
Algorithms in
Recommendation
Systems

Presented by:
Dumitrel Loghin, Anuja Meetoo Appavoo, Suhendry Effendy, Paramasiven

Appavoo, Lu Bingxin, Li Jing, Suman Sourav

Familiar interfaces ...

What are Recommendation Systems?

● systems (algorithms) trying to predict user
preferences for new items

● all modern web apps have a recommender
system
○ books and items (Amazon)
○ music (Spotify)
○ movies (IMDB)
○ friends (Facebook)
○ ...

Why using Recommendation Systems?

 ?

Approaches

● Collaborative filtering
○ user-based
○ item-based
○ major challenges

● Content-based

● Knowledge-based

Collaborative filtering

Recommendation
System

Ratings matrix
I1 I2 ...

U1 ? ?

U2

... ? ?

?

Rating
ra,p

List of top
recommended

items

User a

Item p

Collaborative filtering

● Assumptions
○ users rate items explicitly or implicitly
○ user’s taste preserves over time
○ use other users ratings (wisdom of the crowd)

● Approach
○ user-item matrix
○ predict the rating for a particular item or compute

a list of recommended items
■ based on other users ratings
■ based on similar items ratings

User-based Collaborative Filtering

Dumitrel

User-based collaborative filtering

Recommendation
System

Ratings matrix

?

Rating
ra,p

List of top
recommended

items

User a

Item p

similarity

I1 I2 ...

U1 ? ?

U2

... ? ?

● Active user a and item p, ra,p is unknown
● First, compute similarities with other users

● Then predict ra,p

Similarity and prediction equations

Example

Iron
Man

Fast and
Furious

Avatar Transformers
Man of
Steel

Alice 5 3 4 4 ?

Jane 3 1 2 3 3

Tom 4 3 4 3 5

Bob 3 3 1 5 4

Suzy 1 5 5 2 1

0.85

0.70

0

-0.79

similarity

User similarities

Possible improvements

● Better similarity and prediction functions
○ give more weight to items having diverse ratings
○ give more weight to similar users - case amplification

● Better neighborhood selection
○ select only the most similar users
○ select users with whom the user has more common

rated items

Using only similar users

case amplification
most similar users

Algorithm

UserBasedCF(User a, Item p)
compute average rating for a
for each b in all other users

if b purchased p
compute average rating for b
compute sim(a,b)

[select the neighborhood]
compute rating ra,p

Steps
m
n

m
m

O(n)
m

O(nm)

Collaborative filtering challenges

● Scalability - huge rating matrix
○ 108 users and growing
○ 107 items and growing fast

● Sparsity - many undefined ratings
● Cold start - new users, new items
● Conspiracy - users agreement or shilling

attacks using bots
● Privacy - user profiles

Item-based Collaborative Filtering

Anuja

Shilling Attack

● User-based collaborative filtering is vulnerable to attack
○ Rely on user specified judgements (anyone)
○ Fake user profile to manipulate ratings

■ Push attack: Increase rating of one’s items
■ Nuke attack: Lower rating of competitors’ items

?

● Biased recommendation
○ Decrease user satisfaction

● Real case: Sony Pictures admitted it
used fake quotes from non-existent
movie critics to promote a number
of newly released films (June 2001)

Scalability

● E-commerce recommendation systems often operate
in a challenging environment
○ Millions of users and catalog items
○ High quality recommendations needed in real-time

● User-based collaborative filtering
○ Need to scan vast no. of neighbours
○ Real-time prediction infeasible!
○ Does not scale for most real‐world scenarios :(

How does Amazon handle
all its users and catalog

items???

Item-based collaborative filtering

● Use similarity between items to predict user ratings
○ Item similarities are considered to be more stable

than user similarities (Sarwar et al. 2001)

I1 I2 ...

U1

U2

...

List of top N
recommended
items for user

Recommendation
Component

(prediction based on
learned model)

Item
similarity

matrix
(model

learning
phase)

Underlying principle: We tend to buy
products similar to what we like.

User rating
/ purchase

history

Example

● Look for movies (items) similar to Man of Steel
● Use Alice’s ratings for these movies to predict her

rating for Man of Steel

Iron
Man

Fast and
Furious

Avatar Transformers Man of
Steel

Alice 5 3 4 4

Jane 3 1 2 3 3

Tom 4 3 4 3 5

Bob 3 3 1 5 4

Suzy 1 5 5 2 1

Example

● Look for movies (items) similar to Man of Steel
● Use Alice’s ratings for these movies to predict her

rating for Man of Steel

Iron
Man

Fast and
Furious

Avatar Transformers Man of
Steel

Alice 5 3 4 4

Jane 3 1 2 3 3

Tom 4 3 4 3 5

Bob 3 3 1 5 4

Suzy 1 5 5 2 1

Example

● Look for movies (items) similar to Man of Steel
● Use Alice’s ratings for these movies to predict her

rating for Man of Steel

Iron
Man

Fast and
Furious

Avatar Transformers Man of
Steel

Alice 5 3 4 4

Jane 3 1 2 3 3

Tom 4 3 4 3 5

Bob 3 3 1 5 4

Suzy 1 5 5 2 1

Example

● Look for movies (items) similar to Man of Steel
● Use Alice’s ratings for these movies to predict her

rating for Man of Steel

Iron
Man

Avatar Transformers Man of
Steel

Alice 5 3 4 4

Jane 3 1 2 3 3

Tom 4 3 4 3 5

Bob 3 3 1 5 4

Suzy 1 5 5 2 1

Fast and
Furious

Iron
Man

Avatar Transformers Man of
Steel

Alice 5 3 4 4

Jane 3 1 2 3 3

Tom 4 3 4 3 5

Bob 3 3 1 5 4

Suzy 1 5 5 2 1

Example

● Look for movies (items) similar to Man of Steel
● Use Alice’s ratings for these movies to predict her

rating for Man of Steel

Fast and
Furious

Example

● Look for movies (items) similar to Man of Steel
● Use Alice’s ratings for these movies to predict her

rating for Man of Steel

Iron
Man

Transformers Man of
Steel

Alice 5 3 4 4

Jane 3 1 2 3 3

Tom 4 3 4 3 5

Bob 3 3 1 5 4

Suzy 1 5 5 2 1

Fast and
Furious

Avatar

Iron
Man

Transformers Man of
Steel

Alice 5 3 4 4

Jane 3 1 2 3 3

Tom 4 3 4 3 5

Bob 3 3 1 5 4

Suzy 1 5 5 2 1

Example

● Look for movies (items) similar to Man of Steel
● Use Alice’s ratings for these movies to predict her

rating for Man of Steel

Fast and
Furious

Avatar

Example

● Look for movies (items) similar to Man of Steel
● Use Alice’s ratings for these movies to predict her

rating for Man of Steel

Iron
Man

Man of
Steel

Alice 5 3 4 4

Jane 3 1 2 3 3

Tom 4 3 4 3 5

Bob 3 3 1 5 4

Suzy 1 5 5 2 1

Fast and
Furious

Avatar Transformers

Example

● Look for movies (items) similar to Man of Steel
● Use Alice’s ratings for these movies to predict her

rating for Man of Steel

Iron
Man

Man of
Steel

Alice 5 3 4 4

Jane 3 1 2 3 3

Tom 4 3 4 3 5

Bob 3 3 1 5 4

Suzy 1 5 5 2 1

Fast and
Furious

Avatar Transformers

Example

● Look for movies (items) similar to Man of Steel
● Use Alice’s ratings for these movies to predict her

rating for Man of Steel

Iron
Man

Man of
Steel

Alice 5 3 4 4

Jane 3 1 2 3 3

Tom 4 3 4 3 5

Bob 3 3 1 5 4

Suzy 1 5 5 2 1

Fast and
Furious

Avatar Transformers

You must be wondering...

How can similar items be
identified?

How can user rating be
predicted based on

predictions of similar
items?

● Cosine similarity measure
● Ratings are seen as vector in n-dimensional space
● Similarity calculated based on angle between 2 vector

● Similarity between 2 items a and b

`

Note:
○ ‘·’ is dot product
○ Euclidean length, defined as

Identifying similar items

Similarity values are
between 0 and 1,
where values near

to 1 indicate strong
similarity

Offline computation

Differences in average rating behavior of users not considered!!!
(Some users may generally give high ratings while others may give lower

ratings as a preference)

Adjusted cosine measure

● Takes average user ratings into account
● Subtracts user average from ratings

Note: U refers to set of users having rated items a and b

● Values range from −1 to +1, as in Pearson measure

Offline computation

Similarity for items with only one common user is 1
Only items with one common user end up being most similar :(

Solution: Need to have a minimum number of users in common for
2 items to be considered for similarity

Adjusted cosine measure - Example

Adjusted cosine similarity value for Man of Steel and Iron Man:

 = 0.80

Offline computation

Iron
Man

Fast and
Furious

Avatar Transformers Man of
Steel

Alice 1.00 -1.00 0.00 0.00

Jane 0.60 -1.40 -0.40 0.60 0.60

Tom 0.20 -0.80 0.20 -0.80 1.20

Bob -0.20 -0.20 -2.20 2.80 0.80

Suzy -1.80 2.20 2.20 -0.80 -1.80

Adjusted cosine measure - Example

Offline computation

Iron
Man

Fast and
Furious

Avatar Transformers Man of
Steel

Alice 5 3 4 4

Jane 3 1 2 3 3

Tom 4 3 4 3 5

Bob 3 3 1 5 4

Suzy 1 5 5 2 1

Similarity 0.80 -0.90 -0.76 0.42

Predicting user rating

● Calculate weighted sum of Alice’s ratings for movies
(items) similar to Man of Steel

L(u) = list of similar items to item p rated by user u

● Number of similar items considered for prediction
limited to a specific size
○ similar idea to user-based collaborative filtering

Real-time computation

Predicting user rating - Example

● pred(Alice, Man of Steel)
 = ((0.80*5) + (0.42 * 4)) / (0.80 + 0.42) = 4.7

Iron
Man

Transformers Avatar Fast and
Furious

Man of
Steel

Alice 5 3 4 4

Jane 3 1 2 3 3

Tom 4 3 4 3 5

Bob 3 3 1 5 4

Suzy 1 5 5 2 1

Similarity 0.80 -0.90 -0.76 0.42

Real-time computation

In practice… sparse matrix

● Customers have very few purchases / rate very few items

I1 I2 I3 I4 I5 I6 I12 I13 I14I7 I8 I9 I10 I11 Im

Item-based collaborative filtering algo

(n: no of customers, m: no of catalog items)

Space requirements: O(mn)

Compute item similarity matrix

For each item in product catalog, Ip

For each customer C who purchased Ip

 For each item Iq purchased by customer C

Record that a customer purchased Ip and Iq

For each item Iq

Compute the similarity between Ip and Iq

O(m2n)

m

n

m - 1

c

m - 1

n

O(mn)

m
<< n
<< m

c
<< m
<< n

Predict the user rating of product O(m) O(m)

Generate the list of top recommended items for user O(m) O(m)

Worst In practice

Item-based collaborative filtering

● Scales independently of no of users or items
○ Depend only on no of items rated by active user

● Less affected by shilling attack (Lam and Riedl 2004)
○ Predicted rating for item determined by comparing

its item vector with those of other items
○ Attacker has no control over ratings given by other

users to any item

5 2 3 3 ?

2 4 4 1 -1.00

3 1 3 1 2 0.76

4 2 3 1 1 0.72

3 3 2 1 3 1 0.21

3 1 2 -1.00

4 3 3 3 2 0.94

5 1 5 1 -1.00

5 3 2 5 1.00

5 1 4 2 5 0.89

5 2 2 2 5 0.93

0.85 -0.55 0.00 0.48 -0.59

I1 I2 I3 I4 I5 I6

Correlation
with I6

Correlation
with Alice

Alice
(active user)

most similar
user without

attack

most similar
user with

attack

popular
item

Collaborative Filtering
Major Challenges

Suhendry Effendy & Paramasiven

Scalability Problem

User-based CF : O(n2m) at worst, or O(n2) in practice.

Item-based CF : O(nm2) at worst, or O(nm) in practice.

How to deal with millions of users and items?

Scalability Problem

User-based CF : O(n2m) at worst, or O(n2) in practice.

Item-based CF : O(nm2) at worst, or O(nm) in practice.

How to deal with millions of users and items?

Several approaches:
Clustering CF

Bayesian CF

Regression-Based CF

MDP-Based CF, etc.

Clustering CF

Users or items are grouped by their similarity.

user clustering item clustering

Clustering CF

How to make use the clustering?
❖ only consider users/items in the same cluster.
❖ smaller size = faster running time

Clustering CF

Item Clustering
➔ based on item type (e.g., books, gadgets, etc.)
➔ based on item similarity.

User Clustering
➔ based on user’s similarity.

similarity
≠ similar rates or preferences

= rate similar set of items

Clustering CF

Item Clustering
➔ based on item type (e.g., books, gadgets, etc.)
➔ based on item similarity.

User Clustering
➔ based on user’s similarity.

similarity
≠ similar rates or preferences

= rate similar set of items

Jaccard Similarity

Cosine Similarity

Clustering Algorithm for CF

Modularity Maximization (Newman)

➔ NP-Hard Problem (Brandes et al.)
➔ usually used in community detection problem.
➔ constant approximation algorithm (Dinh and Thai)
➔ proposed by Pham et al. for clustering CF

RecTree (Chee et al.)

➔ recursive CF clustering
➔ K-Means

Modularity Maximization

Modularity is the fraction of the edges that fall within the
given groups minus the expected such fraction if edges
were distributed at random.

eii = % of edges in cluster i

ri = probability of random edge belong to cluster i

Modularity Maximization

Modularity is the fraction of the edges that fall within the
given groups minus the expected such fraction if edges
were distributed at random.

eii = % of edges in cluster i

ai = % of degree of nodes in cluster i

probability random edge
belong to cluster i

random rewire
proportional to
node’s degree

Modularity Maximization

eii = % of edges in cluster i

ai = % of degree of nodes in cluster i

Modularity Maximization

eii = % of edges in cluster i

ai = % of degree of nodes in cluster i

Modularity Maximization

Modularity is the fraction of the edges that fall within the
given groups minus the expected such fraction if edges
were distributed at random.

High modularity
= more edges within the cluster than you expect by chance

Modularity Maximization

eii = % of edges in cluster i

ai = % of degree of nodes in cluster i

better modularity!

Modularity Maximization

But our graph is weighted (jaccard or cosine)!

eii = % of weight of edges in cluster i

ai = % of weight of edges of nodes in cluster i

High modularity
= more weight within the cluster than you expect by chance

generalize this to
weighted network!

Modularity Maximization

Simple Greedy Algorithm

Start:
each node is in its own cluster.

Iterate:
for each node, move it to other cluster which improve its
modularity the most.

Stop when the desired total modularity is achieved or cannot
be improved.

Time complexity: O(nq) per iteration - modularity gain can be computed in O(1)

In practice, it’s converge very quickly.

Modularity Maximization

Variation #2

Start:
each node is in its own cluster.

Iterate:
for each node, move it to other cluster with the highest
modularity gain (could be negative).

Return the clustering with highest observed modularity.

Modularity Maximization

Variation #3 (Blondel et al.)

Start:
each node is in its own cluster.

Iterate:
1-pass:

for each node, move it to other cluster which improve
its modularity the most.

create graph G’ with each cluster (found in 1-pass) as one
node, use G’ for the next iteration.

This will return a hierarchical clustering -- select the best
clustering (highest modularity).

Modularity Maximization

Modularity Maximization

Modularity Maximization

Modularity Maximization

Modularity Maximization

Modularity Maximization

Modularity Maximization

… and so on

RecTree

Recursively partition the data into 2 clusters.

K-Means with K = 2.

Stop when:
➔ the partition size is small enough.
➔ the recursion is too deep.

O(n lg n/b), if:
➔ partition size = b
➔ recursion depth = lg n

RecTree is an acronym for Recommendation Tree

Back to CF

Time complexity to build user-based clustering CF
❖ assume each cluster size = b
❖ compute similarities for one cluster = O(b2)
❖ number of cluster = n / b
❖ total complexity = O(n.b)

Clustering CF

Advantage of Clustering CF
● Faster computation.

○ Small cluster size vs. entire data.

Drawback
● Researchers report that the prediction quality is lower

(especially on user-based clustering CF).

Data sparsity

● Algorithms for sparse data
○ Graph-based method
○ Matrix factorization method

■ Also resolves:
● First rater - new items
● Population bias - unique taste
● Scalability

○ Ratings can be precomputed offline
○ Parallelization is permissible
○ Rating is estimated for any unrated item

in O(1) for a given user

Algorithms for sparse datasets (1)
Graph-based method (Huang et al. 2004)

● Exploit the supposed “transitivity” in user tastes
○ Example: Which item ix could be recommended to a

user u1?

○ i3 is recommended to u1 because:
■ ∃ a three-step path between u1 and i3

● u1 -> i2 -> u2 -> i3

u1 u2 u3

i1 i2 i3 i4

u1 = { i2 , i4 }
u2 = { i2 , i3 , i4 }
u3 = { i1 , i3 }

i1 i2 i3 i4

u1 0 1 0 1

u2 0 1 1 1

u3 1 0 1 0

Algorithms for sparse datasets (1)
Graph-based method (Huang et al. 2004)

● Exploit the supposed “transitivity” in user tastes
○ Example: Which item ix could be recommended to a

user u1?

○ i3 is recommended to u1 because:
■ ∃ a three-step path between u1 and i3

● u1 -> i2 -> u2 -> i3

u1 u2 u3

i1 i2 i3 i4

u1 = { i2 , i4 }
u2 = { i2 , i3 , i4 }
u3 = { i1 , i3 }

i1 i2 i3 i4

u1 0 1 0 1

u2 0 1 1 1

u3 1 0 1 0

Algorithms for sparse datasets (1)
Graph-based method (Huang et al. 2004)

● Exploit the supposed “transitivity” in user tastes
○ Example: Which item ix could be recommended to a

user u1?

○ i3 is recommended to u1 because:
■ ∃ a three-step path between u1 and i3

● u1 -> i2 -> u2 -> i3

u1 u2 u3

i1 i2 i3 i4

u1 = { i2 , i4 }
u2 = { i2 , i3 , i4 }
u3 = { i1 , i3 }

i1 i2 i3 i4

u1 0 1 0 1

u2 0 1 1 1

u3 1 0 1 0

Algorithms for sparse datasets (1)
Graph-based method (Huang et al. 2004)

● Exploit the supposed “transitivity” in user tastes
○ Example: Which item ix could be recommended to a

user u1?

○ i3 is recommended to u1 because:
■ ∃ a three-step path between u1 and i3

● u1 -> i2 -> u2 -> i3

u1 u2 u3

i1 i2 i3 i4

u1 = { i2 , i4 }
u2 = { i2 , i3 , i4 }
u3 = { i1 , i3 }

i1 i2 i3 i4

u1 0 1 0 1

u2 0 1 1 1

u3 1 0 1 0

Another 3-step path: u1 -> i4 -> u2 -> i3

Algorithms for sparse datasets (1)
Graph-based method (Huang et al. 2004)

● Consider longer paths (indirect associations) to
compute recommendations in sparse matrices
○ Using path length 5, for instance

● Using path length of 3:
○ Recommend i3 to u1

● Using path length of 5:
○ 2 paths exist between between i1and u1
○ i1 is also recommendable to u1

u1 u2 u3

i1 i2 i3 i4

5

4
3

2

1

Algorithms for sparse datasets (1)
Graph-based method (P. Symeonidis et al. 2011)

● Improve the relevance of recommendations
● Combining graphs

○ Unipartite graph
■ user-user
■ friendship network/ explicit social network

○ Bipartite graph
■ user-item (shown earlier)

○ Multi-modal graphs
■ friendship among users
■ user ratings on items

● Can be used by sites like Flixter
○ A community where users share film reviews and

ratings

u1 u2 u3

i1 i2 i3 i4

Algorithms for sparse datasets (2)
Matrix Factorization - Simon Funk method

● The intuition
○ Given a list of movies that your friend have not

viewed
○ How do you recommend?

■ Watch it because I watched it and liked it, OR
■ Match attributes (comedy, horror, ...) of movies

with those attributes of other movies
appreciated by friend

The Netflix 2009 $1,000,000 prize winner for the
recommender’s system based their solution on matrix
factorization! - http://www.netflixprize.com/

Simon Funk - (Real-name: Brandyn Webb) independent software developer who works on
Netflix prize in his spare time. He freely publishes his code...

○ Recommended rating of itemi for userj is:

■ r(i,j) = Ui (row) . V
T

j (col) , for known r(i,
j)

○ RN*M = UN*|K| . V
T

M*|K|

● Factorize rating matrix
○ Define set K = {a1, a2, …, ak}, attributes of an item

v(i,j) ∈ [0,1] ∋ Σk
j=1 v(i, j) = 1 for i = C, a constant

Algorithms for sparse datasets (2)
Matrix Factorization - Simon Funk method

i1 i2 ... im

u1

u2

...

un

R
a1 a2 ... ak

u1

u2

...

un

i1 i2 ... im

a1

a2

...

ak

U

V
T

a1 a2 …, ak

i1

i2

...

im

V

=
.

Algorithms for sparse datasets (2)
Matrix Factorization - Simon Funk method

● Estimated rating of item im+1 for ux,

○ r x, m+1 ≈ Ux (row) . V
T

m+1 (col)

i1 i2 ... im im+1

u1

u2

...

un

R
a1 a2 ... ak

u1

u2

...

un

i1 i2 ... im im+1

a1

a2

...

ak

U V
T

http://en.wikipedia.org/wiki/Equals_sign#Approximately_equal

Algorithms for sparse datasets (2)
Matrix Factorization - Simon Funk method

● As such the missing ratings in RN*Z can be estimated from

RN*M ,where M < Z:

○ RN*Z ≈ UN*K . V
T

Z*K

http://en.wikipedia.org/wiki/Equals_sign#Approximately_equal

Analysis of matrix factorization
Dimensionality reduction

● Vectors of the rating matrix, R, are of extremely high
dimension

○ an item vector is an n-dimensional vector with
missing user values

○ a user vector is an m-dimensional vector with
missing item values

○ users and items can possibly be grouped (e.g.
similar profile)
■ So can we represent users and items in

smaller dimensions
■ Ideally by a constant, k
■ users and items, each represented in k

dimensions

Analysis of matrix factorization
Complexity

● Given a Matrix (N*M),
○ # of users = n, # of items = m

● Derive k aspect’s values for m items
○ mk operations (or input: producer-defined)

● Derive k aspect’s preferences for n users
○ k systems of linear eq to solve for each user
○ nCk operations, C is a constant

● Compute approximate ratings for RNM
○ 2k for each rating (matrix row * col operation)
○ m * n * 2k, at most

● Time complexity O(mn)
○ Dimensionality reduction

■ Complexity reduction from O(m2n) to O(mn)
● One m is “reduced” to the constant 2k :)

|items|*|users|*|Rated_items|
|items|*|aspects|*|users|*|aspects|

Google News
Collaborative Filtering in use!

● Aggregates news article from several thousand
sources

● Displays them to signed-in users in a personalized way
● Collaborative filtering approach based on

○ the click history of the active user
○ the history of the larger community

● Main challenges
○ Vast amount of articles and users
○ Generate recommendation list in real-time
○ Constant stream of new items
○ Immediate reaction to the user interaction

Google News
from yr 2007 to yr 2010

● Methods
○ Two clustering techniques are used
○ Analyze history co-visits for dealing with new users

● Scalability of CF
○ Google's MapReduce technique is used for

parallelization in order to make computation
scalable [Abhinandan D. et al. 2007]

● Hybrid method
○ Combination of collaborative filtering

mechanism with content-based (the next
topic...)

○ Improved the quality of news recommendation
and increased traffic to the site

[Liu et al. 2010]

Content-Based Recommendation

Lu Bingxin & Li Jing

● Collaborative filtering does not require any
information or content about the items themselves,
only using the ratings of items given by users

● It might be reasonable to exploit such information

Why Content-based
Recommendation?

Like Recommend

What is Content-based
Recommendation

Content-based
Recommender

user preferences
(such as ratings for items)

Item descriptions

recommend items similar to
what the user has liked in
the past, instead of what
similar users like

not using user community information

a different form of cold-start:
require an initial description of preferences
from user

relevant item(s)
matching the user’
s preference

Real-world example

Content-based method is often
combined with collaborative
filtering method, contributing
to personalize the system
based on a user’s interest

Real-world example
-Panrado Radio

www.beavc.org/08presentations/pandora.ppt

User
preferences

Real-world example
-Panrado Radio

www.beavc.org/08presentations/pandora.ppt

Item
descriptions

Real-world example
-Panrado Radio

www.beavc.org/08presentations/pandora.ppt

Match user
preferences and
item descriptions

High level architecture of a content-
based recommender

http://www.ics.uci.edu/~welling/teaching/CS77Bwinter12/handbook/ContentBasedRS.pdf

a ranked list of
potentially
interesting items
or a binary relevance
judgement for an
item

structured
representation
of user
interests

items that are
rated by the user

positive + :
items are
relevant or liked
by the user
negative - :
items are
nonrelevant or
disliked by the
user

Content-based recommendation as
classification problem

Each item is to be classified as whether interesting to user or relevant with user preferences or not.

Two classes: positive(+) like/relevant ; negative(-) dislike/nonrelevant

items
rated by
the user

not-yet-seen
items

machine
learning

item
representation

User Profile

Item descriptions

● Some items are structured and can easily be
represented by a set of attributes
○ movie

■ actor, director, genre, subject
○ book

■ title, genre, author, type, price, keyword
● Some items are unstructured text documents which

have no attributes with well-defined values
○ the information source of most content-based

methods
■ web pages
■ news articles
■ emails

Item Representation

● Item content
○ a set of descriptors or terms

■ typically the words that occur in a document for
unstructured text

● User profile
○ often represented with the same terms as the item

so that both the user profile and the items can be
compared in a meaningful way

Item Representation
-for structured data

can maintain a list
of terms (features) Item of

books

Item Representation
-for structured data

Alice’s
User
profile

Item of
books

same list of terms
(features)

Item Representation
-for structured data

Item of books
(not yet seen
by Alice)

Alice’s
User
profile

Dice coefficient

i: a not-yet-seen item
u: user profile

Measure similarity between items and user profile to make recommendations

Item Representation
-for unstructured text

● A standard approach to represent unstructured
document content -- Vector space model
○ selects keywords (terms) from documents
○ represent document as vector in a multi

dimensional space (terms as dimensions): dj={w1j,
w2j,...,wnj}

○ user profile can be represented just like documents
by one or more profile vectors

○ Boolean term vector
○ Weighted term vector

● Boolean term vector

● feature selection: choose only a subset of the terms in the documents

Item Representation
-Vector Space Model

team coach play ball score game win lost ...

document1 1 0 1 0 0 1 0 1

document2 0 0 0 1 1 0 1 0

document3 1 1 1 0 0 1 0 1

...

● Boolean term vector

Item Representation
-Vector Space Model

team coach play ball score game win lost ...

document1 1 0 1 0 0 1 0 1

document2 0 0 0 1 1 0 1 0

document3 1 1 1 0 0 1 0 1

...

● every word has the same relevance to a document, but it seems intuitive
that
○ a word appearing more often is better suited for characterizing the

document
○ a term may appear more often in longer documents

Item Representation
-Vector Space Model

● Weighted term vector
○ standard measure to weight the words: Term

Frequency - Inverse Document Frequency (TF-IDF)
○ a term is assigned a weight based on

■ how often a term appears in a particular
document

■ how frequently it occurs in the entire document
collection

TF
Assumes that relevant terms appear
more often and longer documents are
not preferred to short documents

IDF
Assumes that rare terms are more
relevant than frequent terms
Aims to reduce the weight of terms that
appear in all documents

Weighted Term Vector
TF-IDF

● Given a term i and a document j
○ TF(i,j): term frequency of keyword i in document j

○ IDF(i): inverse document frequency for keyword i

the number of occurrences of keyword i in document j

The highest number of occurrences of any
other keyword k in document j

the number of all documents

the number of documents
where keyword i appears

TF-IDF weight can be normalized to fall in [0,1] interval

Example TF-IDF Representation

http://jcsites.juniata.edu/faculty/rhodes/ida/textDocViz.html

Instead of a vector of Boolean values, the vector for each document is represented as the
computed TF-IDF weights

The higher the value,
a term may appear more often in
a particular document or
less often in all documents,
and thus more relevant to the
topic of the document.

Similarity metrics based on vector
space model

● Common similarity metrics to compare two vectors di=
(w1i,w2i ,......,wki), dj(w1j,w2j ,......,wkj) :

Cosine
similarity

Dice
Coefficient

Jaccard
coefficient

Item Representation
-More on vector space model

● Semantic meaning remains unknown
○ Polysemy

mouse

■ The vector space model is unable to discriminate
between different meanings of the same word

○ Synonymy
car and vehicle

■ No associations between different words are
made in the vector space model

Latent semantic indexing http://recommender-systems.org/latent-semantic-indexing/

Simple Method: Nearest Neighbors

● Given a set of documents D already rated by the user
(like/dislike)
For each not-yet-seen item i m-m1

compute similarity between i and items in D m1*d

Find the N nearest neighbors of i in D m1

Major voting to predict ratings of i c

Time complexity: O(dm2)

In practice, most users can only rate a much small number of items
compared to m, m1 approximates to an upper bound, time complexity
can approach O(dm)

● m: number of items
● m1: number of items in D
● d: dimension of vector space
● ratings= {like, dislike}

Probabilistic Methods

Simple approach:

○ 2 classes: 1/0
○ simple Boolean document representation
○ calculate probability that document is labeled 1/0 based on Bayes

theorem

P(Label=1|X)= k*P(X|Label=1) * P(Label=1)

keywords

Probabilistic Methods

For each unlabeled item m-m1

for each component d

compute the prior probability m1

Overall time complexity: O(dm2)
In practice: O(dm)

keywords

Other classification algorithms

● Decision tree
● Rule induction
● Support vector machines
● Neutral network
● etc..

Relevance Feedback

● Take advantage of user relevance judgments in the
retrieval process:
○ User issues a (short, simple) query and gets back an initial hit

list
○ User marks hits as relevant or non-relevant
○ The system computes a better representation of the

information need based on this feedback
○ Single or multiple iterations

● Idea: you may not know what you’re looking for, but
you’ll know when you see it

Picture of Relevance Feedback

Rocchio Algorithm

● Query and documents are represented by TF-IDF
criteria.

● Updation in practice:

qm = modified query vector;
q0 = original query vector;
α,β,γ: weights (hand-chosen or set empirically);
Dr = set of known relevant doc vectors;
Dnr = set of known irrelevant doc vectors

New query
Moves toward relevant documents, but away from irrelevant documents

Rocchio Algorithm: Number Example

query

 positive feedback

negative feedback

Rocchio Algorithm: Number Example

query

 positive feedback

negative feedback

Rocchio Algorithm: Number Example

query

 positive feedback

negative feedback

Rocchio Algorithm: Number Example

negative feedback

query

 positive feedback

negative feedback

new query

Rocchio Algorithm

● Initial query can start with boolean vector

● Negative weights are usually ignored

● Rocchio based relevance feedback improves both recall and precision

● For reaching high recall, many iterations are needed

● Empirically determined values for the balancing weights:

● Positive feedback is usually more valuable than negative feedback:

Shortcomings of Relevance
Feedback

● Relevance Feedback does not work when:
○ The users do not have sufficient initial knowledge

■ (misspelled query, ambiguous vocabulary, …)

○ There exist several prototypes of relevant
documents
■ query has disjunctive answer sets (“the pop star that worked at

KFC”)
■ query concerns an instance of a general concept (felines, cat)
■ documents are gathered into subsets each using a different

vocabulary

● Practical problem: refining leads to longer queries that
need more time to process

Relevance Feedback and the Web

Few web IR systems use relevance feedback
● hard to explain to users
● users are mainly interested in fast retrieval (i.e. no iterations)
● users usually are not interested in high recall

Nowadays: clickstream-based feedback (which links are
clicked on by users)

→ implicit feedback from the writer rather than feedback from the reader

Knowledge-Based
Recommendation

Suman Sourav

● Products with low number of available ratings

● Time span plays an important role
○ Five‐year‐old ratings for computers
○ User lifestyle or family situation changes

● Customers want to define their requirements explicitly
○ “The color of the car should be black

Why do we need knowledge
based recommendation?

Knowledge based recommendation

Knowledge-based recommender
systems

● Constraint-based
○ based on explicitly defined set of recommendation rules
○ fulfill recommendation rules

● Case-based
○ based on different types of similarity measures
○ retrieve items that are similar to specified requirements

● Both approaches are similar in their conversational
recommendation process

Interacting with constraint-based
recommenders
▪ Conjunctive Query :

σ[criteria](P)
P: product assortment

example: σ[mpix≥10, price<300](P) = {p4, p7}

▪ The user specifies his or her initial preference
– all at once or incrementally in a wizard-style

▪ The user is presented with a set of matching items
– with explanation as to why a certain item was recommended

▪ The user might revise his or her requirements
– see alternative solutions
– narrow down the number of matching items

Constraint-based recommendation tasks

▪ Derive a set of recommendable items

▪ Find a set of user requirements such that a subset of
items fulfills all constraints
– ask user which requirements should be relaxed/modified such

that some items exist that do not violate any constraint

▪ Find a subset of items that satisfy the maximum set of
weighted constraints

▪ Rank items according to weights of satisfied constraints

▪ Provide Defaults

– Static or Derived

Unsatisfied requirements

▪ "no solution could be found"

▪ Constraint relaxation
– the goal is to identify relaxations to the original set of

constraints
– relax constraints of a recommendation problem until a

corresponding solution has been found

▪ Users could also be interested in repair proposals
– recommender can calculate a solution by adapting the

proposed requirements

Constraint-based recommendation
problem

▪ Select items from this catalog that match the user's requirements

▪ User's requirements can, for example, be
– "the price should be lower than 300 $"
– "the camera should be suited for sports photography"

id price($) mpix opt-zoom LCD-size movies sound waterproof

Dealing with unsatisfied requirements

Suppose,

REQ = {r1: price<=150, r2 : opt-zoom=5×, r3 : sound=yes,
r4 : waterproof=yes}

σ[price<=150,opt-zoom=5x,sound=yes,waterproof=yes] (P) =∅

This requirement is not satisfiable on the given set of
products.

Dealing with unsatisfied requirements

Diagnosis

 A minimal set of user requirements whose repair
(adaptation) will allow the retrieval of a
recommendation.

▪ P = {p1, p2,...,pn}

▪ REQ={r1,r2,...,rm}

▪ σ[REQ](P) = ∅

We have to find Δ = {d1,d2,...,dk}

Such that σ[REQ−di](P) ≠ ∅ ∀di ∈ Δ

Deal with unsatisfied requirements

Conflict set CS

A subset {r1,r2,...,rl}⊆REQ, such that σ[CS](P)=∅.

A conflict set CS is minimal iff there does not exist aCS’
with CS’⊂CS.

The corresponding conflict sets are

CS1={r1,r2},CS2={r2,r4} and CS3={r1,r3}

QuickXPlain

▪

σ ∅ ∅ ∅
∅ ∅

Δ
∅ σ ∅ ∅

← ←
Δ ← ∪
Δ ← ∪ Δ Δ

Δ ∪ Δ

Example of QuickXPlain

▪ REQ = {r1:price≤150, r2:opt-zoom=5x, r3:sound=yes, r4:
waterproof=yes}

Deal with unsatisfied requirements

▪ Calculate diagnoses for unsatisfied requirements

▪ The diagnoses derived from the conflict sets {CS1,CS2,
CS3} are {d1:{r1, r2}, d2:{r1, r4},d3:{r2, r3}}

Repairs for unsatisfied requirements

▪ Identify possible adaptations

▪ Or query the product table P with π[attributes(d)]σ[REQ−d](P)
– π[attributes(d1)]σ[REQ−d1](P) = {price=278, opt-zoom=10×}
– π[attributes(d2)]σ[REQ−d2](P) = {price=182, waterproof=no}
– π[attributes(d3)]σ[REQ−d3](P) = {opt-zoom=4×, sound=no}

repair price(€) opt-zoom sound waterproof

Rep1 278 10× √ √

Rep2 182 √ √ no

Rep3 √ 4× no √

Case-based Approach

Items are retrieved based on similarity.

Critiquing
User specify their change
 requests that are not
 satisfied by the
recommended item.

e.g.,
➔ “lower price”
➔ “more pixel”

Case-based Approach

Items are retrieved based on similarity.

Critiquing
User specify their change
 requests that are not
 satisfied by the
recommended item.

e.g.,
➔ “lower price”
➔ “more pixel”

Conclusion & Summary

Conclusion

● None of the models discussed are perfect or
optimal.

● The choice of model normally depends the choice
of the application.

● In practicality, for better performance combination
of models are used rather than the pure form of
any model.

● These systems are widely used in todays rapidly
growing World Wide Web, and play a pivotal role in
almost all major websites.

Summary

Collaborative Filtering
● “wisdom of the crowd”
● User-based or item-based CF
● Challenges in CF

○ Scalability -- clustering
○ Data Sparsity -- graph-based, matrix factorization

Content Based Recommendation

Knowledge Based Recommendation
● interactive conversational style
● based on explicit user choice only

References

● A. Das, M. Datar, A. Garg, S. Rajaram. Google news personalization: scalable online
collaborative filtering. 2007

● J. Liu, P. Dolan, E. R. Pedersen. Personalized news recommendation based on click behavior. In
IUI '10, 2010.

● Newman, M. E. J. Modularity and community structure in networks. In Proceedings of the
National Academy of Sciences of the United States of America. 2006.

● S. H. S. Chee, J. Han, and K. Wang. RecTree: an efficient collaborative filtering method. In
Proceedings of the 3rd International Conference on DataWarehousing and Knowledge
Discovery, pp. 141–151, 2001.

● U. Brandes, D. Delling, M. Gaertler, R. Goerke, M. Hoefer, Z. Nikoloski, D. Wagner. Maximizing
modularity is hard. In arXiv:physics/0608255

● U. Brandes, D. Delling, M. Gaertler, R. G�orke, M. Hoefer, Z. Nikoloski and D. Wagner, On
Finding Graph Clusterings with Maximum Modularity. In Proceedings of the 33rd International
Workshop on Graph-Theoretic Concepts in Computer Science (WG'07), 2007.

● Zanker, Markus, Alexander Felfernig, and Gerhard Friedrich. Recommender systems: an
introduction. Cambridge University Press, 2011.

● http://recommender-systems.org/content-based-filtering/
● Lops P, de Gemmis M, Semeraro G. Content-based recommender systems: State of the art and

trends[M]//Recommender Systems Handbook. Springer US, 2011: 73-105.
● Khan M, Nair S. Survey of Content Based Recommendation Systems in a nutshell[J].

International Journal of Advanced Research in Computer Science and Electronics Engineering
(IJARCSEE), 2014, 3(1): pp: 24-30.

● Recommender Systems : An Introduction Dietmar Jannach etal
● Robin Burke. Knowledge-based recommender systems. 2000

http://recommender-systems.org/content-based-filtering/
http://recommender-systems.org/content-based-filtering/

Backup Slides

RecTree Algorithm

constructRecTree(parent, data, depth)

create a node and link it to parent

if size(data) ≤ maxSize OR depth ≥ maxDepth:

computeCorrelationMatrix(data)

else

call K-Means(data, k = 2)

for each child cluster from K-Means:

call constructRecTree(node, cData, depth + 1)

Time complexity

O(n lg n/b) -- if maxDepth = lg n, and maxSize = b.

