
MIN-CUT ALGORITHMS
Hakki Can Karaimer

HU Sixing

Pan An

Philipp Keck

Taehoon Kim

AGENDA

Introduction to Minimum Cuts

Karger’s Algorithm

Improvement by Karger and Stein

Parallelized Version

Applications

2

INTRODUCTION Hakki Can Karaimer

3

GRAPHS REFRESHER

Two ingredients

Vertices (singular vertex) a.k.a. nodes. (V)

 Edges (E) = pairs of vertices

 Can be undirected (unordered pair)

or directed (ordered pair) (a.k.a arcs)

𝐺 = 𝑉, 𝐸 , 𝑛 = 𝑉 , 𝑚 = |𝐸|

4

CUT PROBLEM

Definition: a cut of a graph (𝑉, 𝐸) is a partition of 𝑉 into non-
empty sets 𝐴 and 𝐵.

Definition: the crossing edges of a cut (𝐴, 𝐵) are those with:
 One endpoint in each of (𝐴, 𝐵) (undirected)

 Tail in 𝐴, head in 𝐵 (directed)

 If the graph has 𝑛 vertices
 There are 2𝑛 − 2 possible cuts.

5

Undirected Directed A B A BA B A B

MINIMUM CUT PROBLEM

Definition: the minimum cut of an undirected graph
𝐺 = (𝑉, 𝐸) is a partition of the nodes into two groups 𝐴
and 𝐵 (that is, 𝑉 = 𝐴 ∪ 𝐵 and, 𝐴 ∩ 𝐵 = ∅), so that the
number of edges between 𝐴 and 𝐵 is minimized.

Input: an undirected graph 𝐺 = (𝑉, 𝐸)
 Parallel (multiple) edges are allowed

Goal: compute a cut with fewest number of crossing
edges (a min-cut).

6

MINIMUM CUT PROBLEM

7

A B

RANDOM CONTRACTION ALGORITHM

David Karger, early 90’s

While there are more than 2 vertices:

 Pick a remaining edge (𝑢, 𝑣) uniformly at random

Merge (or “contract”) 𝑢 and 𝑣 into a single vertex

 Remove self-loops

Return cut represented by final 2 vertices

8

EXAMPLE

9

While there are more than 2 vertices:

Pick a remaining edge (u,v) uniformly at random

Merge (or “contract”) u and v into a single vertex

Remove self loops

ANALYSIS OF
KARGER‘S ALGORITHM

HU Sixing

10

ANALYSIS OF KARGER’S ALGORITHM

What is the probability of success

Karger’s Algorithm succeeds with probability 𝑝 ≥
2

𝑛2

The time complexity of Karger’s algorithm is 𝑂(𝑛2)

11

ANALYSIS OF KARGER’S ALGORITHM

Fact 1 (Handshaking Lemma).

𝑢∈𝑉

𝑑𝑒𝑔𝑟𝑒𝑒 𝑢 = 2𝑚

𝑑𝑒𝑔𝑟𝑒𝑒 𝑢 : the degree of a vertex (𝑢) of a graph is the
number of edges incident to the vertex.

Proof:

 Each edge contributes two to the total degree. All edges together
contribute 2𝑚 to the graph’s degree.

12

ANALYSIS OF KARGER’S ALGORITHM

Fact 2. The average degree of a node is
2𝑚

𝑛

Proof:

𝔼 𝑑𝑒𝑔𝑟𝑒𝑒 𝑋 = 𝑢∈𝑉 𝑃𝑟 𝑋 = 𝑢 𝑑𝑒𝑔𝑟𝑒𝑒(𝑢)

= 𝑢∈𝑉
1

𝑛
𝑑𝑒𝑔𝑟𝑒𝑒(𝑢)

=
1

𝑛
 𝑢∈𝑉 𝑑𝑒𝑔𝑟𝑒𝑒 𝑢

=
2𝑚

𝑛

𝔼 is the mathematical expectation

𝑋 is a random variable representing a vertex of the graph, 𝑢 is
the specific vertex

Randomly pick

Fact 1: 𝑢∈𝑉 𝑑𝑒𝑔𝑟𝑒𝑒 𝑢 = 2𝑚

13

ANALYSIS OF KARGER’S ALGORITHM

Fact 3. The size of the minimum cut is at most
2𝑚

𝑛

 Proof:

 Let 𝑓 denote the size of minimum cut

𝑓 ≤ 𝑑𝑒𝑔𝑟𝑒𝑒 𝑢 , ∀𝑢 ∈ 𝑉

𝑛𝑓 ≤ 𝑢∈𝑉 𝑑𝑒𝑔𝑟𝑒𝑒(𝑢)

𝑓 ≤
 𝑢∈𝑉 𝑑𝑒𝑔𝑟𝑒𝑒(𝑢)

𝑛
=

2𝑚

𝑛

14

ANALYSIS OF KARGER’S ALGORITHM

Fact 4. If an edge is picked at random, the probability

that it lies across the minimum cut is at most
2

𝑛

Proof:

 Let the probability that an edge lies across the minimum cut be 𝑝

𝑝 =
𝑠𝑖𝑧𝑒 𝑜𝑓 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑐𝑢𝑡

𝑡𝑜𝑡𝑎𝑙 number 𝑜𝑓 𝑒𝑑𝑔𝑒𝑠

≤
2𝑚

𝑛

𝑚

=
2

𝑛

Fact 3: The size of the minimum cut is at most
2𝑚

𝑛

15

ANALYSIS OF KARGER’S ALGORITHM

Karger’s Algorithm succeeds with probability 𝑝 ≥
2

𝑛2

 Fact 4. If an edge is picked at random, the probability that it lies across the

minimum cut is at most
2

𝑛

Proof:
 Karger’s algorithm returns the right answer as long as it never picks an edge across

the minimum cut.

 Pr 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 ≥ 𝑃𝑟 𝑓𝑖𝑛𝑑𝑖𝑛𝑔 𝑡ℎ𝑒 𝑚𝑖𝑛𝑐𝑢𝑡
= 𝑃𝑟 𝑓𝑖𝑟𝑠𝑡 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑒𝑑𝑔𝑒 𝑖𝑠 𝑛𝑜𝑡 𝑖𝑛 𝑚𝑖𝑛𝑐𝑢𝑡 ×

𝑃𝑟 𝑠𝑒𝑐𝑜𝑛𝑑 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑒𝑑𝑔𝑒 𝑖𝑠 𝑛𝑜𝑡 𝑖𝑛 𝑚𝑖𝑛𝑐𝑢𝑡 × ⋯
𝑃𝑟 𝑙𝑎𝑠𝑡 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑒𝑑𝑔𝑒 𝑖𝑠 𝑛𝑜𝑡 𝑖𝑛 𝑚𝑖𝑛𝑐𝑢𝑡

≥ 1 −
2

𝑛
1 −

2

𝑛−1
… 1 −

2

3
=

2

𝑛(𝑛−1)

𝑛
2

−1

k-combination of a set S

which has n elements
𝑛
𝑘

=
𝑛 𝑛 − 1 … (𝑛 − 𝑘 + 1)

𝑘 𝑘 − 1 …1

16

ANALYSIS OF KARGER’S ALGORITHM

 If we run the algorithm 𝑙
𝑛
2

(𝑙 is a constant) times, and let 𝑝 denote the

probability that at least succeed once, then we get

 𝑝 = 1 − Pr(fail in all 𝑙
𝑛
2

runs)

≥ 1 − 1 −
𝑛
2

−1 𝑙
𝑛
2

= 1 − 𝑒−𝑙

 Let 𝑙 = 𝑐 ln 𝑛(𝑐 is a constant), then 𝑝 ≥ 1 −
1

𝑛𝑐

 If we run the algorithm 𝑐 ln 𝑛
𝑛
2

times ,the probability of finding the minimum cut

is larger than 1 −
1

𝑛𝑐; or the error probability is less than
1

𝑛𝑐

17

ANALYSIS OF KARGER’S ALGORITHM

The time complexity of Karger’s algorithm is 𝑂(𝑛2)
 Every iteration two vertices are merged to one, need (n-2) times -- 𝑂(𝑛)

 In each iteration, select an edge (𝑢, 𝑣) randomly

 [We maintain a vector 𝐷(𝑢) of degree of each node 𝑢, 𝑑𝑒𝑔𝑟𝑒𝑒 𝑢 , a matrix
𝑊(𝑢, 𝑣) of weight of edge (𝑢, 𝑣)]

 Choose endpoint 𝑢 with probability proportional to 𝐷(𝑢) -- 𝑂(𝑛)

 Then choose another endpoint 𝑣 with probability proportional to 𝑊(𝑢, 𝑣) -- 𝑂 𝑛

 Contract 𝑢 and 𝑣

The time complexity after boosting is 𝑂(𝑛4 log 𝑛)

18

While there are more than 2 vertices:
 Pick a remaining edge (𝑢, 𝑣) uniformly at random
 Merge 𝑢 and 𝑣 into a single vertex
 Remove self loops

Return cut represented by final 2 vertices

ANALYSIS OF KARGER’S ALGORITHM

Contract 𝑢 and 𝑣 -- 𝑂 𝑛
 Update vector 𝐷

 𝐷 𝑢 ≔ 𝐷 𝑢 + 𝐷 𝑣 − 2𝑊(𝑢, 𝑣)

 𝐷 𝑣 ≔ 0

 Update matrix W

 𝑊 𝑢, 𝑣 ,𝑊 𝑣, 𝑢 ≔ 0

 For each vertex 𝑤 except 𝑢, 𝑣

 𝑊 𝑢,𝑤 ≔ 𝑊 𝑢,𝑤 + 𝑊 𝑣,𝑤

 𝑊 𝑤, 𝑢 ≔ 𝑊 𝑤, 𝑢 + 𝑊 𝑤, 𝑣

 𝑊 𝑤, 𝑣 ,𝑊 𝑣,𝑤 ≔ 0

19

While there are more than 2 vertices:
 Pick a remaining edge (𝑢, 𝑣) uniformly at random
 Merge 𝑢 and 𝑣 into a single vertex
 Remove self loops

Return cut represented by final 2 vertices

ANALYSIS OF KARGER’S ALGORITHM

The time complexity of Karger’s algorithm is 𝑂(𝑛2)
 Every iteration two vertices are merged to one, need (n-2) times -- 𝑂(𝑛)

 In each iteration, select an edge (𝑢, 𝑣) randomly

 [We maintain a vector 𝐷(𝑢) of degree of each node 𝑢, 𝑑𝑒𝑔𝑟𝑒𝑒 𝑢 , a matrix
𝑊(𝑢, 𝑣) of weight of edge (𝑢, 𝑣)]

 Choose endpoint 𝑢 with probability proportional to 𝐷(𝑢) -- 𝑂(𝑛)

 Then choose another endpoint 𝑣 with probability proportional to 𝑊(𝑢, 𝑣) -- 𝑂 𝑛

 Contract 𝑢 and 𝑣 -- 𝑂 𝑛

The time complexity after boosting is 𝑂(𝑛4 log 𝑛)

20

While there are more than 2 vertices:
 Pick a remaining edge (𝑢, 𝑣) uniformly at random
 Merge 𝑢 and 𝑣 into a single vertex
 Remove self loops

Return cut represented by final 2 vertices

IMPROVED VERSION BY
KARGER AND STEIN

Philipp Keck

21

SUCCESS DURING RUNTIME

 1 −
2

𝑛
1 −

2

𝑛−1
1 −

2

𝑛−2
⋯ 1 −

2

4
1 −

2

3

Good in the beginning, worse towards the end

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0102030405060708090100

S
u
cc

e
ss

 p
ro

b
a
b
ili

ty

Remaining nodes

22

IMPROVING THE RUNTIME

 1 −
2

𝑛
1 −

2

𝑛−1
1 −

2

𝑛−2
⋯ 1 −

2

4
1 −

2

3

Good in the beginning, worse towards the end

Improving by repeating takes a long time

Idea: Use recursion to share partial results among repeats

 Share the better parts

 Retry more on the worse parts to improve those

Good cut-off: k =
𝑛

2
+ 1 ≈ 70% ⋅ 𝑛

𝑘 = remaining nodes, i.e., 30% contracted already

23

IMPROVED ALGORITHM

Recursive−Contract(Graph 𝐺 of size 𝑛)

 if 𝑛 > 6 then

 𝑘 ←
𝑛

2
+ 1

 𝐺1 ← Contract 𝐺 down to 𝑘 nodes

 𝐺2 ← Contract 𝐺 down to 𝑘 nodes

 𝐶𝑢𝑡1 ← Recursive−Contract(𝐺1)

 𝐶𝑢𝑡2 ← Recursive−Contract(𝐺2)

 return min(𝐶𝑢𝑡1, 𝐶𝑢𝑡2)

else

 return Some−Algorithm(𝐺)

24

SHARING RESULTS BY RECURSION

𝑛 = 11 ⇒ 𝑘 = 9 ⇒ Contract two edges

25

SHARING RESULTS BY RECURSION

n=11

k=9

n=9

k=8

n=15

k=11

26

IMPROVED ALGORITHM

Recursive−Contract(Graph 𝐺 of size 𝑛)

 if 𝑛 > 6 then

 𝑘 ←
𝑛

2
+ 1

 𝐺1 ← Contract 𝐺 down to 𝑘 nodes

 𝐺2 ← Contract 𝐺 down to 𝑘 nodes

 𝐶𝑢𝑡1 ← Recursive−Contract(𝐺1)

 𝐶𝑢𝑡2 ← Recursive−Contract(𝐺2)

 return min(𝐶𝑢𝑡1, 𝐶𝑢𝑡2)

else

 return Some−Algorithm(𝐺)

27

IMPROVED ALGORITHM – RUNTIME

𝑂(1)

𝑂(1)

𝑇 𝑘

𝑇(𝑛)

𝑇 𝑘

𝑂(𝑛2)

𝑂(𝑛2)

𝑂(1)

𝑇 𝑛 = 𝑂 𝑛2 + 2 ⋅ 𝑇
𝑛

2
= 𝑂 𝑛2 log 𝑛 Master-Theorem: log 2 2 = 2

Recursive−Contract(Graph 𝐺 of size 𝑛)

 if 𝑛 > 6 then

 𝑘 ←
𝑛

2
+ 1

 𝐺1 ← Contract 𝐺 down to 𝑘 nodes

 𝐺2 ← Contract 𝐺 down to 𝑘 nodes

 𝐶𝑢𝑡1 ← Recursive−Contract(𝐺1)

 𝐶𝑢𝑡2 ← Recursive−Contract(𝐺2)

 return min(𝐶𝑢𝑡1, 𝐶𝑢𝑡2)

else

 return Some−Algorithm(𝐺)

28

SUCCESS PROBABILITY DOWN TO 𝑘

Stopping at 𝑘 < 𝑛 remaining nodes preserves fixed min-

cut with probability

1 −
2

𝑛
1 −

2

𝑛 − 1
1 −

2

𝑛 − 2
⋯ 1 −

2

𝑘 + 1

=
1 −

2
𝑛

⋯ 1 −
2
3

1 −
2
𝑘

⋯ 1 −
2
3

=

𝑛
2

−1

𝑘
2

−1 =

𝑘
2
𝑛
2

=
𝑘 𝑘 − 1 ⋅ 2

𝑛 𝑛 − 1 ⋅ 2
=

𝑘 𝑘 − 1

𝑛 𝑛 − 1

29

SUCCESS PROBABILITY DOWN TO 𝑘

Plugging in 𝑘 =
𝑛

2
+ 1

⋯ =
𝑘 𝑘 − 1

𝑛 𝑛 − 1
=

𝑛

2
+ 1

𝑛

2
+ 1 − 1

𝑛 𝑛 − 1

=

𝑛2

2
+

𝑛

2
𝑛2 − 𝑛

≥!
1

2

⇔
𝑛2

2
+

𝑛

2
≥!

1

2
𝑛2 − 𝑛

⇔ 𝑛2 + 2𝑛 ≥! 𝑛2 − 𝑛

⇔ 2 ≥! −1

30

SUCCESS PROBABILITY RECURSION

Success probability of a single run (including all

recursion):

𝑃 𝑛 ≥ 1 − 1 −
1

2
⋅ 𝑃

𝑛

2
+ 1

2

⇒ (… lots of math…)

⇒ 𝑃 𝑛 = Ω
1

log 𝑛

31

HERE IS THAT MATH

 𝑃 𝑛 ≥ 1 − 1 −
1

2
⋅ 𝑃

𝑛

2
+ 1

2

 𝑝0 =
2

6(6−1)
=

1

15
; 𝑝𝑖+1 ≥ 1 − 1 −

1

2
𝑝𝑖

2

 𝑧𝑖 ≔
4

𝑝𝑖
− 1 ⇔ 𝑝𝑖 =

4

𝑧𝑖+1

 𝑧0 = 59

 𝑧𝑖+1 =
4

𝑝𝑖+1
− 1 ≤

4

1− 1−
1

2
𝑝𝑖

2 − 1 =
4

1− 1−
2

𝑧𝑖+1

2 − 1 =
4

1− 1−
4

𝑧𝑖+1
+

4

𝑧𝑖+1
2

−

1 =
1

1

𝑧𝑖+1
−

1

𝑧𝑖+1
2

− 1 =
1

𝑧𝑖+1−1

𝑧𝑖+1
2

− 1 =
𝑧𝑖
2+2𝑧𝑖+1

𝑧𝑖
− 1 = 𝑧𝑖 + 1 +

1

𝑧𝑖

 ⇒ 𝑖 < 𝑧𝑖 ≤ 59 + 2𝑖 ⇒ 𝑧𝑖 = Θ 𝑖 ⇒ 𝑝𝑖 = Θ
1

𝑖

 Recursion depth i = 𝑂 log 𝑛 ⇒ 𝑆𝑢𝑐𝑐𝑒𝑠𝑠 = Θ
1

log 𝑛

32

SUCCESS PROBABILITY REPETITION

One run succeeds with Ω
1

log 𝑛
probability.

We run log2 𝑛 times.

Pr(At least one run succeeds)

= 1 − 1 −
1

log 𝑛

log2 𝑛

= 1 − 1 +
1

−log 𝑛

(− log 𝑛)⋅(− log 𝑛)

= 1 − 𝑒− log 𝑛 = 1 −
1

𝑛
⇒ Error probability in O

1

𝑛

33

COMPARISON

Algorithm Runtime Success Implementation

Brute Force 𝑂(2𝑛 ⋅ 𝑚) 1 easy

Max-flow based 𝑂(𝑛𝑚) 1 hard

Karger’s 𝑂 𝑛4 log 𝑛 = 𝑂(𝑛4) 1 − 𝑂(1/𝑛𝑐) easy

Karger+Stein 𝑂(𝑛2 log3 𝑛) = 𝑂(𝑛2) 1 − 𝑂(1/𝑛) still easy

34

K+S is Monte Carlo (might return sub-optimal)

Usual conversion to Las Vegas (might take longer) by
checking and repeating is not possible

PARALLELIZATION Pan An

36

PARALLELISM - COMPACT

 Definitions:

 𝐿: an ordered sequence of all edges 𝑙1, 𝑙2, … , 𝑙𝑛;

V: set that contains all vertices;

 𝐿′ : prefix of L;

𝐻(𝑉, 𝐿′): graph composed by edge set 𝐿′ and vertex set V;

 𝐿𝛼: prefix of L, 𝑙1, 𝑙2, … , 𝑙𝛼 where 𝛼 ≤ 𝑛;

𝑓𝑐(𝐺): number of connected components in G;

 𝐿1/𝐿2: edges in 𝐿1 after contraction of all edges in 𝐿2

Compact is a method to find a prefix 𝐿𝛼 = 𝑙1, 𝑙2, … , 𝑙𝛼 where:

𝑓𝑐 𝐻 𝑉, 𝐿𝛼 = 𝑘 and 𝑓𝑐 𝐻 𝑉, 𝐿𝛼−1 < 𝑘

37

a

b

c

d

e

f

g

h

i

j

f e jd i c ah g b

CONTRACT = FINDING PREFIX

f e jd i c ah g b

CONTRACT = FINDING PREFIX

f e jd i c ah g b

f

CONTRACT = FINDING PREFIX

f e jd i c ah g b

f

e

CONTRACT = FINDING PREFIX

f e jd i c ah g b

f

e

d

CONTRACT = FINDING PREFIX

f e jd i c ah g b

f

e

d j

CONTRACT = FINDING PREFIX

f e jd i c ah g b

f

e

d j

i

CONTRACT = FINDING PREFIX

f e jd i c ah g b

f

e

d j

ic

CONTRACT = FINDING PREFIX

PARALLELISM – COMPACT

 Definitions:

 𝐿: an ordered sequence of all edges 𝑙1, 𝑙2, … , 𝑙𝑛;

V: set that contains all vertices;

 𝐿′ : prefix of L;

𝐻(𝑉, 𝐿′): graph composed by edge set 𝐿′ and vertex set V;

 𝐿𝛼: prefix of L, 𝑙1, 𝑙2, … , 𝑙𝛼 where 𝛼 ≤ 𝑛;

𝑓𝑐(𝐺): number of connected components in G;

 𝐿1/𝐿2: edges in 𝐿1 after contraction of all edges in 𝐿2

Compact is a method to find a prefix 𝐿𝛼 = 𝑙1, 𝑙2, … , 𝑙𝛼 where:

𝑓𝑐 𝐻 𝑉, 𝐿𝛼 = 𝑘 and 𝑓𝑐 𝐻 𝑉, 𝐿𝛼−1 < 𝑘

46

COMPACT – OVERVIEW

Using binary search, the correct prefix can be determined
using 𝑂 log𝑚 connected component computations,
where m is the number of edges;

Each connected component computation requires
𝑂 𝑚 + 𝑛 time;

Only 1 processor used so far.

Running time of this algorithm is 𝑂 𝑚 log𝑚 ;

This can be further reduced to 𝑂 𝑚 by reusing
information between iterations.

47

COMPACT – ALGORITHM

48

a

b

c

d

e

f

g

h

i

j

f e jd i c ah g b

COMPACT – EXAMPLE

f e jd i c ah g b

COMPACT – EXAMPLE

f e jd i c ah g b

f

e

d j

i

COMPACT – EXAMPLE

f e jd i c ah g b

f

e

d j

i

COMPACT – EXAMPLE

f e jd i c ah g b

f

e

d j

i

COMPACT – EXAMPLE

f e jd i c ah g b

COMPACT – EXAMPLE

f e jd i c ah g b

a

c

COMPACT – EXAMPLE

f e jd i c ah g b

c

COMPACT – EXAMPLE

f e jd i c ah g b

Minimum Cut

COMPACT – EXAMPLE

COMPACT – SEQUENTIAL

 E1. Creation of random sequence L 𝑂(𝑚)

 E2. Binary search O(log𝑚) rounds

 E3. Connected components 𝑂(𝑚)

 E4. Contraction 𝑂(𝑚)

Time complexity is 𝑂 log𝑚 × 𝑂 𝑚 = 𝑂(𝑚 log𝑚)

58

COMPACT – PARALLELIZING THE PERMUTATION

Permutation generation time should be O 1 ;

If G is unweighted, uniform sampling can be used for
random number generation;

For a weighted graph we need to achieve the following
distribution on 𝐼𝑟 = [0, r]:

Pr 𝑋 > 𝑡 = 1 −
𝑡

𝑟

𝑤𝑟

As when r becomes insanely big: Pr 𝑋 > 𝑡 = 𝑒−𝑤𝑡.

This must be achieved at 𝑂(1) time!

59

COMPACT – PARALLELIZING THE PERMUTATION

Definitions:

𝑈 : random variable uniformly distributed on [0, 1];

𝑈′: approximated variable of U;

𝑅𝑂 1 : random number generated with constant time(and bits);

We need to generate X:

Pr X > t = e−wt
 X = −(lnU)/w

Obstacles:

1. Uniform distribution on [0, 1] is not possible in real machine;

2. Computing ln U might take time;

60

COMPACT – RANDOM NUMBER GENERATION

Method – Exponentially Distributed Random Variable:

A1. Choose an integer 𝑀 = 𝑅𝑂 1

A2. Select an integer N from [1, M] using 𝑂(log𝑅) random bits

A3. 𝑈′ =
𝑁

𝑀
, ; 𝑈′ is then the approximation of 𝑈

A4. Compute X = −
ln U′

w
where we use the first 𝑂(log 𝑅) terms of

the Taylor expansion of ln U′;

61

𝑅𝑂 1 : random

number generated

with constant time

(and bits)

COMPACT – RANDOM NUMBER GENERATION

If we let 𝑥 = 𝑈′ − 1:

62

COMPACT – PARALLELIZATION

Parallel:

Generation of random sequence L 𝑂(1)

Assigning each node a processor. Each processor assigns a random
number to its edge at the beginning of each round.

Do binary search with parallelism:

 The algorithm chooses a value 𝑡

 a processor returns its edge for next contraction if X > t.

Step E3., E4. can also be parallelized. For E3, a paper has been
posted to the IVLE forum, showing connected component detection in
𝑂(log 𝑛) time.

63

COMPACT – PARALLELIZATION

 E1. Creation of random sequence L 𝑂(1)

 E2. Binary search O(log𝑚) rounds

 E3. Connected components 𝑂(log 𝑛)

 E4. Contraction 𝑂(1)

Time complexity is

𝑂 log𝑚 ⋅ 𝑂 1 + 𝑂 log 𝑛 = 𝑂(log2 𝑛)

using 𝑚 = 𝑂 𝑛2 processors

64

E1. is the only step that is

explained in detail in the

original paper.

COMPACT – THEOREMS

RNC (Randomized Nick’s Class): Solvable in 𝑂(log𝑐 𝑛)
time with 𝑂(𝑛𝑑) processors (for some 𝑐, 𝑑).

Compact method is RNC because it takes 𝑂 log2 𝑛 time
using 𝑚 = 𝑂(𝑛2) processors.

Minimum cut problem is RNC because the recursion tree
(logarithmic depth) can be processed breadth-first and
because the 𝑂(log2 𝑛) retries can be run at the same
time in parallel.

Similarly, algorithms can be found to solve the minimum k-
cut problem in RNC.

65

APPLICATIONS Taehoon Kim

66

APPLICATIONS

Splitting large graphs

Community detection

Weakness on a network

Detecting weak ties

67

APPLICATIONS – SPLITTING LARGE GRAPHS

Real world graphs are large

 Sometimes they are too large to compute

Objective:

 Less computation

 Better understanding of the data

 Even after the graph is divided, the graph still maintains its structural
characteristics

Use min-cut to divide one large graph into several smaller
graphs

68

APPLICATIONS – COMMUNITY DETECTION

Community on social media:

 Formed by individuals

 Individuals within the same community interact more frequently

Community detection:

Discovering groups in a social network

Min-cut on community detection:

 Find a graph partition such that the number of edges between the
two sets is minimized

69

APPLICATIONS – COMMUNITY DETECTION

Edges: Interaction counts
 Location
 user communications in Twitter exhibit strong geographic locality
(Zhang et al. CNS, IEEE 2015)

Closeness

Applications:
 Localized Marketing

 Friend recommendation

 Place recommendation

 Privacy risks

70

APPLICATIONS – COMMUNITY DETECTION

Edges: common interests

Applications:

Collaborative filtering based recommendation system

 Friend recommendation

71

A B C

coffee tea vodka

d e

APPLICATIONS – COMMUNITY DETECTION

Edges: common interests

Applications:

Collaborative filtering based recommendation system

 Friend recommendation

72

A B

C

d e

APPLICATIONS – WEAKNESS ON NETWORK

Find vulnerable connections on a network

Weak edges

Example:

Vulnerability on Sensor Network

 Each node has limited range

 Finding sink node

73

A B

C d e

f g
Weak edge

Weak edge

APPLICATIONS – WEAK TIES

Weak ties in social media

 (Granovetter 1973)

Analyzing weak ties

74

A B

C d e

f g

Community A Community B

CONCLUSION

The min-cut problem has many variations (directed, undirected,
weighted, multiway cut) and many applications.

Min-cut can be solved using max-flow based techniques.

Karger introduced an algorithm that solves it directly.

 Because only few edges cross the min-cut, they are unlikely to be
contracted.

Karger and Stein improved this algorithm to become

 faster than max-flow based algorithms (but only on dense graphs) and

 parallelizable.

The algorithm is easier to implement, but it is also a Monte
Carlo algorithm.

75

CONCLUSION

76

Algorithm Runtime Success Implementation

Brute Force 𝑂(2𝑛 ⋅ 𝑚) 1 easy

Max-flow based 𝑂(𝑛𝑚) 1 hard

Karger’s 𝑂 𝑛4 log 𝑛 = 𝑂(𝑛4) 1 − 𝑂(1/𝑛𝑐) easy

Karger+Stein 𝑂(𝑛2 log3 𝑛) = 𝑂(𝑛2) 1 − 𝑂(1/𝑛) still easy

 The minimum cut problem can be solved in RNC using
𝑛2processors.

REFERENCES

1. Karger, David R. "Global Min-cuts in RNC, and Other Ramifications of a
Simple Min-Cut Algorithm." SODA. Vol. 93. 1993.

2. Karger, David R., and Clifford Stein. "A new approach to the minimum cut
problem." Journal of the ACM (JACM) 43.4 (1996): 601-640.

3. Arora, Sanjeev. “Lecture 2: Karger’s Min Cut Alogirhtm”. Princeton University
F’13 COS 521: Advanced Algorith Design.
https://www.cs.princeton.edu/courses/archive/fall13/cos521/lecnotes/lec2fi
nal.pdf

4. Roughgarden, Tim. “Algorithms: Design and Analysis, Part 1”. Coursera
Lecture.
https://www.coursera.org/course/algo

5. Zhang, Jinxue, et al. "Your actions tell where you are: Uncovering Twitter users
in a metropolitan area." Communications and Network Security (CNS), 2015
IEEE Conference on. IEEE, 2015.

6. Granovetter, Mark S. "The strength of weak ties." American journal of
sociology (1973): 1360-1380.

77

https://www.cs.princeton.edu/courses/archive/fall13/cos521/lecnotes/lec2final.pdf
https://www.coursera.org/course/algo

