
Notes for Luby Algorithm: Parallel Maximal

Independent Sets

Abdelhak Bentaleb
A0135562H

January 28, 2016

1 The Algorithm

Problem : Given a graph find a maximal independent set.

1. I = ∅, G’= G.

2. While (G’ is not the empty graph) do IN PARALLEL

(a) Choose a random set of vertices S ∈ G’ by selecting each vertex v
independently with probability 1/2d(v).

(b) For every edge (u, v) ∈ E(G’) if both endpoints are in S then remove
the vertex of lower degree from S (Break ties arbitrarily). Denote
this new set S’.

(c) I = I ∪ S’. G’ = G’ (S’ ∪ N(S’)), i.e., G’ is the induced subgraph on
V’ (S’ ∪ N(S’)) where V’ is the previous vertex set.

3. output the independent set I

Correctness : We see that at each stage the set S’ that is added is an in-
dependent set. Moreover since we remove, at each stage, S’ ∪ N(S’) the set I
remains an independent set. Also note that all the vertices removed from G’ at
a particular stage are either vertices in I or neighbors of some vertex in I. So
the algorithm always outputs a maximal independent set.

• A single round can be done in constant time using O(|V |2) processors

• The expected value of the number of rounds is in O(log n). With n =
|E|

2 Expected Running Time (Number of rounds)

In this section we prove that the algorithm take O(log n) time. LetGj = (Vj , Ej)
denote the graph after stage j

Main Lemma: For some k < 1,

E(|Ej | | Ej−1) < k|Ej−1|.

1

Hence, in expectation, only O(log n) rounds will be required, where n = |E0|.
We say vertex v is bad if more than 2/3 of the neighbors of v are of higher
degree than v. We say an edge is bad if both of its endpoints are bad, otherwise
the edge is good.

The key claims are that at least half the edges are good, and each good edge is
deleted with a constant probability. The main lemma then follows immediately.

Lemma 1 : At least half the edges are good.

Proof : Denote the set of bad edges by EB . We will define f : EB →
(
E
2

)
so that for all e1 6= e1 ∈ EB , f(e1) ∩ f(e2) = ∅. This proves |EB | ≤ |E|/2, and
we are done.

The function f is defined as follows. For each (u, v) ∈ E, direct it to the higher
degree vertex. Break ties as in the algorithm. Now, suppose (u, v) ∈ EB , and
is directed towards v. Since v is bad, it has at least twice as many edges out as
in. Hence we can pair two edges out of v with every edge into v.

Lemma 2: If v is good then Pr(N(v) ∩ S 6= ∅) ≥ 2α, where α = 1/2 ×
(1− e−1/6).

Proof: Define L(v) := {w ∈ N(v)|d(w) ≤ d(v) } .

By definition, |L(v)| ≥ d(v)/3 if v is a good vertex.

Note, the above lemma is using full independence in its proof. And Pr: Proba-
bility.

Lemma 3: Pr (w ∈ S’ | w ∈ S) ≤ 1/2.

Proof : Let H(w) = N(w) \ L(w) = {z ∈N(w) : d(z) > d(w)}.

2

Lemma 4: If v is good then Pr(v ∈ N(S’)) ≥ α

Proof: Let VG denote the good vertices. We have

Corollary 4: If v is good then the probability that v gets deleted is at least α.

Corollary 5: If an edge e is good then the probability that it gets deleted
is at least α.

Proof: Pr (e = (u, v) ∈ Ej−1 \ Ej) ≥ Pr (v gets deleted).

We now return the main lemma :

Main Lemma :

E(|Ej | | Ej−1) < k|Ej−1|(1− α/2).

Proof:

3

The constant α is approximately 0.076.

Thus,

E(|Ej |) ≤ |E0|(1− α/2)j ≤ n exp(−jα/2) < 1

for j ¿ 2/α log n. Therefore, the expected number of rounds required is ≤ 4n =
O(log n).

Theorem:

The expected number of rounds in Luby algorithm for finding maximal
independent set is in O(log n).

References

[1] Motwani, Rajeev, and Prabhakar Raghavan. Randomized algorithms. Chap-
man and Hall/CRC, 2010.

[2] Maximal independent set
https://en.wikipedia.org/wiki/Maximal independent set .

[3] Blelloch, Guy E., Jeremy T. Fineman, and Julian Shun. ”Greedy sequential
maximal independent set and matching are parallel on average.” Proceedings
of the twenty-fourth annual ACM symposium on Parallelism in algorithms
and architectures. ACM, 2012.

[4] Luby, M. (1986). ”A Simple Parallel Algorithm for the Maximal Independent
Set Problem”. SIAM Journal on Computing 15 (4): 1036.

[5] Luby’s Algorithm, in: Lecture Notes for Randomized Algorithms, Last Up-
dated by Eric Vigoda on February 2, 2006

4

