is prime
 - \equiv No factor of *n* in denominator

$$\rightarrow \left[\frac{(i+1)(i+2)\dots n}{(n-i)!}\right] \pmod{n}$$

$$\equiv \left[\left(\frac{(i+1)(i+2)\dots (n-1)}{(n-i)!}\right)*n\right] \pmod{n}$$

$$\equiv 0$$

- \rightarrow *q*: prime factor of *n*
- $\rightarrow \exists k \text{ such that } q^k \parallel n$

- \rightarrow *q*: prime factor of *n*
- $\rightarrow \exists k \text{ such that } q^k \parallel n$

→ Coefficient of $x^{n-q}a^q$ in $(x + a)^n$ $\equiv [(\frac{n!}{(n-q)! \cdot q!})x^{n-q}a^q] \pmod{n}$ $\equiv [(\frac{(n-q+1)...(n)}{q!})x^{n-q}a^q] \pmod{n}$

 $\left[\left(\frac{(n-q+1)\dots(n)}{q!}\right)\right] \pmod{n}$

$$\rightarrow [(rac{(n-q+1)\dots(n)}{q!})] \pmod{n} \neq 0$$

- \rightarrow The only term *q* divides in the numerator is *n*
- \rightarrow The only term q divides in the denominator is q
- $\rightarrow q^{k-1}$ is the highest power of q that divides $\binom{n}{q}$

 $\rightarrow \therefore q^k \not| \binom{n}{q} \Rightarrow n \not| \binom{n}{q}$

- $a^q \pmod{n}$ $\rightarrow gcd(a,n) = 1$
 - \rightarrow gcd(a, q^k) = 1
 - \rightarrow gcd(a^q, q^k) = 1

Outline

- \rightarrow Given *n*, *a* and *gcd*(*a*, *n*) = 1
- \rightarrow Calculate $f(x) := (x + a)^n (x^n + a)$
- $\rightarrow \operatorname{As} f(x) \pmod{n} = 0$
- $\rightarrow \sum_{0 < i < n} {n \choose i} X^{i} a^{n-i}$ each term should be zero
- \rightarrow Computation of *n* coefficients
- $\rightarrow \Omega(n)$: horribly inefficient!

AKS: The Idea

→ Can we reduce the number of coefficients to be calculated?

AKS: The Idea

- ightarrow The algorithm finishes in polynomial time
- → Only *r* number of calculations
- \rightarrow For a small *r*, check if

 $(x+a)^n = x^n + a \pmod{x^r - 1, n}$

(we refer to this as the AKS Equation)

→ Necessary and Sufficient!

Preliminaries

Wang Shengyi

Group

Integers $\mathbb{Z} = \{\dots, -2, -1, 0, 1, 2, \dots\}$ under addition forms a *group*, denoted $(\mathbb{Z}, +)$.

→ Closure: $a + b \in \mathbb{Z}$

- \rightarrow Associativity: (a + b) + c = a + (b + c)
- \rightarrow Identity element: z + 0 = z
- \rightarrow Inverse element: n + (-n) = 0

 $(\mathbb{Z}, +)$ is also an *abelian group* since it satisfies: \rightarrow Commutativity: a + b = b + a

More Group Examples

For any $n \in \mathbb{N}^+$

- → Integers modulo *n* forms a group under addition modulo *n*
- ightarrow Identity element is 0
- \rightarrow Inverse element of x is $(n x) \mod n$

For n = 6, the *abelian* group is $\{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}\}$

$$\begin{split} \bar{1} + \bar{2} &= \bar{3} \\ \bar{3} + \bar{4} &= \bar{1} \\ \bar{5} + \bar{1} &= \bar{0} \end{split}$$

More Group Examples

For any prime *p*,

- \rightarrow Integers modulo *p* is a multiplicative group
- \rightarrow Elements: integers 1 to p-1
- \rightarrow Group operation: multiplication modulo *p*
- ightarrow It's an abelian group, too

For example, if p = 5, group elements are 1, 2, 3, 4

More Group Examples

When p = 5, the table of inverse elements:

\times	1	2	3	4
1	1	2	3	4
2	2	4	1	3
3	3	1	4	2
4	4	3	2	1

It is a cyclic group since the whole group can be generated by 2:

$$2^1=2, 2^2=4, 2^3=3, 2^4=1$$

Ring

Integers modulo *n* form a *ring* under modular *add* and *mult*, denoted $\mathbb{Z}_n = \{\overline{0}, \overline{1}, \dots, \overline{n-1}\}$

- \rightarrow Abelian Additive Group: \mathbb{Z}_n is an abelian group under modular addition
- \rightarrow Mult. Closure: $x \cdot y \in \mathbb{Z}_n$
- \rightarrow Mult. Associativity: $(x \cdot y) \cdot z = x \cdot (y \cdot z)$
- \rightarrow Mult. Identity: $x \cdot \overline{1} = x$
- \rightarrow Distributivity: $x \cdot (y + z) = (x \cdot y) + (x \cdot z)$

Ring Example: Polynomial Ring

The polynomial ring, K[x], in x over a ring K is the set of polynomials in x, of the form

 $c_m x^m + c_{m-1} x^{m-1} + \cdots + c_2 x^2 + c_1 x + c_0$

where $c_i \in K$ and x, x^2, \ldots are formal symbols

- \rightarrow +: Polynomial addition
- \rightarrow \times : Polynomial multiplication

Concretely, all polynomials over ring \mathbb{Z}_n (denoted $\mathbb{Z}_n[x]$) form a polynomial ring

Field

→ Intuitively, a field F is a generalization of concept of \mathbb{R} :

We can do $+, -, \times, \div$ in *F*

- $\rightarrow\,$ Formally, a field is a ring whose nonzero elements form an abelian group under $\times\,$
- $ightarrow \mathbb{Q}$, \mathbb{R} and \mathbb{C} are all fields

Field Example: Prime Field

For any prime p, integers modulo p form a field called *prime field*, denoted F_p

+	0	1	2	3	4
0	0	1	2	3	4
1	1	2	3	4	0
2	2	3	4	0	1
3	3	4	0	1	2
4	4	0	1	2	3

Multiplication in F₅

×	0	1	2	3	4
0	0	0	0	0	0
1	0	1	2	3	4
2	0	2	4	1	3
3	0	3	1	4	2
4	0	4	3	2	1

Irreducible Polynomial

- → $x^2 1$ is reducible over \mathbb{Z} since $x^2 - 1 = (x - 1)(x + 1)$
- → $x^2 5$ is irreducible over \mathbb{Q} but reducible over \mathbb{R} since $x^2 - 5 = (x - \sqrt{5})(x + \sqrt{5})$
- $\rightarrow x^2 + 1$ is irreducible over \mathbb{Q} but reducible over F_2
- \rightarrow In $F_2[x]$, $(x + 1)^2 = x^2 + 2x + 1 = x^2 + 1$

Irreducible Polynomial

- → If *p* is prime and h(x) is a polynomial of degree *d* and irreducible over F_p , then $F_p[x]/(h(x))$ is a finite field of order p^d
- → Two fields of order 8 are $F_2[x]/(x^3 + x + 1)$ and $F_2[x]/(x^3 + x^2 + 1)$

Modular Operations on Polynomials

→ We can calculate $P(x) \mod Q(x)$ using polynomial long division:

Modular Operations on Polynomials

$$\rightarrow \text{ So } x^7 + 6x - 7 = 7x - 7 \pmod{x^2 - 1}$$

$$\rightarrow f(x) = g(x) \pmod{h(x), n} \text{ means}$$

$$f(x) = g(x) \text{ in } \mathbb{Z}_n[x]/(h(x))$$
Cyclotomic Polynomial

- → A n^{th} cyclotomic polynomial $\Phi_n(x)$ is the unique irreducible polynomial with integer coefficients
- → Divisor of $x^n 1$, not a divisor of $x^k 1$ for any k < n

$$\Phi_n(x) = \prod_{\substack{1 \le k \le n \\ \gcd(k,n)=1}} (x - e^{2i\pi \frac{k}{n}})$$

Cyclotomic Polynomial: Examples

$$\Phi_{15}(x) = x^8 - x^7 + x^5 - x^4 + x^3 - x + 1$$

$$\Phi_{11}(x) = x^{10} + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1$$

Order of a modulo **r**

- → Given gcd(a, r) = 1, the order of a modulo ris the smallest number k such that $a^k = 1 \pmod{r}$
- \rightarrow It is denoted as $o_r(a)$

Order of a modulo **r**

- \rightarrow Why does *k* exist?
- → For a given r, $\{a \mid (a, r) = 1 \land a < r\}$ forms a finite abelian group under multiplication modulo r
- → For a specific a, $\exists k_1 < k_2$, such that $a^{k_2} = a^{k_1} \pmod{r}$. So, $a^{k_2-k_1} = 1 \pmod{r}$

Order of a modulo r: Example

→ For r = 20, a = 7, $o_{20}(7) = 4$ since $7^2 = 49 = 9 \pmod{20}$ $7^3 = 343 = 3 \pmod{20}$ $7^4 = 2401 = 1 \pmod{20}$

The Algorithm

Akshay Narayan

The Main Algorithm

Input: integer n > 1

- (1) Preliminary test
- (2) Find a suitable r
- (3) Search for non co-prime elements
- (4) if $n \leq r$, return PRIME
- (5) for $a = 1, 2, \ldots, \lceil \sqrt{r \log n} \rceil$ do
- (6) if $(X a)^n \neq X^n a \pmod{X^r 1, p}$ then return COMPOSITE

(7) return PRIME

(1) Preliminary test

If *n* is perfect power

→ Given *n*, if $n = a^b (b > 1)$, *n* is composite → $b < \log n + 1$

Then for every *b*, we can find such *a* using binary search

(2) Find suitable r

Find the smallest *r* such that $o_r(n) > (\log n)^2$

- → Recall, order $o_r(n)$ is smallest *j* such that $n^j = 1 \pmod{r}$
- for $q = 1, 2, \cdots, \lceil (\log n)^5 \rceil$ do if $n^j \neq 1 \pmod{q}$ for $j = 1, 2, \dots, \lceil (\log n)^2 \rceil$ r = q

(Why $r \leq \lceil (\log n)^5 \rceil$? We shall see later!)

(3) Search for non co-prime elements

If gcd (a, n) > 1 for some $a \le r$, COMPOSITE

Use Euclidean algorithm for each a to check if gcd (a, n) > 1If such an a exists, then n is composite

The Process

(5--6) Main loop

for
$$a = 1$$
 to $\lceil \sqrt{r} \log n \rceil$ do
if $(X + a)^n \neq X^n + a \pmod{X^r - 1, n}$ then
return COMPOSITE

Use standard mod calculation with fast exponentiation

Putting it all together

Input: integer n > 1(1) if $n = a^b$, for $a, b > 2 \&\& b < \log n + 1$ then return COMPOSITE (2) choose smallest *r* such that $o_r(n) > (\log n)^2$ (3) if $\exists \operatorname{qcd}(a, n) < n$ for some a < rreturn COMPOSITE (4) if *n* < *r*, return PRIME (5) for $a = 1, 2, ..., \lceil \sqrt{r \log n} \rceil$ do if $(X+a)^n \neq X^n + a \pmod{X^r - 1, p}$ then (6) return COMPOSITE return PRIME

Time Complexity Analysis

Shruti Tople

Arithmetic Computation & \widetilde{O}

- → If *a* and *b* are two positive integers, each with no more than *m* digits in binary → + and - take O(m) bit operations
- $\rightarrow \times \text{takes } O(m(\log m)^{O(1)})$

We define $\widetilde{O}(m) = O(m(\log m)^{O(1)})$

→ For two *d* degree polynomials with *m* bit coefficients, multiplication takes $\widetilde{O}(d \cdot m)$

(1) Given *n*, if $n = a^b(b > 1)$, *n* is composite

- $\rightarrow \text{ Bound on } b: b < \log n + 1 \Rightarrow O(\log n)$
- → For every *b*, find *a* using binary search \Rightarrow $O(\log n)$
- \rightarrow To compute $a^b \Rightarrow \widetilde{O}(\log n)$

Complexity of Step 1: $\widetilde{O}((\log n)^3)$ bit operations

(2) Find the smallest *r* such that $o_r(n) > (\log n)^2$

for
$$q = 1, 2, \cdots, \lceil (\log n)^5 \rceil$$
 do
if $n^j \neq 1 \pmod{q}$ for $j = 1, 2, \cdots, \lceil (\log n)^2 \rceil$
 $r = q$

- → First for loop $\Rightarrow O(r)$; worst case $O((\log n)^5)$
- → Second for loop $\Rightarrow \widetilde{O}((\log n)^2)$

Complexity of Step 2: $\widetilde{O}(r(\log n)^2) = \widetilde{O}((\log n)^7)$

- (3) If gcd (a, n) > 1 for some $a \le r, n$ is COMPOSITE
- \rightarrow Euclidean algorithm complexity $\Rightarrow O(\log n)$
- → As $a \le r$, in worst case need O(r) computation

This can be done in $O(r(\log n)) = O((\log n)^6)$

(5) for
$$a = 1$$
 to $\lceil \sqrt{r \log n} \rceil$ do

(6) if $(X + a)^n \neq X^n + a \pmod{X^r - 1, n}$ then return COMPOSITE

We have, a degree *r* polynomial with log *n* bits

- \rightarrow Bitwise multiplication $\Rightarrow O(r(\log n)^2)$
- \rightarrow for loop runs from 1 to $\sqrt{r \log n}$
- → Now, the complexity is: $\widetilde{O}(r(\log n)^2 \cdot \sqrt{r} \log n)$ = $\widetilde{O}(r^{\frac{3}{2}}(\log n)^3) = \widetilde{O}((\log n)^{\frac{21}{2}})$

Overall complexity

- \rightarrow Step 1: $\widetilde{O}((\log n)^3)$
- \rightarrow Step 2: $\widetilde{O}(r(\log n)^2)$
- \rightarrow Step 3: $O(r(\log n))$
- → Final loop: $\widetilde{O}((\log n)^{\frac{21}{2}})$

Complexity of the final loop dominates all others

Hence, overall complexity: $\widetilde{O}((\log n)^{\frac{21}{2}})$

Proof of Correctness

Shruti Tople, Ratul Saha

AKS Theorem

For the smallest *r* such that $o_r(n) > (\log n)^2$ *n* is prime iff

- \rightarrow *n* is not a perfect power,
- \rightarrow *n* does not have any prime factor \leq *r*,

 $\rightarrow (x+a)^n = x^n + a \mod (n, x^r - 1) \text{ for each}$ integer a, $1 \le a \le A = \lceil \sqrt{r} \log n \rceil$

If *n* is prime

- → If *n* is prime, steps (1) and (3) can never return COMPOSITE
- $\rightarrow\,$ The for loop can not return COMPOSITE either
- \rightarrow Hence the algorithm will output PRIME

We are only left with the other side of the proof!

If the Algorithm Returns PRIME

Proof by contradiction

- \rightarrow Let's assume *n* is composite
- \rightarrow Thus, there exists a prime p such that p|n

We assume

- \rightarrow *n* is not a perfect power
- \rightarrow *n* does not have any prime factor \leq *r*

If the Algorithm Returns PRIME

The master plan:

 \rightarrow We show that there exists a *suitable* r

- \rightarrow We construct a nice group \mathbb{G} assuming p|n
- \rightarrow We prove a contradiction on the size of \mathbb{G}
 - \Rightarrow There is no such \mathbb{G}
- \rightarrow Hence, *n* is not composite

We assume lcm $\{1, \dots, m\} \ge 2^m$ for $m \ge 7$

Existence of a Suitable r

There exists an $r \le \max(3, \lceil (\log n)^5 \rceil)$ such that $o_r(n) > (\log n)^2$

- → When n = 2, r = 3. We assume n > 2, thus $\lceil (\log n)^5 \rceil > 10$
- → Consider $\{r_1, r_2, \cdots, r_t\}$ such that either $o_r(n) \le (\log n)^2$ or $r_i | n$
- $\rightarrow \text{ Thus, every } r_i \text{ divides} \\ n \cdot \prod_{i=1}^{\lceil (\log n)^2 \rceil} (n^i 1) < n^{(\log n)^4} \le 2^{(\log n)^5}$

Existence of a Suitable r

But the lcm of the first $\lceil (\log n)^5 \rceil$ numbers is at least $2^{\lceil (\log n)^5 \rceil}$

Thus, $\exists s \leq \lceil (\log n)^5 \rceil$, such that $s \notin \{r_1, \cdots, r_t\}$

- \rightarrow If gcd(s, n) = 1, then $o_s(n) > (\log n)^2$
- → If gcd(s, n) > 1, then since s $\not| n$ and (s, n) $\in \{r_1, \dots, r_t\}, r = \frac{s}{\gcd(s,n)} \notin \{r_1, \dots, r_t\}$ and so $o_r(n) > (\log n)^2$

Find a Nice Group G

For each integer a, $1 \le a \le A$,

 \rightarrow We know

 $(x+a)^n = x^n + a \pmod{x^r - 1, n}$

 $\rightarrow p | n$, hence

 $(x+a)^n = x^n + a \pmod{x^r - 1, p}$

→ Let h(x) be an irreducible factor of $\Phi_r(x)$ (mod p) (i.e. in $(\mathbb{Z}/p\mathbb{Z})[x]$), then $(x + a)^n = x^n + a \pmod{h(x), p}$

Find a Nice Group G

- → Given $\mathbb{F} = \mathbb{Z}[x]/(p, h(x))$, non-zero elements of \mathbb{F} form a cyclic group of order $p^m - 1$
- → Let *H* be the multiplicative group modulo $(x^r - 1, p)$ generated by $x, x + 1, x + 2, \dots, x + A$
- → Let \mathbb{G} be the (multiplicative) subgroup of \mathbb{F} generated by $x, x + 1, x + 2, \cdots, x + A$
- \rightarrow All the elements of \mathbb{G} are non-zero

Bounds on |G|

$$g(x) = \prod_{0 \le a \le A} (x + a)^{e_a} \in H$$
, then

$$g(x)^n = \prod_a ((x+a)^n)^{e_a} \pmod{x^r - 1, p}$$

 $= \prod_a (x^n + a)^{e_a} \pmod{x^r - 1, p}$
 $= g(x^n) \pmod{x^r - 1, p}$

Bounds on |G|

Define S to be the set of positive integers k for which $g(x^k) = g(x)^k \pmod{x^r - 1}$, p) for all $g \in H$ $\rightarrow p, n \in S$

A few properties of S:

 \rightarrow If $a, b \in S, ab \in S$ (Lemma 1)

 $\rightarrow \text{ If } a, b \in S \text{ and } a = b \pmod{r}, \\ \text{ then } a = b \pmod{|\mathbb{G}|}$ (Lemma 2)

Upper Bound on G

- → Let *R* be the subgroup of $(\mathbb{Z}/r\mathbb{Z})^*$ generated by *n* and *p*
- → There exist more than |R| integers of the form $n^i p^j$ with distinct $0 \le i, j \le \sqrt{|R|}$
- \rightarrow Two of them must be congruent (mod r)
- \rightarrow Say, $n^i p^j = n^l p^j \pmod{r}$
- $\rightarrow |\mathbb{G}| \leq |n^i p^j n^l p^j| \leq (np)^{\sqrt{|R|}-1} \leq n^{2\sqrt{|R|}-1}$
- ightarrow If $n/p\in$ S, $|\mathbb{G}|\leq n^{\sqrt{|R|}-1}$

Lower Bound on G

→ The products $\prod_{a \in T} (x + a)$ give distinct elements of G for every proper subset T of $\{0, 1, 2, \cdots, \lceil \sqrt{|R|} \log n \rceil\}$ → $|G| \ge 2^{\lceil \sqrt{|R|} \log n \rceil + 1} - 1 > n^{\sqrt{|R|}} - 1$

The upper and lower bounds conflict, thus making our only assumption wrong There exists no such G

Hence, *n* is not composite, completing the proof of correctness

Supplementary Material

Abha Belorkar

Supplementary Material

 \rightarrow

If $a, b \in S$, $ab \in S$ \rightarrow If $g(x) \in H$, $g(x^b) = g(x)^b \pmod{x^r - 1, p}$ \rightarrow Replacing x by x^a , we get $g((x^a)^b) = g(x^a)^b \pmod{(x^a)^r - 1, p}$ and hence $\pmod{x^r - 1, p}$

$$g(x)^{ab} = g((x)^a)^b \qquad \dots (a \in S)$$

= $g((x^a)^b) \qquad \dots (b \in S)$
= $g(x^{ab}) \pmod{x^r - 1, p}$

Supplementary Material

If $a, b \in S$ and $a = b \pmod{r}$, then $a = b \pmod{|\mathbb{G}|}$

- → $(x^{r} 1)|(x^{a-b} 1)$ and $(x^{a-b} 1)|(x^{a} x^{b})|$ → $(x^{a} - x^{b})|(g(x^{a}) - g(x^{b}))$
- $\rightarrow (x^r 1)|(g(x^a) g(x^b))$
- $\rightarrow g(x) \in H$, then $g(x)^a = g(x)^b \pmod{x^r 1}$, p)
- $ightarrow \, {\sf If}\, g(x)\in {\mathbb G}, \, g(x)^{a-b}=1 ext{ in } {\mathbb F}$
- → Since \mathbb{G} is cyclic, taking generator g, $|\mathbb{G}|$ divides a b

- $\rightarrow \operatorname{Icm} \{1, \cdots, m\} \geq 2^m \text{ for } m \geq 7$
- $\rightarrow n/p \in S$
- → Two distinct polynomials of the form $\prod_{a} (x + a)$ of degree < |R| will map to different elements of G
Limitations and Future Work

Abha Belorkar

9965468763136528274628451

AKS in SAGE* takes \approx 70 min for the above number!

*(Software for Algebra and Geometry Experimentation)

Practical alternatives

- → APR primality runs in $\widetilde{O}((\log n)^{(\log \log \log n)})$ and yet performs better than AKS
- → Miller-Rabin and other randomized algorithms, which takes average time $\widetilde{O}(\log n)^3$, are used in practice

Agrawal's Conjecture

- → The for loop in the algorithm (in step 5) runs $\lceil (\sqrt{r \log n}) \rceil$ times
- → This can be reduced assuming the following conjecture:

If *r* is a prime number that does not divide *n* and if $(x + 1)^n = x^n + 1 \pmod{x^r - 1}$, *n* then either *n* is prime or $n^2 = 1 \pmod{r}$

Agrawal's Conjecture: Consequences

- → We can modify the algorithm to search for an *r* which does not divide $n^2 - 1$
- → Such an *r* exists in $[2, 4 \log n]$ (product of prime numbers less than *x* is at least e^x)
- \rightarrow Verifying the congruence takes $O(r(\log n)^2)$.
- \rightarrow Overall complexity: $\widetilde{O}(\log n)^3$

Agrawal's Conjecture: Progress

- → 2003: Lenstra and Pomerance gave a heuristic argument that suggested that the conjecture is false.
- → 2005: A group at UT Austin proved that the conjecture is true if r > n/2

Possible improvements in implementation

- → Mapping the polynomial rings onto integer rings
- → Using suitable libraries (NTL better than LiDIA)

- \rightarrow Efficient to work with Child's Binomial Theorem by reducing its degree by a factor *r*
- → Use this for primality test which runs in polynomial time
- → Possible improvements

The ground breaking AKS Primality Test is

- \rightarrow unconditional
- \rightarrow deterministic
- \rightarrow polynomial time

References

- Granville, Andrew. "It is easy to determine whether a given integer is prime." Bulletin of the American Mathematical Society 42.1 (2005): 3-38.
- 2. Student Talks by S Ramprasad The AKS Primality Test
- 3. Lang, Serge. Undergraduate algebra. Springer, 2005.

Thank You! Questions?