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Familiar interfaces ...



What are Recommendation Systems?

● systems (algorithms) trying to predict user 
preferences for new items

● all modern web apps have a recommender 
system
○ books and items (Amazon)
○ music (Spotify)
○ movies (IMDB)
○ friends (Facebook)
○ ...



Why using Recommendation Systems?

 ?



Approaches

● Collaborative filtering
○ user-based 
○ item-based
○ major challenges 

● Content-based

● Knowledge-based



Collaborative filtering
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Collaborative filtering

● Assumptions
○ users rate items explicitly or implicitly
○ user’s taste preserves over time
○ use other users ratings (wisdom of the crowd)

● Approach
○ user-item matrix
○ predict the rating for a particular item or compute 

a list of recommended items
■ based on other users ratings
■ based on similar items ratings



User-based Collaborative Filtering

Dumitrel



User-based collaborative filtering
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● Active user a and item p, ra,p is unknown
● First, compute similarities with other users

● Then predict ra,p

Similarity and prediction equations



Example

Iron 
Man

Fast and 
Furious

Avatar Transformers
Man of 
Steel

Alice 5 3 4 4 ?

Jane 3 1 2 3 3

Tom 4 3 4 3 5

Bob 3 3 1 5 4

Suzy 1 5 5 2 1

0.85

0.70

0

-0.79

similarity



User similarities



Possible improvements

● Better similarity and prediction functions
○ give more weight to items having diverse ratings
○ give more weight to similar users - case amplification

● Better neighborhood selection
○ select only the most similar users
○ select users with whom the user has more common 

rated items



Using only similar users

case amplification
most similar users



Algorithm

UserBasedCF(User a, Item p)
compute average rating for a
for each b in all other users

if b purchased p
compute average rating for b
compute sim(a,b)

[select the neighborhood]
compute rating ra,p

Steps
m
n

m
m

O(n)
m

O(nm)



Collaborative filtering challenges

● Scalability - huge rating matrix 
○ 108 users and growing 
○ 107 items and growing fast

● Sparsity - many undefined ratings
● Cold start - new users, new items
● Conspiracy - users agreement or shilling 

attacks using bots
● Privacy - user profiles



Item-based Collaborative Filtering

Anuja



Shilling Attack

● User-based collaborative filtering is vulnerable to attack
○ Rely on user specified judgements (anyone)
○ Fake user profile to manipulate ratings

■ Push attack: Increase rating of one’s items
■ Nuke attack: Lower rating of competitors’ items

?

● Biased recommendation
○ Decrease user satisfaction

● Real case: Sony Pictures admitted it 
used fake quotes from non-existent 
movie critics to promote a number 
of newly released films (June 2001)



Scalability

● E-commerce recommendation systems often operate 
in a challenging environment
○ Millions of users and catalog items
○ High quality recommendations needed in real-time

● User-based collaborative filtering
○ Need to scan vast no. of neighbours
○ Real-time prediction infeasible!
○ Does not scale for most real‐world scenarios :(

How does Amazon handle 
all its users and catalog 

items???



Item-based collaborative filtering

● Use similarity between items to predict user ratings
○ Item similarities are considered to be more stable 

than user similarities (Sarwar et al. 2001)

I1 I2 ...

U1

U2

...

List of top N 
recommended 
items for user

Recommendation 
Component

(prediction based on 
learned model)

Item 
similarity 

matrix
(model 

learning 
phase)

Underlying principle: We tend to buy 
products similar to what we like.

User rating 
/ purchase 

history



Example

● Look for movies (items) similar to Man of Steel
● Use Alice’s ratings for these movies to predict her 

rating for Man of Steel

Iron 
Man

Fast and 
Furious

Avatar Transformers Man of 
Steel

Alice 5 3 4 4

Jane 3 1 2 3 3

Tom 4 3 4 3 5

Bob 3 3 1 5 4

Suzy 1 5 5 2 1
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You must be wondering...

How can similar items be 
identified?

How can user rating be 
predicted based on 

predictions of similar 
items?



● Cosine similarity measure
● Ratings are seen as vector in n-dimensional space
● Similarity calculated based on angle between 2 vector

● Similarity between 2 items a and b

`

Note: 
○ ‘·’ is dot product
○ Euclidean length, defined as 

Identifying similar items

Similarity values are 
between 0 and 1, 
where values near 

to 1 indicate strong 
similarity

Offline computation

Differences in average rating behavior of users not considered!!!
(Some users may generally give high ratings while others may give lower 

ratings as a preference)



Adjusted cosine measure

● Takes average user ratings into account
● Subtracts user average from ratings

Note: U refers to set of users having rated items a and b

● Values range from −1 to +1, as in Pearson measure

Offline computation

Similarity for items with only one common user is 1
Only items with one common user end up being most similar :(

Solution: Need to have a minimum number of users in common for 
2 items to be considered for similarity



Adjusted cosine measure - Example

Adjusted cosine similarity value for Man of Steel and Iron Man:

                                                                                                              = 0.80

Offline computation

Iron 
Man

Fast and 
Furious

Avatar Transformers Man of 
Steel

Alice 1.00 -1.00 0.00 0.00

Jane 0.60 -1.40 -0.40 0.60 0.60

Tom 0.20 -0.80 0.20 -0.80 1.20

Bob -0.20 -0.20 -2.20 2.80 0.80

Suzy -1.80 2.20 2.20 -0.80 -1.80



Adjusted cosine measure - Example

Offline computation

Iron 
Man

Fast and 
Furious

Avatar Transformers Man of 
Steel

Alice 5 3 4 4

Jane 3 1 2 3 3

Tom 4 3 4 3 5

Bob 3 3 1 5 4

Suzy 1 5 5 2 1

Similarity 0.80 -0.90 -0.76 0.42



Predicting user rating

● Calculate weighted sum of Alice’s ratings for movies 
(items) similar to Man of Steel

L(u) = list of similar items to item p rated by user u

● Number of similar items considered for prediction 
limited to a specific size
○ similar idea to user-based collaborative filtering 

Real-time computation



Predicting user rating - Example

● pred(Alice, Man of Steel)
   = ((0.80*5) + (0.42 * 4)) / (0.80 + 0.42) = 4.7

Iron 
Man

Transformers Avatar Fast and 
Furious

Man of 
Steel

Alice 5 3 4 4

Jane 3 1 2 3 3

Tom 4 3 4 3 5

Bob 3 3 1 5 4

Suzy 1 5 5 2 1

Similarity 0.80 -0.90 -0.76 0.42

Real-time computation



In practice… sparse matrix 

● Customers have very few purchases / rate very few items 

I1 I2 I3 I4 I5 I6 I12 I13 I14I7 I8 I9 I10 I11 Im



Item-based collaborative filtering algo

(n: no of customers, m: no of catalog items)

Space requirements: O(mn)

Compute item similarity matrix

For each item in product catalog, Ip  

For each customer C who purchased Ip   

 For each item Iq purchased by customer C  

Record that a customer purchased Ip and Iq 

For each item Iq 

Compute the similarity between Ip and Iq 

O(m2n)

m

n

m - 1

c

m - 1

n 

O(mn)

m
<< n
<< m

c
<< m
<< n

Predict the user rating of product O(m) O(m)

Generate the list of top recommended items for user O(m) O(m)

Worst In practice



Item-based collaborative filtering

● Scales independently of no of users or items
○ Depend only on no of items rated by active user

● Less affected by shilling attack (Lam and Riedl 2004)
○ Predicted rating for item determined by comparing 

its item vector with those of other items
○ Attacker has no control over ratings given by other 

users to any item



5 2 3 3 ?

2 4 4 1 -1.00

3 1 3 1 2 0.76

4 2 3 1 1 0.72

3 3 2 1 3 1 0.21

3 1 2 -1.00

4 3 3 3 2 0.94

5 1 5 1 -1.00

5 3 2 5 1.00

5 1 4 2 5 0.89

5 2 2 2 5 0.93

0.85 -0.55 0.00 0.48 -0.59

I1 I2 I3 I4 I5 I6

Correlation 
with I6

Correlation 
with Alice

Alice
(active user)

most similar 
user without 

attack

most similar 
user with 

attack

popular 
item



Collaborative Filtering
Major Challenges

Suhendry Effendy & Paramasiven



Scalability Problem

User-based CF : O(n2m) at worst, or O(n2) in practice.

Item-based CF : O(nm2) at worst, or O(nm) in practice.

How to deal with millions of users and items?



Scalability Problem

User-based CF : O(n2m) at worst, or O(n2) in practice.

Item-based CF : O(nm2) at worst, or O(nm) in practice.

How to deal with millions of users and items?

Several approaches:
Clustering CF

Bayesian CF

Regression-Based CF

MDP-Based CF, etc.



Clustering CF

Users or items are grouped by their similarity.

user clustering item clustering



Clustering CF

How to make use the clustering?
❖ only consider users/items in the same cluster.
❖ smaller size = faster running time



Clustering CF

Item Clustering
➔ based on item type (e.g., books, gadgets, etc.)
➔ based on item similarity.

User Clustering
➔ based on user’s similarity.

similarity
≠ similar rates or preferences

= rate similar set of items



Clustering CF

Item Clustering
➔ based on item type (e.g., books, gadgets, etc.)
➔ based on item similarity.

User Clustering
➔ based on user’s similarity.

similarity
≠ similar rates or preferences

= rate similar set of items

Jaccard Similarity

Cosine Similarity



Clustering Algorithm for CF

Modularity Maximization (Newman)

➔ NP-Hard Problem (Brandes et al.)
➔ usually used in community detection problem.
➔ constant approximation algorithm (Dinh and Thai)
➔ proposed by Pham et al. for clustering CF

RecTree (Chee et al.)

➔ recursive CF clustering
➔ K-Means



Modularity Maximization

Modularity is the fraction of the edges that fall within the 
given groups minus the expected such fraction if edges 
were distributed at random.

eii = % of edges in cluster i

ri  = probability of random edge belong to cluster i



Modularity Maximization

Modularity is the fraction of the edges that fall within the 
given groups minus the expected such fraction if edges 
were distributed at random.

eii = % of edges in cluster i

ai  = % of degree of nodes in cluster i

probability random edge 
belong to cluster i

random rewire
proportional to
node’s degree
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Modularity Maximization

Modularity is the fraction of the edges that fall within the 
given groups minus the expected such fraction if edges 
were distributed at random.

High modularity
= more edges within the cluster than you expect by chance



Modularity Maximization

eii = % of edges in cluster i

ai  = % of degree of nodes in cluster i

better modularity!



Modularity Maximization

But our graph is weighted (jaccard or cosine)!

eii = % of weight of edges in cluster i

ai  = % of weight of edges of nodes  in cluster i

High modularity
= more weight within the cluster than you expect by chance

generalize this to
weighted network!



Modularity Maximization

Simple Greedy Algorithm

Start:
each node is in its own cluster.

Iterate:
for each node, move it to other cluster which improve its 
modularity the most.

Stop when the desired total modularity is achieved or cannot 
be improved.

Time complexity: O(nq) per iteration - modularity gain can be computed in O(1)

In practice, it’s converge very quickly.



Modularity Maximization

Variation #2

Start:
each node is in its own cluster.

Iterate:
for each node, move it to other cluster with the highest 
modularity gain (could be negative).

Return the clustering with highest observed modularity.



Modularity Maximization

Variation #3 (Blondel et al.)

Start:
each node is in its own cluster.

Iterate:
1-pass:

for each node, move it to other cluster which improve 
its modularity the most.

create graph G’ with each cluster (found in 1-pass) as one 
node, use G’ for the next iteration.

This will return a hierarchical clustering -- select the best 
clustering (highest modularity).



Modularity Maximization



Modularity Maximization



Modularity Maximization



Modularity Maximization



Modularity Maximization



Modularity Maximization



Modularity Maximization

… and so on



RecTree

Recursively partition the data into 2 clusters.

K-Means with K = 2.

Stop when:
➔ the partition size is small enough.
➔ the recursion is too deep.

O(n lg n/b), if:
➔ partition size = b
➔ recursion depth = lg n

RecTree is an acronym for Recommendation Tree



Back to CF

Time complexity to build user-based clustering CF
❖ assume each cluster size = b
❖ compute similarities for one cluster = O(b2)
❖ number of cluster = n / b
❖ total complexity = O(n.b)



Clustering CF

Advantage of Clustering CF
● Faster computation.

○ Small cluster size vs. entire data.

Drawback
● Researchers report that the prediction quality is lower 

(especially on user-based clustering CF).



Data sparsity

● Algorithms for sparse data 
○ Graph-based method 
○ Matrix factorization method

■ Also resolves:
● First rater - new items
● Population bias - unique taste
● Scalability

○ Ratings can be precomputed offline
○ Parallelization is permissible
○ Rating is estimated for any unrated item 

in O(1) for a given user



Algorithms for sparse datasets (1)
Graph-based method (Huang et al. 2004)

● Exploit the supposed “transitivity” in user tastes
○ Example: Which item ix could be recommended to a 

user u1?

○ i3 is recommended to u1 because:
■ ∃ a three-step path between u1 and i3

● u1 ->  i2 ->  u2 ->  i3

u1 u2 u3

i1 i2 i3 i4

u1 = { i2 , i4 }
u2 = { i2  , i3 , i4 }
u3 = { i1 , i3 }

i1 i2 i3 i4

u1 0 1 0 1

u2 0 1 1 1

u3 1 0 1 0
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Algorithms for sparse datasets (1)
Graph-based method (Huang et al. 2004)

● Exploit the supposed “transitivity” in user tastes
○ Example: Which item ix could be recommended to a 
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■ ∃ a three-step path between u1 and i3

● u1 ->  i2 ->  u2 ->  i3

u1 u2 u3

i1 i2 i3 i4

u1 = { i2 , i4 }
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Another 3-step path: u1 -> i4 -> u2 -> i3



Algorithms for sparse datasets (1)
Graph-based method (Huang et al. 2004)

● Consider longer paths (indirect associations) to 
compute recommendations in sparse matrices
○ Using path length 5, for instance

● Using path length of 3:
○ Recommend i3 to u1

● Using path length of 5:
○ 2 paths exist between between i1and u1
○ i1 is also recommendable to u1

u1 u2 u3

i1 i2 i3 i4

5

4
3

2

1



Algorithms for sparse datasets (1)
Graph-based method ( P. Symeonidis et al. 2011)

● Improve the relevance of recommendations
● Combining graphs

○ Unipartite graph
■ user-user
■ friendship network/ explicit social network

○ Bipartite graph
■ user-item (shown earlier)

○ Multi-modal graphs
■ friendship among users
■ user ratings on items

● Can be used by sites like Flixter
○ A community where users share film reviews and 

ratings

u1 u2 u3

i1 i2 i3 i4



Algorithms for sparse datasets (2)
Matrix Factorization - Simon Funk method

● The intuition
○ Given a list of movies that your friend have not 

viewed
○ How do you recommend?

■ Watch it because I watched it and liked it, OR
■ Match attributes (comedy, horror, ...) of movies 

with those attributes of other movies 
appreciated by friend

The Netflix 2009 $1,000,000 prize winner for the 
recommender’s system based their solution on matrix 
factorization! - http://www.netflixprize.com/

Simon Funk - (Real-name: Brandyn Webb) independent software developer who works on 
Netflix prize in his spare time. He freely publishes his code...



○ Recommended rating of itemi for userj is:

■ r(i,j) = Ui (row) . V
T

j (col)  , for known r(i,
j)

○ RN*M = UN*|K| . V
T

M*|K|

● Factorize rating matrix
○ Define set K = {a1, a2, …, ak}, attributes of an item

v(i,j) ∈ [0,1]   ∋  Σk
j=1 v(i, j) = 1 for i = C, a constant 

Algorithms for sparse datasets (2)
Matrix Factorization - Simon Funk method

i1 i2 ... im

u1

u2

...

un

R
a1 a2 ... ak

u1

u2

...

un

i1 i2 ... im

a1

a2

...

ak

U

V
T

a1 a2 …, ak

i1

i2

...

im

V

=
.



Algorithms for sparse datasets (2)
Matrix Factorization - Simon Funk method

● Estimated rating of item im+1 for ux, 

○ r x, m+1 ≈ Ux (row) . V
T

m+1 (col)

i1 i2 ... im im+1

u1

u2

...

un

R
a1 a2 ... ak

u1

u2

...

un

i1 i2 ... im im+1

a1

a2

...

ak

U V
T

http://en.wikipedia.org/wiki/Equals_sign#Approximately_equal


Algorithms for sparse datasets (2)
Matrix Factorization - Simon Funk method

● As such the missing ratings in RN*Z   can be estimated from 

RN*M ,where M < Z:

○ RN*Z ≈   UN*K . V
T

Z*K

http://en.wikipedia.org/wiki/Equals_sign#Approximately_equal


Analysis of matrix factorization
Dimensionality reduction

● Vectors of the rating matrix, R, are of extremely high 
dimension

○ an item vector is an n-dimensional vector with 
missing user values 

○ a user vector is an m-dimensional vector with 
missing item values 

○ users and items can possibly be grouped (e.g. 
similar profile)
■ So can we represent users and items in 

smaller dimensions
■ Ideally by a constant, k
■ users and items, each represented in k 

dimensions



Analysis of matrix factorization
Complexity

● Given a Matrix (N*M),
○ # of users = n, # of items = m

● Derive k aspect’s values for m items
○ mk operations (or input: producer-defined)

● Derive k aspect’s preferences for n users
○ k systems of linear eq to solve for each user
○ nCk operations, C is a constant

● Compute approximate ratings for RNM
○ 2k for each rating (matrix row * col operation)
○ m * n * 2k, at most

● Time complexity O(mn)
○ Dimensionality reduction

■ Complexity reduction from O(m2n) to O(mn)
● One m is “reduced” to the constant 2k :)

|items|*|users|*|Rated_items| 
|items|*|aspects|*|users|*|aspects|



Google News
Collaborative Filtering in use!

● Aggregates news article from several thousand 
sources

● Displays them to signed-in users in a personalized way
● Collaborative filtering approach based on 

○ the click history of the active user
○ the history of the larger community

● Main challenges
○ Vast amount of articles and users
○ Generate recommendation list in real-time
○ Constant stream of new items
○ Immediate reaction to the user interaction



Google News 
from yr 2007 to yr 2010

● Methods
○ Two clustering techniques are used
○ Analyze history co-visits for dealing with new users

● Scalability of CF
○ Google's MapReduce technique is used for 

parallelization in order to make computation 
scalable [Abhinandan D. et al. 2007]

● Hybrid method
○ Combination of collaborative filtering 

mechanism with content-based (the next 
topic...) 

○ Improved the quality of news recommendation 
and increased traffic to the site

[Liu et al. 2010]



Content-Based Recommendation

Lu Bingxin & Li Jing



● Collaborative filtering does not require any 
information or content about the items themselves, 
only using the ratings of items given by users

● It might be reasonable to exploit such information

Why Content-based 
Recommendation?

Like Recommend



What is Content-based 
Recommendation

Content-based
Recommender 

user preferences
(such as ratings for items)

Item descriptions

recommend items similar to 
what the user has liked in 
the past, instead of what 
similar users like

not using user community information 

a different form of cold-start:
require an initial description of preferences 
from user

relevant item(s) 
matching the user’
s preference



Real-world example

Content-based method is often 
combined with collaborative 
filtering method, contributing 
to personalize the system
based on a user’s interest



Real-world example
-Panrado Radio

www.beavc.org/08presentations/pandora.ppt

User 
preferences



Real-world example
-Panrado Radio

www.beavc.org/08presentations/pandora.ppt

Item 
descriptions



Real-world example
-Panrado Radio

www.beavc.org/08presentations/pandora.ppt

Match user 
preferences and 
item descriptions



High level architecture of a content-
based recommender

http://www.ics.uci.edu/~welling/teaching/CS77Bwinter12/handbook/ContentBasedRS.pdf

a ranked list of 
potentially 
interesting items 
or a binary relevance 
judgement for an 
item 

structured 
representation 
of user 
interests

items that are 
rated by  the user

positive + : 
items are 
relevant or liked 
by the user
negative - : 
items are 
nonrelevant or 
disliked by the 
user



Content-based recommendation as 
classification problem

Each item is to be classified as whether interesting to user or relevant with user preferences or not.

Two classes: positive( + )  like/relevant ; negative( - ) dislike/nonrelevant

items 
rated by 
the user

not-yet-seen
items 

machine 
learning 

item 
representation

User Profile



Item descriptions

● Some items are structured and can easily be 
represented by a set of attributes 
○ movie

■ actor, director, genre, subject
○ book

■ title, genre, author, type, price, keyword
● Some items are unstructured text documents which 

have no attributes with well-defined values
○ the information source of most content-based 

methods 
■ web pages  
■ news articles
■ emails



Item Representation

● Item content 
○ a set of descriptors or terms 

■ typically the words that occur in a document for 
unstructured text 

● User profile 
○ often represented with the same terms as the item 

so that both the user profile and the items can be 
compared in a meaningful way



Item Representation
-for structured data

can maintain a list 
of terms (features) Item of 

books



Item Representation
-for structured data

Alice’s 
User 
profile

Item of 
books

same list of terms 
(features)



Item Representation
-for structured data

Item of books
(not yet seen 
by Alice)

Alice’s 
User 
profile

Dice coefficient

i: a not-yet-seen item 
u: user profile

Measure similarity between items and user profile to make recommendations



Item Representation
-for unstructured text

● A standard approach to represent unstructured 
document content -- Vector space model
○ selects keywords (terms) from documents
○ represent document as vector in a multi 

dimensional space (terms as dimensions): dj={w1j,
w2j,...,wnj}

○ user profile can be represented just like documents 
by one or more profile vectors

○ Boolean term vector
○ Weighted term vector



● Boolean term vector 

● feature selection: choose only a subset of the terms in the documents

Item Representation
-Vector Space Model

team coach play ball score game win lost ...

document1 1 0 1 0 0 1 0 1

document2 0 0 0 1 1 0 1 0

document3 1 1 1 0 0 1 0 1

...



● Boolean term vector 

Item Representation
-Vector Space Model

team coach play ball score game win lost ...

document1 1 0 1 0 0 1 0 1

document2 0 0 0 1 1 0 1 0

document3 1 1 1 0 0 1 0 1

...

● every word has the same relevance to a document, but it seems intuitive 
that 
○ a word appearing more often is better suited for characterizing the 

document
○ a term may appear more often in longer documents



Item Representation
-Vector Space Model

● Weighted term vector
○ standard measure to weight the words: Term 

Frequency - Inverse Document Frequency (TF-IDF) 
○ a term is assigned a weight based on 

■ how often a term appears in a particular 
document 

■ how frequently it occurs in the entire document 
collection

TF 
Assumes that relevant terms appear 
more often and longer documents are 
not preferred to short documents

IDF 
Assumes that rare terms are more 
relevant than frequent terms
Aims to reduce the weight of terms that 
appear in all documents



Weighted Term Vector
TF-IDF

● Given a term i and a document j
○ TF(i,j): term frequency of keyword i in document j

○ IDF(i):  inverse document frequency for keyword i 

 

the number of occurrences of keyword i in document j

The highest number of occurrences of any 
other keyword k in document j

the number of all documents

the number of documents 
where keyword i appears

TF-IDF weight can be normalized to fall in [0,1] interval



Example TF-IDF Representation

http://jcsites.juniata.edu/faculty/rhodes/ida/textDocViz.html

Instead of a vector of Boolean values, the vector for each document is represented as the 
computed TF-IDF weights

The higher the value, 
a term may appear more often in 
a particular document or 
less often in all documents, 
and thus more relevant to the 
topic of the document. 



Similarity metrics based on vector 
space model

● Common similarity metrics to compare two vectors di=
(w1i,w2i ,......,wki  ), dj(w1j,w2j ,......,wkj ) : 

Cosine 
similarity 

Dice 
Coefficient

Jaccard 
coefficient



Item Representation
-More on vector space model

● Semantic meaning remains unknown
○ Polysemy 

mouse

■ The vector space model is unable to discriminate 
between different meanings of the same word

○ Synonymy 
car and vehicle

■  No associations between different words are 
made in the vector space model

 
Latent semantic indexing         http://recommender-systems.org/latent-semantic-indexing/



Simple Method: Nearest Neighbors

● Given a set of documents D already rated by the user 
(like/dislike)
For each not-yet-seen item i                                                      m-m1

compute similarity between i and items in D                 m1*d

Find the N nearest neighbors of i in D                               m1

Major voting to predict ratings of i                                     c

Time complexity: O(dm2)

In practice, most users can only rate a much small number of items 
compared to m, m1 approximates to an upper bound,  time complexity 
can approach O(dm)

● m: number of items
● m1: number of items in D
● d: dimension of vector space
● ratings= {like, dislike}



Probabilistic Methods

Simple approach:

○ 2 classes: 1/0
○ simple Boolean document representation
○ calculate probability that document is labeled 1/0 based on Bayes 

theorem

P(Label=1|X)= k*P(X|Label=1) * P(Label=1)

keywords



Probabilistic Methods

For each unlabeled item                                   m-m1

for each component                                     d

compute the prior probability            m1

Overall time complexity: O(dm2)
In practice: O(dm)

 

keywords



Other classification algorithms

● Decision tree
● Rule induction
● Support vector machines
● Neutral network
●  etc..



Relevance Feedback

● Take advantage of user relevance judgments in the 
retrieval process:
○ User issues a (short, simple) query and gets back an initial hit 

list
○ User marks hits as relevant or non-relevant
○ The system computes a better representation of the 

information need based on this feedback
○ Single or multiple iterations 

● Idea: you may not know what you’re looking for, but 
you’ll know when you see it



Picture of Relevance Feedback



Rocchio Algorithm

● Query and documents are represented by TF-IDF 
criteria.

● Updation in practice:

qm = modified query vector;
q0 = original query vector;
α,β,γ: weights (hand-chosen or set empirically);
Dr  = set of known relevant doc vectors;
Dnr = set of known irrelevant doc vectors

New query
Moves toward relevant documents, but away from irrelevant documents



Rocchio Algorithm: Number Example

query

 positive feedback

negative feedback



Rocchio Algorithm: Number Example

query

 positive feedback

negative feedback



Rocchio Algorithm: Number Example

                                                                                   
query

 positive feedback

negative feedback



Rocchio Algorithm: Number Example

negative feedback

query

 positive feedback

negative feedback

new query



Rocchio Algorithm

● Initial query can start with boolean vector

● Negative weights are usually ignored

● Rocchio based relevance feedback improves both recall and precision

● For reaching high recall, many iterations are needed

● Empirically determined values for the balancing weights:

● Positive feedback is usually more valuable than negative feedback:



Shortcomings of Relevance 
Feedback

● Relevance Feedback does not work when:
○ The users do not have sufficient initial knowledge

■ (misspelled query, ambiguous vocabulary, …)

○ There exist several prototypes of relevant 
documents
■ query has disjunctive answer sets (“the pop star that worked at 

KFC”)
■ query concerns an instance of a general concept (felines, cat)
■ documents are gathered into subsets each using a different 

vocabulary

● Practical problem: refining leads to longer queries that 
need more time to process



Relevance Feedback and the Web

Few web IR systems use relevance feedback
● hard to explain to users
● users are mainly interested in fast retrieval (i.e. no iterations)
● users usually are not interested in high recall

Nowadays: clickstream-based feedback (which links are
clicked on by users)

→ implicit feedback from the writer rather than feedback from the reader



Knowledge-Based
Recommendation

Suman Sourav



● Products with low number of available ratings

● Time span plays an important role
○  Five‐year‐old ratings for computers
○  User lifestyle or family situation changes

● Customers want to define their requirements explicitly 
○  “The color of the car should be black

Why do we need knowledge
based recommendation?



Knowledge based recommendation











Knowledge-based recommender 
systems

● Constraint-based
○ based on explicitly defined set of recommendation rules
○ fulfill recommendation rules

● Case-based
○ based on different types of similarity measures
○ retrieve items that are similar to specified requirements

● Both approaches are similar in their conversational 
recommendation process



Interacting with constraint-based 
recommenders
▪ Conjunctive Query : 

σ[criteria](P)
P: product assortment

example: σ[mpix≥10, price<300](P) = {p4, p7} 

▪ The user specifies his or her initial preference
– all at once or incrementally in a wizard-style

▪ The user is presented with a set of matching items
– with explanation as to why a certain item was recommended

▪ The user might revise his or her requirements
– see alternative solutions 
– narrow down the number of matching items



Constraint-based recommendation tasks

▪ Derive a set of recommendable items

▪ Find a set of user requirements such that a subset of 
items fulfills all constraints
– ask user which requirements should be relaxed/modified such 

that some items exist that do not violate any constraint

▪ Find a subset of items that satisfy the maximum set of 
weighted constraints

▪ Rank items according to weights of satisfied constraints
 
▪ Provide Defaults

– Static or Derived



Unsatisfied requirements

▪ "no solution could be found" 

▪ Constraint relaxation 
– the goal is to identify relaxations to the original set of 

constraints
– relax constraints of a recommendation problem until a 

corresponding solution has been found

▪ Users could also be interested in repair proposals 
– recommender can calculate a solution by adapting the 

proposed requirements



Constraint-based recommendation 
problem

▪ Select items from this catalog that match the user's requirements

▪ User's requirements can, for example, be
– "the price should be lower than 300 $" 
– "the camera should be suited for sports photography"

id price($) mpix opt-zoom LCD-size movies sound waterproof



Dealing with unsatisfied requirements  

Suppose,

REQ = {r1: price<=150, r2 : opt-zoom=5×, r3 : sound=yes,            
r4 : waterproof=yes}

σ[price<=150,opt-zoom=5x,sound=yes,waterproof=yes] (P) =∅

This requirement is not satisfiable on the given set of 
products.



Dealing with unsatisfied requirements  

Diagnosis  

    A minimal set of user requirements whose repair 
(adaptation) will allow the retrieval of a 
recommendation.

▪ P = {p1, p2,...,pn} 

▪ REQ={r1,r2,...,rm} 

▪ σ[REQ](P) = ∅

We have to find   Δ = {d1,d2,...,dk}

Such that σ[REQ−di](P)  ≠ ∅ ∀di ∈ Δ



Deal with unsatisfied requirements  

Conflict set CS 

A subset {r1,r2,...,rl}⊆REQ, such that σ[CS](P)=∅. 

A conflict set CS is minimal iff there does not exist aCS’ 
with CS’⊂CS.

The corresponding conflict sets are 

CS1={r1,r2},CS2={r2,r4} and CS3={r1,r3}



QuickXPlain

▪

σ ∅ ∅ ∅
∅ ∅

Δ
∅ σ ∅ ∅

← ←
Δ ← ∪
Δ ← ∪ Δ Δ

Δ ∪ Δ



Example of QuickXPlain

▪ REQ = {r1:price≤150, r2:opt-zoom=5x, r3:sound=yes, r4:
waterproof=yes}



Deal with unsatisfied requirements  

▪ Calculate  diagnoses for unsatisfied requirements 

▪ The diagnoses derived from the conflict sets {CS1,CS2,
CS3} are {d1:{r1, r2}, d2:{r1, r4},d3:{r2, r3}}



Repairs for unsatisfied requirements

▪ Identify possible adaptations

▪ Or query the product table P with π[attributes(d)]σ[REQ−d](P)
– π[attributes(d1)]σ[REQ−d1](P) = {price=278, opt-zoom=10×}
– π[attributes(d2)]σ[REQ−d2](P) = {price=182, waterproof=no}
– π[attributes(d3)]σ[REQ−d3](P) = {opt-zoom=4×, sound=no}

repair price(€) opt-zoom sound waterproof 

Rep1 278 10× √ √

Rep2 182 √ √ no

Rep3 √ 4× no √



Case-based Approach

Items are retrieved based on similarity.

Critiquing
User specify their change
 requests that are not
 satisfied by the 
recommended item.

e.g.,
➔ “lower price”
➔ “more pixel”



Case-based Approach

Items are retrieved based on similarity.

Critiquing
User specify their change
 requests that are not
 satisfied by the 
recommended item.

e.g.,
➔ “lower price”
➔ “more pixel”



Conclusion & Summary



Conclusion

● None of the models discussed are perfect or 
optimal.

● The choice of model normally depends the choice 
of the application.

● In practicality, for better performance combination 
of models are used rather than the pure form of 
any model.

● These systems are widely used in todays rapidly 
growing World Wide Web, and play a pivotal role in 
almost all major websites.



Summary

Collaborative Filtering
● “wisdom of the crowd”
● User-based or item-based CF
● Challenges in CF

○ Scalability -- clustering
○ Data Sparsity -- graph-based, matrix factorization

Content Based Recommendation

Knowledge Based Recommendation
● interactive conversational style
● based on explicit user choice only
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RecTree Algorithm

constructRecTree( parent, data, depth )

create a node and link it to parent

if size( data ) ≤ maxSize OR depth ≥ maxDepth:

computeCorrelationMatrix( data )

else

call K-Means( data, k = 2 )

for each child cluster from K-Means:

call constructRecTree( node, cData, depth + 1 )

Time complexity

O(n lg n/b) -- if maxDepth = lg n, and maxSize = b.


