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Modern web platforms dealing with large number of items use recommender systems to             
automatically suggest new interesting items to users and, hence, to keep them using the              
platform. From the users’ perspective, recommender systems help them handle information           
overload. In our presentation, we discussed methods and algorithms used in recommender            
systems. We started with collaborative filtering, which traditionally is the most used approach,             
then we talked about content-based and knowledge-based recommender systems and          
highlighted their merits. 

Collaborative filtering takes advantage of the community by using the user-item rating            
matrix in order to predict user’s rating for an unrated item or to output a list of recommended                  
items for a user. There are two ways of doing that: (i) user-based, by searching similar users                 
and compute the rating for an item based on their ratings or (ii) item-based, by considering                
similar items and predict the rating based on their ratings. Collaborative filtering comes with              
some major challenges in contemporary web platforms. The naive algorithms do not scale             
since there may be millions of users and millions of items. Moreover, the ratings matrix is                
sparse and when new users or new items are introduced into the system, there is a period of                  
time when no recommendation can be done, a phenomenon known as cold start. In addition,               
collaborative filtering is sensitive to attacks. Malicious users can rate high their items (push              
attack) or rate low competitor items (nuke attack). The attacks can be more effective when               
done automatically by bots. These attacks are knows as shilling attacks. 

Item-based collaborative filtering helps deal with the scalability problem inherent in           
user-based collaborative filtering and is less affected by shilling attack. It uses similarity             
between items rather than similarity between users to predict user ratings. The underlying             
principle is that people tend to buy products similar to what they like. Item similarities not                
only tend to be more stable compared to user similarities but the computation of the item                
similarity matrix which is expensive can also be done offline. This matrix is then used to make                 
real-time predictions. As such, the system can scale independently of the number of users or               
items. The approach is also less affected by shilling attack since rating prediction for an item is                 
made by comparing its rating vector with those of other items and the attacker has no control                 
over ratings given to any item by other users. 

With respect to item-based collaborative filtering, if the number of users and items are very               
large (e.g., Amazon has ~108 users and ~107 items), the cost to compute the similarity matrix                
will be very high. There are various ways to deal with scalability problem; we present one                
approach, i.e. via clustering. Basically, there are two main approaches for clustering:            
item-clustering (clustering the items) and user-clustering. For item-clustering, we can create           
the clusters based on the item’s type (e.g., books, electronics, etc.), and for user-clustering, we               
can employ clustering algorithm to create the clusters. After we have clustered the             
items/users, the similarity matrix is then computed using only items/users in the respective             
clusters. Since the number of items/users inside the clusters is smaller, the total cost to               
compute the matrix similarity is also reduced. In our presentation, we showed one clustering              
algorithm which is commonly used in collaborative filtering, i.e. modularity maximization,           
which is also popular in community detection problem. 

There are numerous algorithms to deal with the problem of data sparsity. The most effective               
ones are based on matrix factorization. We have seen the matrix factorization technique             
which is widely known as the Simon Funk method. The rating matrix is factorized into two                



lower rank matrices, one with respect to the users’ characteristics and another with respect to               
items’ characteristics. Basically, each user and item are represented by a set of k constant               
factors. The estimated rating of a user for a new item is obtained by multiplying the factors of                  
the item with that of the user. Matrix factorization also resolves the problem of (i) first rater                 
for new items, (ii) population bias, i.e. individuals with unique taste, and (iii) scalability. 

The part on Collaborative filtering was concluded with the example of Google News. The              
evolution in the Google News recommender system from 2007 to 2010 also showed that              
collaborative filtering alone was not enough.  

Unlike collaborative filtering that merely take advantage of similar users’ rating profiles,            
content-based recommender systems make use of the genuine content of the items and the              
past preferences of a user, which is much more reliable. Content-based RS can also prevent               
cold start for new items. In our talk, we first introduced a high level architecture of a                 
content-based RS, and then discussed about item representation for both structured data and             
unstructured data (vector space models: boolean term vector and weighted term vector).            
Content-based RS can be regarded as a classification problem. We discussed about two simple              
algorithms for content-based RS: (i) K-nearest neighbors classification algorithms; (ii) Naive           
probabilistic methods. Apart from a list of commonly used classification algorithms, we also             
talked about Rocchio relevance feedback algorithm that takes advantages of users’ relevance            
judgments in the retrieval process. In particular, we discussed the updating process of the              
algorithm in detail and some examples were given. Relevance feedback algorithms would fail             
under two conditions: (i) the user lacking initial knowledge of the goal items; (ii) the existence                
of several prototypes of relevant documents.  

The Knowledge Based recommender system offers a dialog that effectively walks the user             
down a discrimination tree of product features. It does not have a ramp-up or cold start                
problem since its recommendations do not depend on a base of user ratings. It is time                
independent, highly scalable and robust. It has a conversational style of approach. The user in               
this case can specify, modify and even provide explicit feedback. Based on this knowledge, the               
system generates appropriate recommendations. If no such item exists satisfying all the            
constraints, products satisfying a maximal set of constraints are showed in a rank wise              
manner with proper explanations as to why the recommendation was done. 

Finally, we saw that recommender systems are highly application oriented and, in real world              
situations, different approaches are combined to form a hybrid recommender system for            
better results. 
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