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Why are we interested in primes?



J Primality Testing

— Input: A positive number n in binary
— Prime? Yes or No



J Primality Testing

The algorithm we present is
— Unconditional

— Deterministic

— Polynomial Time



] Fermat's Little Theorem

For any prime number p, and any number a not
divisible by p,

a’~!' =1 (mod p)

— Efficient to calculate =

— However, many composites n also satisfy
this for some a's ~

— Carmichael Numbers: 561,1105,1729., ...



l Other Approaches

Uncond | Det | Pol
Miller X v v
Miller-Rabin v X v
Solovay Strassen v X v
APR* v v X
Goldwasser & Kilian X X v

“APR = Adleman, Pomerance & Rumely




l Computional Complexity

The problem is in

NP M co-NP

IED

— Why in NP?
— Why in co-NP?



I Primes in Times . ..

The New York Times (August 8, 2002) article

— Godel Prize ('06)
— Fulkerson Prize ('06)


http://www.nytimes.com/2002/08/08/science/08MATH.html

The Idea

Shweta Shinde



] The million dollar question

— Is n prime or composite?

— Is there a litmus test? YES!

Child's Binomial Theorem
— a€Z,neN,n>2andgcd(a,n) =1
— Then nis prime iff,

(x+a)"=x"+a (mod n)



| The Litmus Test

Given n and a such that gcd(a,n) = 1 should
(x+a)"=x"+a (mod n)?
— If nis prime, then yes

— If nis composite, then no

How do we prove it?
— Substitute (x + a)” =x"+ > (7)xa" "+ a"

0<i<n
— [(x+a)" —x" —a] (mod n) =0?



J The Litmus Test: Proof

— X"+ > (7)¥a""+a" —x" — a] (mod n)

0<i<n

= [ Y (D)xa"] (mod n) + [a" — a] (mod n)

0<i<n

— Since a” (mod n) = q,

= [ > (7)¥a""] (mod n)

0<i<n



| = ifnisprime

— [ > ()xa"] (mod n) =0

0<i<n

= V0 < i< n[z7y] (mod n) =0

— n—i<nandi<nandnisprime

= No factor of n in denominator

— [%] (mod n)
= [( (i+1) (I(JrZ)....(nf'l)) * n] (mOd n)

n—i)!
=0




| <:Ifnis composite

— @g: prime factor of n
— Jksuch thatg“ || n



| <:Ifnis composite

— @g: prime factor of n

— Jksuch thatg“ || n

— Coefficient of x” 9a% in (x + a)"

= [((n”T!)ql)x”*qaq] (mod n)

= [(l=at)--(n) "“ ")\x1=ag9] (mod n)



| <:Ifnis composite

(=)= (mod n)

q!

= [(F=E=)] (mod n) # 0

— The only term g divides in the numeratorisn

— The only term g divides in the denominator
isq

— g 'is the highest power of g that divides
(&)

= g Q) =n /()



| <:ifnis composite

a? (mod n)
— gcd(a,n) =1
— gcd(a, gf) =1
— ged(a?,g*) =1



] Outline

— Givenn,aandgcd(a,n) =1
— Calculate f(x) :== (x +a)" — (X" 4 a)
As f(x) (mod n) =0

3 (’,.’)X’a”" - each term should be zero
0<i<n

Computation of n coefficients
Q(n): horribly inefficient!

L4l



| AKS: The Idea

— Can we reduce the number of coefficients to
be calculated?

X"+ > (7)xa""+a" (mod n)
0<i<n
Y

X'+ > ()xa""+a" (mod n)

o<i<r

20



| AKS: The Idea

— The algorithm finishes in polynomial time
— Only r number of calculations
— For a small r, check if
(x+a)"=x"+a (mod x"—1,n)
(we refer to this as the AKS Equation)

— Necessary and Sufficient!

21
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l Group

Integers Z = {...,—2,—1,0,1,2,... } under
addition forms a group, denoted (7Z, +).

— Closure:a+beZ
— Associativity: (a+b) +c=a+ (b+¢)
— ldentity element: 2+ 0 =z

— Inverse element: n + (—n) =0

(Z,+) is also an abelian group since it satisfies:

— Commutativity:a+b=b+a

23



l More Group Examples

Foranyn € N*
— Integers modulo n forms a group under
addition modulo n
— ldentity elementis 0
— Inverse element of xis (n — x) mod n

For n = 6, the abelian group is {0,1,2,3,4,5}

= NI NI
I
Ol = WI

Ul Wi —1
++ +

24



l More Group Examples

For any prime p,
— Integers modulo p is a multiplicative group
— Elements: integers 1top — 1
— Group operation: multiplication modulo p

— It's an abelian group, too

For example, if p = 5, group elements are
1,2,3,4

25



l More Group Examples

When p = 5, the table of inverse elements:

x|1 2 3 4
111 2 3 4
212 4 1 3
3(3 1 4 2
414 3 2 1

It is a cyclic group since the whole group can be
generated by 2:

21=2,22=4,23=324=1

26



I Ring

Integers modulo n form a ring under modular
add and mult, denoted Z, = {0,1,....,n — 1}

— Abelian Additive Group: 7Z, is an abelian
group under modular addition

— Mult. Closure: x -y € Z,

— Mult. Associativity: (x-y)-z=x-(y-2)
— Mult. Identity: x - T = x

— Distributivity: x - (y +2) = (x-y) + (x - 2)

27



I Ring Example: Polynomial Ring

The polynomial ring, K[x|, in x over a ring K is the
set of polynomials in x, of the form

CrX™ + Cp X"+ X% 4 X+ o
where ¢; € Kand x, x?, ... are formal symbols

— -+: Polynomial addition
— x: Polynomial multiplication

Concretely, all polynomials over ring Z,
(denoted Z,[x]) form a polynomial ring

28



] Field

— Intuitively, a field F is a generalization of
concept of R:

Wecando +, —, x,=inF

— Formally, a field is a ring whose nonzero
elements form an abelian group under x

— @, R and C are all fields

29



I Field Example: Prime Field

For any prime p, integers modulo p form a field
called prime field, denoted F,

Addition in Fs Multiplication in fs
+10 1 2 3 4 x(0 1 2 3 4
0/0 1T 2 3 4 0/0 00 O0O
111 2 3 40 1101 2 3 4
212 3 4 0 1 210 2 4 1 3
313 401 2 3/0 3 1 4 2
414 01 2 3 410 4 3 2 1




| Irreducible Polynomial

— x?> — 1isreducible over Z since
X —1=Kx-1)(x+1)

— x> — 5isirreducible over Q but reducible
over Rsince x> — 5 = (x — /5)(x + /5)

— x? + 1isirreducible over Q but reducible
over

— InFX,(x+1)2=x+2x+1=x*+1

31



| Irreducible Polynomial

— If pis prime and h(x) is a polynomial of
degree d and irreducible over F,, then
Fox]/(h(x)) is a finite field of order p“

— Two fields of order 8 are
Folx]/(x* + x + 1) and Fy[x]/(x* + x> + 1)

32



] Modular Operations on Polynomials

— We can calculate P(x) mod Q(x) using
polynomial long division:
X 4+ x> +x

x2—1) X +6x—7
—x +x°
5
—x +x3
x3 4 6x
—x3 +x

7X

33



] Modular Operations on Polynomials

— Sox" +6x—7=7x—7(modx*—1)

— f(x) = g(x) (mod h(x),n) means
f(x) = g(x) in Z,[x]/(h(x))



| Cyclotomic Polynomial

— A n'" cyclotomic polynomial ®,(x) is the

unique irreducible polynomial with integer
coefficients

— Divisor of X" — 1, not a divisor of x — 1 for
any k <n

Op(x)= [ (x—e*m)

1<k<n
gcd(k,n)=1

35



] Cyclotomic Polynomial: Examples

— Oi5(x) =x8 —x"+x° —x*+ 3 —x+1
— (DH(X) =
X048+ X+ X0+ + X+ 3+ X2+ x+1

36



J Order of a modulo r

— Given gcd(a, r) = 1, the order of a modulo r
is the smallest number k such that
a“ =1 (mod r)

— Itis denoted as o,(a)

37



J Order of a modulo r

— Why does k exist?

— Foragivenr, {a| (a,r)=1ANa <r}formsa
finite abelian group under multiplication
modulo r

— For a specific a, 3k, < ky, such that
a2 = a (mod r).
So,dk =1 (mod r)

38



J Order of a modulo r: Example

— Forr=20,a=7,050(7) = 4since
7? = 49 = 9 (mod 20)

7° = 343 = 3 (mod 20)
7% = 2401 = 1 (mod 20)

39
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| The Main Algorithm

Input: integern > 1

(1) Preliminary test

(2) Find a suitable r

(3) Search for non co-prime elements

(4) if n <r, return PRIME

(5) fora=1,2,...,[\/rlogn] do

(6) if (X—a)"# X" —a (mod X" — 1,p) then
return COMPOSITE

(7) return PRIME

41



| The Process

(1) Preliminary test
If nis perfect power

— Givenn,ifn = a®(b > 1), nis composite

— b<logn+1

Then for every b, we can find such a using binary
search

42



| The Process

(2) Find suitable r
Find the smallest r such that o,(n) > (logn)?

— Recall, order o,(n) is smallest j such that

=1 (modr)
forg=1,2,---,[(logn)°] do
if W #£1 (mod q) forj=1,2,...,[(logn)?]
r=gq
(Why r < [(logn)°]? We shall see later!)

43



| The Process

(3) Search for non co-prime elements

If gcd (a,n) > 1 forsome a < r, COMPOSITE

Use Euclidean algorithm for each a to check if
gcd (a,n) > 1
If such an a exists, then n is composite

44



| The Process

(5--6) Main loop

fora = 1to [\/rlogn]| do
if (X+a)"” # X" +a (mod X" — 1,n) then
return COMPOSITE

Use standard mod calculation with fast
exponentiation

45



J putting it all together

Input: integern > 1

(1) if n=a" fora,b > 2 && b < logn + 1 then
return COMPOSITE

(2) choose smallest r such that o,(n) > (logn)?

(3) if dgcd(a,n) < nforsomea < r
return COMPOSITE

(4) if n <r, return PRIME

(5) fora=1,2,...,[y/rlogn| do

6) if (X+a)"# X" +a (mod X' —1,p) then

return COMPOSITE
(7) return PRIME
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J Arithmetic Computation & 0

— If aand b are two positive integers, each
with no more than m digits in binary

— + and — take O(m) bit operations
— x takes O(m(logm)°(")

We define O(m) = O(m(log m)°(")
— For two d degree polynomials with m bit

coefficients, multiplication takes O(d - m)

48



| Complexity Analysis
(1) Givenn,ifn = a®(b > 1), nis composite

— Boundon b: b <logn+ 1 =- 0O(logn)

— For every b, find a using binary search =
O(logn)
— To compute a® = O(log n)

Complexity of Step 1: 5((Iog n)*) bit operations

49



| Complexity Analysis

(2) Find the smallest r such that o,(n) > (logn)?

forg=1,2,---,[(logn)°]| do
if #1 (mod q) forj=1,2,---,[(logn)?]
r=gq
— First for loop = O(r); worst case O((log n)?)
— Second for loop = O((logn)?)

Complexity of Step 2: O(r(log n)?) = O((log n)7)

50



| Complexity Analysis

(3) Ifgcd (a,n) > 1forsomea <r,nis
COMPOSITE

— Euclidean algorithm complexity = O(logn)

— As a < r,in worst case need O(r)
computation

This can be done in O(r(logn)) = O((log n)®)

51



| Complexity Analysis

(5) fora=1to [\/rlogn] do
(6) if (X+a)"# X" +a (mod X" —1,n) then
return COMPOSITE

We have, a degree r polynomial with log n bits
—» Bitwise multiplication = O(r(log n)?)
— for loop runs from 1 to \/rlogn
—» Now, the complexity is: O(r(logn)? - \/rlog n)
= O(r3(log n)*) = O((log n)?)

52



| Complexity Analysis

Overall complexity
— Step 1: O((log n)?)
— Step 2: O(r(log n)?)
— Step 3: O(r(logn))

21

— Final loop: O((logn)?)

Complexity of the final loop dominates all others

Hence, overall complexity: (N)((Iog n)271)
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| AKS Theorem

For the smallest r such that o,(n) > (logn)?
nis prime iff
— nisnota perfect power,
— n does not have any prime factor <,
— (x+a)"=x"4+a mod (n,x"— 1) for each
integera, 1 <a <A =[/rlogn]

55



| ifnis prime

— If niis prime, steps (1) and (3) can never
return COMPOSITE

— The for loop can not return COMPOSITE
either

— Hence the algorithm will output PRIME

We are only left with the other side of the proof!

56



] If the Algorithm Returns PRIME

Proof by contradiction
— Let's assume n is composite

— Thus, there exists a prime p such that p|n
We assume

— nisnot a perfect power

— n does not have any prime factor <r

57



] If the Algorithm Returns PRIME

The master plan:

— We show that there exists a suitable r

— We construct a nice group G assuming p|n
— We prove a contradiction on the size of G
= Thereis no such G

— Hence, nis not composite
We assume lcm {1,--- . m} > 2" form > 7

58



J Existence of a Suitable r

There exists an r < max (3, [(logn)]) such that
or(n) > (logn)?

— Whenn = 2,r = 3. We assume n > 2, thus
[(logn)>| > 10

— Consider {ry,ry,--- ,r:} such that either
or(n) < (logn)? orrn

— Thus, every r; divides

[(logn)*] . 5
n- H (n’ _ ‘I) < n(|09”) < 2('09 n)

i=1

59



J Existence of a Suitable r

But the Icm of the first [(log n)°| numbers is at
least 2/(l°9n)”]

Thus, 9s < [(logn)°], such thats & {ry, - ,r}
— If gcd(s,n) = 1, then os(n) > (logn)?

— If gcd(s,n) > 1, thensinces /nand

(San) < {I’1,--- ,I’t},l’: m Q/{I’h--- 7rt}
and so o,(n) > (logn)?

60



] Find a Nice Group G

Foreachintegera, 1 <a <A,
— We know
(x+a)"=x"+a (mod x"—1,n)
— p|n, hence
(x+a)"=x"+a (mod x —1,p)
— Let h(x) be an irreducible factor of ,(x)
(mod p) (i.e. in (Z/pZ)|x]), then
(x+a)" =x"+a (mod h(x),p)

61



] Find a Nice Group G

— Given IF = Z[x|/(p, h(x)), non-zero elements
of IF form a cyclic group of order p™ — 1

— Let H be the multiplicative group modulo
(x"—1,p) generated by
X, X+1,x+2,--- X+A

— Let G be the (multiplicative) subgroup of I
generated by x, x + 1. x+2 -+ x+A

— All the elements of G are non-zero

62



Bounds on |G|
g(x) = HogagA(X+ a)® € H, then
g(x)" =] [((x+a))= (mod x" —1,p)

- H(x” +a)® (mod X — 1,p)

—g(x") (mod X —1,p)



] Bounds on |G|

Define S to be the set of positive integers k for
which g(x¥) = g(x)¥ (mod x" — 1,p) forallg € H
— p,neS

A few properties of S:
— Ifa,be S,abe S (Lemma 1)

— Ifa,b € Sanda=>b (mod r),
thena = b (mod |G]) (Lemma 2)

64



] Upper Bound on |G|

— Let R be the subgroup of (Z/rZ)" generated
by nand p

— There exist more than |R| integers of the

form n'p/ with distinct 0 < i,j < \/|R|

Two of them must be congruent (mod r)

Say, n'p/ = n'p’ (mod r)

G| < |nip/ — n'p’| < (np) VR < n2VIR-

fn/p €S, |G| < nVRI-1

A

65



] Lower Bound on |G|

— The products [ [,_.(x + a) give distinct
elements of G for every proper subset T of

{071727"' 7’7\/ ‘R“Ogn—‘}
|G| > 2/VRlloanl+1 g 5 VIR

The upper and lower bounds conflict, thus
making our only assumption wrong
There exists no such G

Hence, n is not composite, completing the proof
of correctness
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| supplementary Material

Ifa,be S, abes
— Ifg(x) € H,g(x*) = g(x)° (mod x" — 1,p)
— Replacing x by x“, we get
g9((x")°) = g(x*)® (mod (x*)" —1,p) and
hence (mod x" —1,p)
.

g(x)® = g((x)")° .. (aes)
= g((x")") .. (beS)
= g(x*) (mod X" —1,p)



| supplementary Material

Ifa,b € Sanda=0b (mod r),thena =b

(mod |G|)
— (X = 1)|(x*° —1)and (x*° — 1)|(x* — x°)
— (= x)|(g0) — gx?))
= (¢ = 1)l(gx) — g(x*))
— g(x) € H,then g(x)? = g(x)* (mod x" — 1,p)
— Ifg(x) € G, g(x)?°=1inTF
— Since G is cyclic, taking generator g, |G|

dividesa — b
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J Statements Not Proved

— lem{1,--- ,m} >2"form >7
— n/peSs

— Two distinct polynomials of the form
[[(x+ a) of degree < |R| will map to

a
different elements of G
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J Usefulness

9965468763136528274628451

AKS in SAGE" takes ~ 70 min for the above
number!

*(Software for Algebra and Geometry Experimentation)
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l Comparison

Practical alternatives
— APR primality runs in O((log n)('egleglogn))
and yet performs better than AKS

— Miller-Rabin and other randomized
algorithms, which takes average time
O(logn)?, are used in practice
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| Agrawal’s Conjecture

— The for loop in the algorithm (in step 5)
runs [(/rlogn)] times

— This can be reduced assuming the following
conjecture:

If ris a prime number that does not divide n and
if (x+1)"=x"4+1 (mod x"— 1,n) then eithern
is prime orn® =1 (mod r)
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| Agrawal’s Conjecture: Consequences

— We can modify the algorithm to search for
an r which does not divide n? — 1

— Such an rexistsin [2,4log n] (product of
prime numbers less than x is at least €%)

— Verifying the congruence takes O(r(log n)?).

— Overall complexity: O(logn)?
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l Agrawal's Conjecture: Progress

— 2003: Lenstra and Pomerance gave a
heuristic argument that suggested that the
conjecture is false.

—» 2005: A group at UT Austin proved that the
conjecture is true ifr > n/2
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| Other Improvements

Possible improvements in implementation
— Mapping the polynomial rings onto integer
rings
— Using suitable libraries (NTL better than
LiDIA)
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I summary

— Efficient to work with Child's Binomial
Theorem by reducing its degree by a factor r

— Use this for primality test which runsin
polynomial time

— Possible improvements
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] Take Away

The ground breaking AKS Primality Test is

— unconditional
— deterministic

— polynomial time
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Thank You!
Questions?



