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Boolean Satisfiability Problem

m Is the problem of determining if there exists an interpretation that
satisfies a given Boolean formula.
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Random Search on 3SAT = Boolean Satisfiability Problem - By Sapumal

Boolean Satisfiability Problem

m Is the problem of determining if there exists an interpretation that
satisfies a given Boolean formula.

m It asks whether the variables of a given Boolean formula can be
consistently replaced by the values TRUE or FALSE in such a way

that the formula evaluates to TRUE.

m If this is the case, the formula is called satisfiable.
m On the other hand, if no such assignment exists for all possible variable
assignments and the formula is unsatisfiable.

m Referred to as SATISFIABILITY or SAT
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Boolean Satisfiability Problem

m SAT formula usually take input in Conjunctive Normal Form (CNF):
"an AND of ORs of literals”.
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Boolean Satisfiability Problem

m SAT formula usually take input in Conjunctive Normal Form (CNF):
"an AND of ORs of literals”.

m Variable - a propositional variable: xi, x2, x3
m Literal - an variable or its negation: xj, —x1, X2, =x2
m Clause - A disjunction of some literals: (x1 V x2 V x3)
m CNF formula - A conjunction of some clauses:

(X1 V xo V X3) A (—\Xl V —xo V —‘X3) A (—|X1 \ X2)
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Boolean Satisfiability Problem

m Simple example,

B (x1 Vo) A(mxi Vxg) A (s V xg) A(—xa V —ixg)
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Boolean Satisfiability Problem

m Simple example,

B (x1 Vo) A(mxi Vxg) A (s V xg) A(—xa V —ixg)
B X] = X3 = TRUE and X2, X4 = FALSE
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Applications

m Combinational equivalence checking (CEC)

m 2 combinational circuits, each with n inputs and m outputs.
m Are the outputs same for all input values?
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Applications

m Combinational equivalence checking (CEC)

m 2 combinational circuits, each with n inputs and m outputs.
m Are the outputs same for all input values?
m Automatic test pattern generation (ATPG)

m Fabricated integrated circuits may be subject to defects, which may
cause circuit failure

m Computing input assignments that allow demonstrating the existence
or absence of each target fault

m Model checking

m Applications in Bioinformatics

Ref: Marques-Silva, Joao. "Practical applications of boolean
satisfiability.” Discrete Event Systems, 2008. WODES 2008. 9th
International Workshop on. IEEE, 2008.
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Random Search on 3SAT = Boolean Satisfiability Problem - By Sapumal

m Collection C = (y, ..., Cp, of clauses n Boolean variables such that
|G| <2for1<i<m

2SAT can be solved in polynomial time (in fact in linear time)
2SAT can be solved by formulating it as a implication graph
(x1 V x2) is logically equivalent to either of —x; = x2 or =x2 = x1

Thus a 2SAT formula may be viewed as a set of implications.

m Construct a directed graph G such that vertices of G are the variables
and their negations.

m There is an arc (xi, x2) in G if and only if there is a clause (—x; V x2) or
(x2 V —x1) in the 2SAT instance.
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m If for some variable x;, there is a string of implications,

m Xx; = --- = —x;, and another string of implications.
m —x; = --- = X;, then it is not satisfiable,
m otherwise it is satisfiable.
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Random Search on 3SAT = Boolean Satisfiability Problem - By Sapumal

m If for some variable x;, there is a string of implications,
m Xx; = --- = —x;, and another string of implications.
B —x; = --- = X;, then it is not satisfiable,
m otherwise it is satisfiable.
m The 2SAT problem thus reduces to the graph problem of finding
strongly connected components (SCC) in the implication graph

As computing SCC is known to have a linear-time solution

It is clear that 2SAT may be decided under the same time bound.
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m In 3SAT every clause must have at most 3 literals.
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Random Search on 3SAT = Boolean Satisfiability Problem - By Sapumal

m In 3SAT every clause must have at most 3 literals.
m Unrestricted SAT problems can be reduced to 3SAT

m No known polynomial time reduction from SAT (or 3SAT) to 2SAT. If
there was, then SAT and 3SAT would be solvable in polynomial time.
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Random Search on 3SAT = Boolean Satisfiability Problem - By Sapumal

Cook Levin Theorem

m Decision problem: Is there a valid solution or not?
m Cook Levin Theorem states that the SAT decision problem is
NP-complete

m Although any given solution to an NP-complete problem can be
verified quickly (in polynomial time), no fast way of solving them is

known.
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Random Search on 3SAT = The Algorithm - By Naheed
Outline

m Brute Force Search Algorithm for 3SAT
m Schoning's Algorithm for 3SAT

m Schoning's Algorithm: Illustrative Examples
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Brute-Force Search for 3SAT

Let E=CG A G A--- A Cpy, be the 3SAT formulae where C; is the i-th
Clause.
A Truth assignment, a = (x1,x2, ..., Xp)
Let Q be the set of all possible (2") truth assignments of a.
for all assignment a € Q2 do

if a satisfies E then

return “satisfiable”

end if
end for
return “unsatisfiable”

Complexity: O(2")
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Question

Can We do Better?
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Schoning's Algorithm for 3SAT

Let E=CG A G A--- A Cp, be the 3SAT formulae where C; is the i-th
Clause.
Let Q be the set of all possible (2") truth assignments.
repeat T times (or until a satisfying truth assignment is found)
choose an initial truth assignment, ag uniformly at random from
current assignment, a = ag
repeat n times (or until a satisfies E)
Choose a clause C violated by the current assignment a.
Choose one of the literals from C uniformly at random, and
modify a by flipping the value of the corresponding variable.
if a satisfying assignment was found then
return “satisfiable”
else
return “unsatisfiable”
end if

Complexity: O(Tn)

Group 4 | CS6234 - Advanced Algorithms = April 19, 2016



Example (Case 1: E unsatisfiable)

n=3{x1, x2, x3}
m=7 {Cl,CQ,...,C7}

B E=0aVxxVx3)A(—x1V-xV-x3)A(—x1Vxe)A(—x V-oxz) A
(X1 V X3) VAN (X1 V —|X3) VAN (X3)
m Set of Satisfiable Truth Assignment, A* = {}
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Random Search on 3SAT = The Algorithm - By Naheed

Example (Case 1: E unsatisfiable)

n = 3 {Xl, X2, X3}
m=7 {Cl,CQ,...,C7}
B E=0aVxxVx3)A(—x1V-xV-x3)A(—x1Vxe)A(—x V-oxz) A
(1 Vxs)A(xaV—x3)A(x3)
m Set of Satisfiable Truth Assignment, A* = {}

m Schoning's algorithm will always return unsatisfiable when E is
unsatisfiable.
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Random Search on 3SAT = The Algorithm - By Naheed

Example (Case 2: E satisfiable in 1st Trial)

n=3
m=4{G, G, G, G}
B E=(x1VxoVx3)A(—x1V-oxaV-x3)A(—x1 Vxe)A(x1V—x3)

m Set of Satisfiable Truth Assignment, A* =
{(True, True, False), (False, True, False)}
m If Truth assignment at the 1st Iteration, ag = (True, True, False)

(lucky?!)
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Example (Case 3: E satisfiable but Schoning Fails!)

n=3
m=4 {C17 C27 C37 C4}

B E=0aVx2Vx3)A(—x1V-xV-x3)A(—x1Vxe)A(x1V-oxs)
m Set of Satisfiable Truth Assignment, A* =
{(True, True, False), (False, True, False)}
m Truth assignment at first iteration, ag = (False, True, True), Violated

Clause = G4
m Flip x: a = (True, True, True). Violated Clause = G,.
m Flip x;: a = (False, True, True). Violated Clause = C;.
m Flip x;: a = (True, True, True). Violated Clause = G,.

m returns Unsatisfiable.
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Example (Case 4: E satisfiable, Schoning Succeeds!)

n=3
m=4 {Cl7 C27 C37 C4}
[E = (X1 V xo V X3) VAN (—|X1 V —xo V —|X3) N (—|X1 V X2) A\ (X1 V —|X3)

Set of Satisfiable Truth Assignment, A* =
{(True, True, False), (False, True, False)}

Iteration 1:

Iteration 2:

Iteration i: Initial Truth assignment, ag = (False, False, True),
Violated Clause = (4

m Flip x3: a = (False, False, False). Violated Clause = G,
m Flip xo: a = (False, True, False). E is satisfied!

m returns Satisfiable.
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Question
How large T should be to find a satisfiable truth

assignment with High Probability?

Group 4 CS6234 - Advanced Algorithms = April 19, 2016 19 / 53



Random Search on 3SAT = Analysis Part 1 - By DME Manupa Karunaratne

Analysis Part 1 - By DME Manupa Karunaratne

Group 4 | CS6234 - Advanced Algorithms = April 19, 2016 20 /53



Random Search on 3SAT = Analysis Part 1 - By DME Manupa Karunaratne
The Analysis 1

m We only do the analysis on the satisfiable instance.
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Group 4 | CS6234 - Advanced Algorithms = April 19, 2016 21 /53



Random Search on 3SAT = Analysis Part 1 - By DME Manupa Karunaratne
The Analysis 1

m We only do the analysis on the satisfiable instance.

m The set of assignments that satisfies all the clauses is
A* = {a,a;, - ,ap}

m We'll arbitrarily pick one assignment for the analysis a*.

m We want to analyze the distance of a particular assignment a and a*.
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m This distance is called the "Hamming Distance”.
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Hamming Distance

m This distance is called the "Hamming Distance”.

m Example :
Let the number of variables,n =3

Let V = {x1,x2,x3}
Let a* = (True, False, True)

Particular Assignment a = (False, True, True)
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Random Search on 3SAT = Analysis Part 1 - By DME Manupa Karunaratne
Hamming Distance

m This distance is called the "Hamming Distance”.

m Example :
Let the number of variables,n =3

Let V = {x1,x2,x3}
Let a* = (True, False, True)

Particular Assignment a = (False, True, True)

m Since the difference is only at the first two locations and the third one
is same as a*, the Hamming Distance is 2.

Group 4 | CS6234 - Advanced Algorithms = April 19, 2016

N
N
3]
[



Random Search on 3SAT = Analysis Part 1 - By DME Manupa Karunaratne
Claim 1

m Let the hamming distance between a given assignment a and the
satisfying assignment a* is k.

Claim 1

Pr(k <

NS
N
vV

N =
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The Proof of Claim 1 : The Symmetry

m There is a symmetry in the possible space of assignments along the k
(Hamming Distance) axis.
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The Proof of Claim 1 : The Symmetry

m There is a symmetry in the possible space of assignments along the k
(Hamming Distance) axis.

m The vectors with k = p, are essentially the vectors which differ in k
number of locations to a*.
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The Proof of Claim 1 : The Symmetry

m There is a symmetry in the possible space of assignments along the k
(Hamming Distance) axis.

m The vectors with k = p, are essentially the vectors which differ in k
number of locations to a*.

m Therefore number of such vectors is (;)
() =(.")
p n—p

assignments with {k = p} = assignments with {k = n — p}

m In other words,
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The Proof of Claim 1 : The "n is odd” Case

I'll denote the number of assignments with k = p as f,.
Case : n is odd

n—1
Pr(k < 2) = M
2 > k—o fk
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The Proof of Claim 1 : The "n is odd” Case

I'll denote the number of assignments with kK = p as f,.
Case : n is odd

n—1
Zof
pr(k < [y = k=0
2 k=0 Tk
n%l
p
Pr(k < g) - 2o f

1
dolof + ZZ:nTH fi

Sinee f, = f—p,

n—1

) _ Zkio fk
n—1 1
Ekio fi + Zkio fi

Group 4 | CS6234 - Advanced Algorithms = April 19, 2016 25 /53

Pr(k <

NS



The Proof of Claim 1 : The "n is odd” Case

The "n is odd” Case : Claim 1
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The Proof of Claim 1 : The "n is even” Case

Case : n is even
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The Proof of Claim 1 : The "n is even” Case

Case : n is even

g
wkSQZZFQE
2 > k=0 Tk

Zz—o fi
@+ﬁ+2h+1

AN
N S
N—r

Pr(k

}N:
O »—\

5
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The Proof of Claim 1 : The "n is even” Case

Case : n is even
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The Proof of Claim 1 : The General Case

The "n is even” Case : Claim 1

Pr(k <

N~

) >

NS
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The Proof of Claim 1 : The General Case

The "n is even” Case : Claim 1
n 1
< = -
Pr(k < 2) > 5

The General Case : Claim 1

n 1
<)> =
Pr(k < 2) 2 3
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" 1) n n -
Good"” and "Bad" variables

m Def" : Good variable = a value of the variable of the assignment that
differs from a*.
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Random Search on 3SAT = Analysis Part 1 - By DME Manupa Karunaratne

"Good"” and "Bad" variables

m Def" : Good variable = a value of the variable of the assignment that
differs from a*.

m Def" : Bad variable = a value of the variable of the assignment that
is same of a*.

m If the clause is violated, there should be at least one " Good variable”

m Therefore if we choose to flip one variable uniformly random in a
violated clause,
m it would be a "Good variable” with at least the probability of %
m it would be a "Bad variable” with at most the probability of %
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Random Search on 3SAT = Analysis Part 1 - By DME Manupa Karunaratne
Claim 2

Claim 2

)2

Pr(g flips to be " Good variables") > (

W=
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Using Claim 1 and Claim 2

m Using first claim,

Pr(ag with k < =) >

NS
N+~
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Using Claim 1 and Claim 2

m Using first claim,
Pr(ag with k < g) >

N~

m We want to do 3 consecutive flips for ag, to make it a*
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Using Claim 1 and Claim 2

m Using first claim,
1

n

Pr(ag with k < =) > —
(ao <5025
m We want to do 3 consecutive flips for ag, to make it a*

m Using second claim,

Pr(consecutive u flips to be " Good variables™)
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Random Search on 3SAT = Analysis Part 1 - By DME Manupa Karunaratne

Using Claim 1 and Claim 2

m Using first claim,
n 1
P ith k < =) > =
r(ap wi < 2) Z3

m We want to do 3 consecutive flips for ag, to make it a*

m Using second claim,
Pr(consecutive 2 flips to be " Good variables”) > ()32

Pr(finding a satisfying assignment in a single iteration) > o
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Failure Probability

Failure Probability

With T iterations, the failure probability is at most %.
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Failure Probability

Failure Probability

With T iterations, the failure probability is at most %.

Pr(not finding a satisfying assignment in T iterations) < (1 — p)T

m (Using 1+ x < &),

(1-p) <e?’
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B
Failure Probability

Failure Probability

With T iterations, the failure probability is at most %.

Pr(not finding a satisfying assignment in T iterations) < (1 — p)T

m (Using 1+ x < &),

(1-p) <e?’

m Choose, T = %

- (1 _ p)T < e—pT — e—ln(nd) _ %
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Random Search on 3SAT = Analysis Part 1 - By DME Manupa Karunaratne
Time Complexity

m The outer loop,

T dIn(n)

Substitute p = —14,
2.32

Group 4 | CS6234 - Advanced Algorithms = April 19, 2016 33 /53



Random Search on 3SAT = Analysis Part 1 - By DME Manupa Karunaratne
Time Complexity

m The outer loop,

T dIn(n)

Substitute p = —14,
2.32

Group 4 | CS6234 - Advanced Algorithms = April 19, 2016 33 /53



Random Search on 3SAT = Analysis Part 1 - By DME Manupa Karunaratne
Time Complexity

m The outer loop,

T dIn(n)
p
Substitute p = 2;% ,
7= T8 — 29/3)" In(r) = (/3)"log(r)
2.32
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Random Search on 3SAT = Analysis Part 1 - By DME Manupa Karunaratne
Time Complexity

Conclusion
Taking T = ©((1.74)" log n), the random search algorithm is correct
with a high probability.
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Random Search on 3SAT = Analysis Part 2 — By Erick

Analysis Part 2 — By Erick
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Random Search on 3SAT = Analysis Part 2 — By Erick
Planning

m Keep the algorithm the same
m Repeat T times

Group 4 | CS6234 - Advanced Algorithms = April 19, 2016




Random Search on 3SAT = Analysis Part 2 — By Erick
Planning

m Keep the algorithm the same
m Repeat T times

m But prove better bound

m Smaller T
m Better analysis gives less iteration
m Faster running time!
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Observation on Version 1

Success probability of an iteration in Version 1

NS

1 1\2
P > — .| =
r[success] > 5 (3)

m Only count initial assignments ag where initial distance k < 3
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Observation on Version 1

Success probability of an iteration in Version 1

NS

1 1\2
P > — .| =
r[success] > 5 (3)

m Only count initial assignments ag where initial distance k < 3

m Ignore the ones with initial distance k >
m Even though inner loop repeat n times

m Want to count all values of initial distance k
m Let the success probability be a function of k
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Initial Assignment Probability

m Probability an initial assignment ag having initial distance k ?

m Flip a sequence of n coins and get k heads

Pr[dist(ag,a*) = k] =7
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Initial Assignment Probability

m Probability an initial assignment ag having distance k:

Pr[dist(ap,a*) = k] = <Z> 2"
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Success Probability

m Probability an iteration succeeds:

Pr[success]| = Z Pr[dist(ag,a”) = k| - Pr[success |dist(ag,a") = k]
k=0

A\
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Success Probability

m Probability an iteration succeeds:

Pr[success] = Z Pr[dist(ag,a”) = k] - Pr[success| dist(ap,a*) = k]
k=0

> (0 ()

A\
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Success Probability

m Probability an iteration succeeds:

Pr[success] = Z Pr[dist(ag,a”) = k] - Pr[success| dist(ap,a*) = k]
k=0
n 1 k
> (07 ()
k=0
1 n
=2""(1+=
(+3)

2 n

- (3

A\

Group 4 | CS6234 - Advanced Algorithms = April 19, 2016 40 /53



Outer Loop lterations

By similar analysis in Version 1,

m A single outer loop iteration success probability at least p = (%)"

m If we take T = % for a constant d > 0, then the algorithm

succeeds except with inverse polynomial probability n—ld
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Outer Loop lterations

By similar analysis in Version 1,

m A single outer loop iteration success probability at least p = (%)"

m If we take T = % for a constant d > 0, then the algorithm

succeeds except with inverse polynomial probability n—ld

m Substituting for p, the number of outer loop iterations

oo (2

Group 4 | CS6234 - Advanced Algorithms = April 19, 2016 41 /53



Schoning's Algorithm (Version 2)

Conclusion

Taking T = ©((1.5)" log n), the random search algorithm is correct
with high probability
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Random Search on 3SAT = Analysis Part 3 — By Dmitrii

Analysis Part 3 — By Dmitrii
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Success Probability

n
Pr[success| = Z Pr[dist(ag,a*) = k| - Pr[success | dist(ag,a")]
k=0
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Updated Schoning's Algorithm for 3SAT

Let E=CG AN G A--- A Cp, be the Boolean Expression where C; is the
i-th Clause.
Let Q be the set of all possible (27) truth assignments of E.
repeat T times (or until a satisfying truth assignment is found)
choose a truth assignment a uniformly at random from
repeat 3n times (or until a satisfies E)
Choose a clause C violated by the current assignment a.
Choose one of the literals from C uniformly at random, and
modify a by flipping the value of the corresponding variable.
if a satisfying assignment was found then
return “satisfiable”
else
return “unsatisfiable”
end if

Complexity: O(T - 3n)
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Random Search on 3SAT = Analysis Part 3 — By Dmitrii
Intuition

m Previously we counted only k consecutive " Good variables” from the
start
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Random Search on 3SAT = Analysis Part 3 — By Dmitrii
Intuition

m Previously we counted only k consecutive " Good variables” from the
start

m k "Bad variables” and 2k " Good variables” also lead to success
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Updated probability of success

n
Pr[success]| = Z Pr[dist(ag,a”) = k] - Pr[success | dist(ap, a")]
k=0

=22 ()- (1) 6) )
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Stirling's approximation
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Approximation of binomial coefficient

! 3k 3ky3k 3k
(3:) - (2(/?)/!()-'“ - e(m%kﬁ | (%()M)- (K)k) -o( 7 5)

e
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Approximation of binomial coefficient 2

(G 6) el 5 -=(%)
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Approximation of success probability

Pr[success] > kio 2" (Z) <3kk> (%)21( @)k
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Approximation of success probability

o= £ ()

c.z—n.i(o%
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Approximation of success probability

Prsuccess] > ;:: ( ) <3kk>

n n\ 2k c n n
o E s B
2 ) = vt
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Approximation of success probability
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Random Search on 3SAT = Analysis Part 3 — By Dmitrii

Approximation of success probability

k=0
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Schoning's Algorithm (Version 3)

Conclusion

Taking T = @(1.33” -y/nlog n), the random search algorithm is correct
with high probability
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Random Search on 3SAT = Analysis Part 3 — By Dmitrii
Summary

m SAT problem
m Brute force for 3SAT : Complexity: O(2")
m Schoning’s Algorithm for 3SAT

m Analysis 1 : Complexity: O(1.74" - nlog n)

m Analysis 2 : Complexity: O (1.5" - nlogn)
m Analysis 3 : Complexity: O(1.33"-3n+/nlog n)
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