
Random Search on 3SAT

Random Search on 3SAT

Group 4

CS6234 - Advanced Algorithms

April 19, 2016

Group 4 | CS6234 - Advanced Algorithms | April 19, 2016 1 / 53

Random Search on 3SAT

Contents

Boolean Satisfiability Problem

Schöning’s Algorithm for 3SAT

Analysis 1

Analysis 2

Analysis 3

Group 4 | CS6234 - Advanced Algorithms | April 19, 2016 2 / 53

Random Search on 3SAT | Boolean Satisfiability Problem - By Sapumal

Boolean Satisfiability Problem - By Sapumal

Group 4 | CS6234 - Advanced Algorithms | April 19, 2016 3 / 53

Random Search on 3SAT | Boolean Satisfiability Problem - By Sapumal

Boolean Satisfiability Problem

Is the problem of determining if there exists an interpretation that
satisfies a given Boolean formula.

It asks whether the variables of a given Boolean formula can be
consistently replaced by the values TRUE or FALSE in such a way
that the formula evaluates to TRUE.

If this is the case, the formula is called satisfiable.
On the other hand, if no such assignment exists for all possible variable
assignments and the formula is unsatisfiable.

Referred to as SATISFIABILITY or SAT

Group 4 | CS6234 - Advanced Algorithms | April 19, 2016 4 / 53

Random Search on 3SAT | Boolean Satisfiability Problem - By Sapumal

Boolean Satisfiability Problem

Is the problem of determining if there exists an interpretation that
satisfies a given Boolean formula.

It asks whether the variables of a given Boolean formula can be
consistently replaced by the values TRUE or FALSE in such a way
that the formula evaluates to TRUE.

If this is the case, the formula is called satisfiable.
On the other hand, if no such assignment exists for all possible variable
assignments and the formula is unsatisfiable.

Referred to as SATISFIABILITY or SAT

Group 4 | CS6234 - Advanced Algorithms | April 19, 2016 4 / 53

Random Search on 3SAT | Boolean Satisfiability Problem - By Sapumal

Boolean Satisfiability Problem

Is the problem of determining if there exists an interpretation that
satisfies a given Boolean formula.

It asks whether the variables of a given Boolean formula can be
consistently replaced by the values TRUE or FALSE in such a way
that the formula evaluates to TRUE.

If this is the case, the formula is called satisfiable.

On the other hand, if no such assignment exists for all possible variable
assignments and the formula is unsatisfiable.

Referred to as SATISFIABILITY or SAT

Group 4 | CS6234 - Advanced Algorithms | April 19, 2016 4 / 53

Random Search on 3SAT | Boolean Satisfiability Problem - By Sapumal

Boolean Satisfiability Problem

Is the problem of determining if there exists an interpretation that
satisfies a given Boolean formula.

It asks whether the variables of a given Boolean formula can be
consistently replaced by the values TRUE or FALSE in such a way
that the formula evaluates to TRUE.

If this is the case, the formula is called satisfiable.
On the other hand, if no such assignment exists for all possible variable
assignments and the formula is unsatisfiable.

Referred to as SATISFIABILITY or SAT

Group 4 | CS6234 - Advanced Algorithms | April 19, 2016 4 / 53

Random Search on 3SAT | Boolean Satisfiability Problem - By Sapumal

Boolean Satisfiability Problem

Is the problem of determining if there exists an interpretation that
satisfies a given Boolean formula.

It asks whether the variables of a given Boolean formula can be
consistently replaced by the values TRUE or FALSE in such a way
that the formula evaluates to TRUE.

If this is the case, the formula is called satisfiable.
On the other hand, if no such assignment exists for all possible variable
assignments and the formula is unsatisfiable.

Referred to as SATISFIABILITY or SAT

Group 4 | CS6234 - Advanced Algorithms | April 19, 2016 4 / 53

Random Search on 3SAT | Boolean Satisfiability Problem - By Sapumal

Boolean Satisfiability Problem

SAT formula usually take input in Conjunctive Normal Form (CNF):
”an AND of ORs of literals”.

Variable - a propositional variable: x1, x2, x3

Literal - an variable or its negation: x1,¬x1, x2,¬x2

Clause - A disjunction of some literals: (x1 ∨ x2 ∨ x3)
CNF formula - A conjunction of some clauses:
(x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x2)

Group 4 | CS6234 - Advanced Algorithms | April 19, 2016 5 / 53

Random Search on 3SAT | Boolean Satisfiability Problem - By Sapumal

Boolean Satisfiability Problem

SAT formula usually take input in Conjunctive Normal Form (CNF):
”an AND of ORs of literals”.

Variable - a propositional variable: x1, x2, x3

Literal - an variable or its negation: x1,¬x1, x2,¬x2

Clause - A disjunction of some literals: (x1 ∨ x2 ∨ x3)
CNF formula - A conjunction of some clauses:
(x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x2)

Group 4 | CS6234 - Advanced Algorithms | April 19, 2016 5 / 53

Random Search on 3SAT | Boolean Satisfiability Problem - By Sapumal

Boolean Satisfiability Problem

SAT formula usually take input in Conjunctive Normal Form (CNF):
”an AND of ORs of literals”.

Variable - a propositional variable: x1, x2, x3

Literal - an variable or its negation: x1,¬x1, x2,¬x2

Clause - A disjunction of some literals: (x1 ∨ x2 ∨ x3)
CNF formula - A conjunction of some clauses:
(x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x2)

Group 4 | CS6234 - Advanced Algorithms | April 19, 2016 5 / 53

Random Search on 3SAT | Boolean Satisfiability Problem - By Sapumal

Boolean Satisfiability Problem

SAT formula usually take input in Conjunctive Normal Form (CNF):
”an AND of ORs of literals”.

Variable - a propositional variable: x1, x2, x3

Literal - an variable or its negation: x1,¬x1, x2,¬x2

Clause - A disjunction of some literals: (x1 ∨ x2 ∨ x3)

CNF formula - A conjunction of some clauses:
(x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x2)

Group 4 | CS6234 - Advanced Algorithms | April 19, 2016 5 / 53

Random Search on 3SAT | Boolean Satisfiability Problem - By Sapumal

Boolean Satisfiability Problem

SAT formula usually take input in Conjunctive Normal Form (CNF):
”an AND of ORs of literals”.

Variable - a propositional variable: x1, x2, x3

Literal - an variable or its negation: x1,¬x1, x2,¬x2

Clause - A disjunction of some literals: (x1 ∨ x2 ∨ x3)
CNF formula - A conjunction of some clauses:
(x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x2)

Group 4 | CS6234 - Advanced Algorithms | April 19, 2016 5 / 53

Random Search on 3SAT | Boolean Satisfiability Problem - By Sapumal

Boolean Satisfiability Problem

Simple example,

(x1 ∨ x2) ∧ (¬x1 ∨ x3) ∧ (x3 ∨ x4) ∧ (¬x2 ∨ ¬x4)

x1 = x3 = TRUE and x2, x4 = FALSE

Group 4 | CS6234 - Advanced Algorithms | April 19, 2016 6 / 53

Random Search on 3SAT | Boolean Satisfiability Problem - By Sapumal

Boolean Satisfiability Problem

Simple example,

(x1 ∨ x2) ∧ (¬x1 ∨ x3) ∧ (x3 ∨ x4) ∧ (¬x2 ∨ ¬x4)
x1 = x3 = TRUE

and x2, x4 = FALSE

Group 4 | CS6234 - Advanced Algorithms | April 19, 2016 6 / 53

Random Search on 3SAT | Boolean Satisfiability Problem - By Sapumal

Boolean Satisfiability Problem

Simple example,

(x1 ∨ x2) ∧ (¬x1 ∨ x3) ∧ (x3 ∨ x4) ∧ (¬x2 ∨ ¬x4)
x1 = x3 = TRUE and x2, x4 = FALSE

Group 4 | CS6234 - Advanced Algorithms | April 19, 2016 6 / 53

Random Search on 3SAT | Boolean Satisfiability Problem - By Sapumal

Applications

Combinational equivalence checking (CEC)

2 combinational circuits, each with n inputs and m outputs.
Are the outputs same for all input values?

Automatic test pattern generation (ATPG)

Fabricated integrated circuits may be subject to defects, which may
cause circuit failure
Computing input assignments that allow demonstrating the existence
or absence of each target fault

Model checking

Applications in Bioinformatics

• Ref: Marques-Silva, Joao. ”Practical applications of boolean
satisfiability.” Discrete Event Systems, 2008. WODES 2008. 9th
International Workshop on. IEEE, 2008.

Group 4 | CS6234 - Advanced Algorithms | April 19, 2016 7 / 53

Random Search on 3SAT | Boolean Satisfiability Problem - By Sapumal

Applications

Combinational equivalence checking (CEC)

2 combinational circuits, each with n inputs and m outputs.
Are the outputs same for all input values?

Automatic test pattern generation (ATPG)

Fabricated integrated circuits may be subject to defects, which may
cause circuit failure
Computing input assignments that allow demonstrating the existence
or absence of each target fault

Model checking

Applications in Bioinformatics

• Ref: Marques-Silva, Joao. ”Practical applications of boolean
satisfiability.” Discrete Event Systems, 2008. WODES 2008. 9th
International Workshop on. IEEE, 2008.

Group 4 | CS6234 - Advanced Algorithms | April 19, 2016 7 / 53

Random Search on 3SAT | Boolean Satisfiability Problem - By Sapumal

Applications

Combinational equivalence checking (CEC)

2 combinational circuits, each with n inputs and m outputs.
Are the outputs same for all input values?

Automatic test pattern generation (ATPG)

Fabricated integrated circuits may be subject to defects, which may
cause circuit failure
Computing input assignments that allow demonstrating the existence
or absence of each target fault

Model checking

Applications in Bioinformatics

• Ref: Marques-Silva, Joao. ”Practical applications of boolean
satisfiability.” Discrete Event Systems, 2008. WODES 2008. 9th
International Workshop on. IEEE, 2008.

Group 4 | CS6234 - Advanced Algorithms | April 19, 2016 7 / 53

Random Search on 3SAT | Boolean Satisfiability Problem - By Sapumal

2SAT

Collection C = C1, . . . ,Cm of clauses n Boolean variables such that
|Ci | ≤ 2 for 1 ≤ i ≤ m

2SAT can be solved in polynomial time (in fact in linear time)

2SAT can be solved by formulating it as a implication graph

(x1 ∨ x2) is logically equivalent to either of ¬x1 ⇒ x2 or ¬x2 ⇒ x1

Thus a 2SAT formula may be viewed as a set of implications.

Construct a directed graph G such that vertices of G are the variables
and their negations.
There is an arc (x1, x2) in G if and only if there is a clause (¬x1 ∨ x2) or
(x2 ∨ ¬x1) in the 2SAT instance.

Group 4 | CS6234 - Advanced Algorithms | April 19, 2016 8 / 53

Random Search on 3SAT | Boolean Satisfiability Problem - By Sapumal

2SAT

Collection C = C1, . . . ,Cm of clauses n Boolean variables such that
|Ci | ≤ 2 for 1 ≤ i ≤ m

2SAT can be solved in polynomial time (in fact in linear time)

2SAT can be solved by formulating it as a implication graph

(x1 ∨ x2) is logically equivalent to either of ¬x1 ⇒ x2 or ¬x2 ⇒ x1

Thus a 2SAT formula may be viewed as a set of implications.

Construct a directed graph G such that vertices of G are the variables
and their negations.
There is an arc (x1, x2) in G if and only if there is a clause (¬x1 ∨ x2) or
(x2 ∨ ¬x1) in the 2SAT instance.

Group 4 | CS6234 - Advanced Algorithms | April 19, 2016 8 / 53

Random Search on 3SAT | Boolean Satisfiability Problem - By Sapumal

2SAT

Collection C = C1, . . . ,Cm of clauses n Boolean variables such that
|Ci | ≤ 2 for 1 ≤ i ≤ m

2SAT can be solved in polynomial time (in fact in linear time)

2SAT can be solved by formulating it as a implication graph

(x1 ∨ x2) is logically equivalent to either of ¬x1 ⇒ x2 or ¬x2 ⇒ x1

Thus a 2SAT formula may be viewed as a set of implications.

Construct a directed graph G such that vertices of G are the variables
and their negations.
There is an arc (x1, x2) in G if and only if there is a clause (¬x1 ∨ x2) or
(x2 ∨ ¬x1) in the 2SAT instance.

Group 4 | CS6234 - Advanced Algorithms | April 19, 2016 8 / 53

Random Search on 3SAT | Boolean Satisfiability Problem - By Sapumal

2SAT

Collection C = C1, . . . ,Cm of clauses n Boolean variables such that
|Ci | ≤ 2 for 1 ≤ i ≤ m

2SAT can be solved in polynomial time (in fact in linear time)

2SAT can be solved by formulating it as a implication graph

(x1 ∨ x2) is logically equivalent to either of ¬x1 ⇒ x2 or ¬x2 ⇒ x1

Thus a 2SAT formula may be viewed as a set of implications.

Construct a directed graph G such that vertices of G are the variables
and their negations.
There is an arc (x1, x2) in G if and only if there is a clause (¬x1 ∨ x2) or
(x2 ∨ ¬x1) in the 2SAT instance.

Group 4 | CS6234 - Advanced Algorithms | April 19, 2016 8 / 53

Random Search on 3SAT | Boolean Satisfiability Problem - By Sapumal

2SAT

If for some variable xi , there is a string of implications,

xi ⇒ · · · ⇒ ¬xi , and another string of implications.
¬xi ⇒ · · · ⇒ xi , then it is not satisfiable,
otherwise it is satisfiable.

The 2SAT problem thus reduces to the graph problem of finding
strongly connected components (SCC) in the implication graph

As computing SCC is known to have a linear-time solution

It is clear that 2SAT may be decided under the same time bound.

Group 4 | CS6234 - Advanced Algorithms | April 19, 2016 9 / 53

Random Search on 3SAT | Boolean Satisfiability Problem - By Sapumal

2SAT

If for some variable xi , there is a string of implications,

xi ⇒ · · · ⇒ ¬xi , and another string of implications.
¬xi ⇒ · · · ⇒ xi , then it is not satisfiable,
otherwise it is satisfiable.

The 2SAT problem thus reduces to the graph problem of finding
strongly connected components (SCC) in the implication graph

As computing SCC is known to have a linear-time solution

It is clear that 2SAT may be decided under the same time bound.

Group 4 | CS6234 - Advanced Algorithms | April 19, 2016 9 / 53

Random Search on 3SAT | Boolean Satisfiability Problem - By Sapumal

2SAT

If for some variable xi , there is a string of implications,

xi ⇒ · · · ⇒ ¬xi , and another string of implications.
¬xi ⇒ · · · ⇒ xi , then it is not satisfiable,
otherwise it is satisfiable.

The 2SAT problem thus reduces to the graph problem of finding
strongly connected components (SCC) in the implication graph

As computing SCC is known to have a linear-time solution

It is clear that 2SAT may be decided under the same time bound.

Group 4 | CS6234 - Advanced Algorithms | April 19, 2016 9 / 53

Random Search on 3SAT | Boolean Satisfiability Problem - By Sapumal

3SAT

In 3SAT every clause must have at most 3 literals.

Unrestricted SAT problems can be reduced to 3SAT

No known polynomial time reduction from SAT (or 3SAT) to 2SAT. If
there was, then SAT and 3SAT would be solvable in polynomial time.

Group 4 | CS6234 - Advanced Algorithms | April 19, 2016 10 / 53

Random Search on 3SAT | Boolean Satisfiability Problem - By Sapumal

3SAT

In 3SAT every clause must have at most 3 literals.

Unrestricted SAT problems can be reduced to 3SAT

No known polynomial time reduction from SAT (or 3SAT) to 2SAT. If
there was, then SAT and 3SAT would be solvable in polynomial time.

Group 4 | CS6234 - Advanced Algorithms | April 19, 2016 10 / 53

Random Search on 3SAT | Boolean Satisfiability Problem - By Sapumal

3SAT

In 3SAT every clause must have at most 3 literals.

Unrestricted SAT problems can be reduced to 3SAT

No known polynomial time reduction from SAT (or 3SAT) to 2SAT. If
there was, then SAT and 3SAT would be solvable in polynomial time.

Group 4 | CS6234 - Advanced Algorithms | April 19, 2016 10 / 53

Random Search on 3SAT | Boolean Satisfiability Problem - By Sapumal

Cook Levin Theorem

Decision problem: Is there a valid solution or not?

Cook Levin Theorem states that the SAT decision problem is
NP-complete

Although any given solution to an NP-complete problem can be
verified quickly (in polynomial time), no fast way of solving them is
known.

Group 4 | CS6234 - Advanced Algorithms | April 19, 2016 11 / 53

Random Search on 3SAT | Boolean Satisfiability Problem - By Sapumal

Cook Levin Theorem

Decision problem: Is there a valid solution or not?

Cook Levin Theorem states that the SAT decision problem is
NP-complete

Although any given solution to an NP-complete problem can be
verified quickly (in polynomial time), no fast way of solving them is
known.

Group 4 | CS6234 - Advanced Algorithms | April 19, 2016 11 / 53

Random Search on 3SAT | Boolean Satisfiability Problem - By Sapumal

Cook Levin Theorem

Decision problem: Is there a valid solution or not?

Cook Levin Theorem states that the SAT decision problem is
NP-complete

Although any given solution to an NP-complete problem can be
verified quickly (in polynomial time), no fast way of solving them is
known.

Group 4 | CS6234 - Advanced Algorithms | April 19, 2016 11 / 53

Random Search on 3SAT | The Algorithm - By Naheed

The Algorithm - By Naheed

Group 4 | CS6234 - Advanced Algorithms | April 19, 2016 12 / 53

Random Search on 3SAT | The Algorithm - By Naheed

Outline

Brute Force Search Algorithm for 3SAT

Schöning’s Algorithm for 3SAT

Schöning’s Algorithm: Illustrative Examples

Group 4 | CS6234 - Advanced Algorithms | April 19, 2016 13 / 53

Random Search on 3SAT | The Algorithm - By Naheed

Outline

Brute Force Search Algorithm for 3SAT

Schöning’s Algorithm for 3SAT

Schöning’s Algorithm: Illustrative Examples

Group 4 | CS6234 - Advanced Algorithms | April 19, 2016 13 / 53

Random Search on 3SAT | The Algorithm - By Naheed

Outline

Brute Force Search Algorithm for 3SAT

Schöning’s Algorithm for 3SAT

Schöning’s Algorithm: Illustrative Examples

Group 4 | CS6234 - Advanced Algorithms | April 19, 2016 13 / 53

Random Search on 3SAT | The Algorithm - By Naheed

Brute-Force Search for 3SAT

Let E = C1 ∧ C2 ∧ · · · ∧ Cm be the 3SAT formulae where Ci is the i-th
Clause.
A Truth assignment, a = (x1, x2, . . . , xn)
Let Ω be the set of all possible (2n) truth assignments of a.
for all assignment a ∈ Ω do

if a satisfies E then
return “satisfiable”

end if
end for
return “unsatisfiable”

Complexity: O(2n)

Question

Can We do Better?

Group 4 | CS6234 - Advanced Algorithms | April 19, 2016 14 / 53

Random Search on 3SAT | The Algorithm - By Naheed

Brute-Force Search for 3SAT

Let E = C1 ∧ C2 ∧ · · · ∧ Cm be the 3SAT formulae where Ci is the i-th
Clause.
A Truth assignment, a = (x1, x2, . . . , xn)
Let Ω be the set of all possible (2n) truth assignments of a.
for all assignment a ∈ Ω do

if a satisfies E then
return “satisfiable”

end if
end for
return “unsatisfiable”

Complexity: O(2n)

Question

Can We do Better?

Group 4 | CS6234 - Advanced Algorithms | April 19, 2016 14 / 53

Random Search on 3SAT | The Algorithm - By Naheed

Schöning’s Algorithm for 3SAT

Let E = C1 ∧ C2 ∧ · · · ∧ Cm be the 3SAT formulae where Ci is the i-th
Clause.
Let Ω be the set of all possible (2n) truth assignments.
repeat T times (or until a satisfying truth assignment is found)

choose an initial truth assignment, a0 uniformly at random from Ω
current assignment, a = a0

repeat n times (or until a satisfies E)
Choose a clause C violated by the current assignment a.
Choose one of the literals from C uniformly at random, and
modify a by flipping the value of the corresponding variable.

if a satisfying assignment was found then
return “satisfiable”

else
return “unsatisfiable”

end if

Complexity: O(Tn)

Group 4 | CS6234 - Advanced Algorithms | April 19, 2016 15 / 53

Random Search on 3SAT | The Algorithm - By Naheed

Example (Case 1: E unsatisfiable)

n = 3 {x1, x2, x3}
m = 7 {C1,C2, . . . ,C7}

E = (x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x2) ∧ (¬x2 ∨ ¬x3) ∧
(x1 ∨ x3) ∧ (x1 ∨ ¬x3) ∧ (x3)

Set of Satisfiable Truth Assignment, A∗ = {}

Schöning’s algorithm will always return unsatisfiable when E is
unsatisfiable.

Group 4 | CS6234 - Advanced Algorithms | April 19, 2016 16 / 53

Random Search on 3SAT | The Algorithm - By Naheed

Example (Case 1: E unsatisfiable)

n = 3 {x1, x2, x3}
m = 7 {C1,C2, . . . ,C7}

E = (x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x2) ∧ (¬x2 ∨ ¬x3) ∧
(x1 ∨ x3) ∧ (x1 ∨ ¬x3) ∧ (x3)

Set of Satisfiable Truth Assignment, A∗ = {}
Schöning’s algorithm will always return unsatisfiable when E is
unsatisfiable.

Group 4 | CS6234 - Advanced Algorithms | April 19, 2016 16 / 53

Random Search on 3SAT | The Algorithm - By Naheed

Example (Case 2: E satisfiable in 1st Trial)

n = 3
m = 4 {C1,C2,C3,C4}

E = (x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x2) ∧ (x1 ∨ ¬x3)

Set of Satisfiable Truth Assignment, A∗ =
{(True,True,False), (False,True,False)}
If Truth assignment at the 1st Iteration, a0 = (True,True,False)
(lucky!)

Group 4 | CS6234 - Advanced Algorithms | April 19, 2016 17 / 53

Random Search on 3SAT | The Algorithm - By Naheed

Example (Case 3: E satisfiable but Schöning Fails!)

n = 3
m = 4 {C1,C2,C3,C4}

E = (x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x2) ∧ (x1 ∨ ¬x3)

Set of Satisfiable Truth Assignment, A∗ =
{(True,True,False), (False,True,False)}
Truth assignment at first iteration, a0 = (False,True,True), Violated
Clause = C4

Flip x1: a = (True,True,True). Violated Clause = C2.
Flip x1: a = (False,True,True). Violated Clause = C4.
Flip x1: a = (True,True,True). Violated Clause = C2.

returns Unsatisfiable.

Group 4 | CS6234 - Advanced Algorithms | April 19, 2016 18 / 53

Random Search on 3SAT | The Algorithm - By Naheed

Example (Case 4: E satisfiable, Schöning Succeeds!)

n = 3
m = 4 {C1,C2,C3,C4}

E = (x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x2) ∧ (x1 ∨ ¬x3)

Set of Satisfiable Truth Assignment, A∗ =
{(True,True,False), (False,True,False)}
Iteration 1:

Iteration 2:

. . .

Iteration i: Initial Truth assignment, a0 = (False,False,True),
Violated Clause = C4

Flip x3: a = (False,False,False). Violated Clause = C1

Flip x2: a = (False,True,False). E is satisfied!

returns Satisfiable.

Question

How large T should be to find a satisfiable truth
assignment with High Probability?

Group 4 | CS6234 - Advanced Algorithms | April 19, 2016 19 / 53

Random Search on 3SAT | The Algorithm - By Naheed

Example (Case 4: E satisfiable, Schöning Succeeds!)

n = 3
m = 4 {C1,C2,C3,C4}

E = (x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x2) ∧ (x1 ∨ ¬x3)

Set of Satisfiable Truth Assignment, A∗ =
{(True,True,False), (False,True,False)}
Iteration 1:

Iteration 2:

. . .

Iteration i: Initial Truth assignment, a0 = (False,False,True),
Violated Clause = C4

Flip x3: a = (False,False,False). Violated Clause = C1

Flip x2: a = (False,True,False). E is satisfied!

returns Satisfiable.

Question

How large T should be to find a satisfiable truth
assignment with High Probability?

Group 4 | CS6234 - Advanced Algorithms | April 19, 2016 19 / 53

Random Search on 3SAT | Analysis Part 1 - By DME Manupa Karunaratne

Analysis Part 1 - By DME Manupa Karunaratne

Group 4 | CS6234 - Advanced Algorithms | April 19, 2016 20 / 53

Random Search on 3SAT | Analysis Part 1 - By DME Manupa Karunaratne

The Analysis 1

We only do the analysis on the satisfiable instance.

The set of assignments that satisfies all the clauses is
A∗ = {a∗1, a∗2, · · · , a∗p}
We’ll arbitrarily pick one assignment for the analysis a∗.

We want to analyze the distance of a particular assignment a and a∗.

Group 4 | CS6234 - Advanced Algorithms | April 19, 2016 21 / 53

Random Search on 3SAT | Analysis Part 1 - By DME Manupa Karunaratne

The Analysis 1

We only do the analysis on the satisfiable instance.

The set of assignments that satisfies all the clauses is
A∗ = {a∗1, a∗2, · · · , a∗p}

We’ll arbitrarily pick one assignment for the analysis a∗.

We want to analyze the distance of a particular assignment a and a∗.

Group 4 | CS6234 - Advanced Algorithms | April 19, 2016 21 / 53

Random Search on 3SAT | Analysis Part 1 - By DME Manupa Karunaratne

The Analysis 1

We only do the analysis on the satisfiable instance.

The set of assignments that satisfies all the clauses is
A∗ = {a∗1, a∗2, · · · , a∗p}
We’ll arbitrarily pick one assignment for the analysis a∗.

We want to analyze the distance of a particular assignment a and a∗.

Group 4 | CS6234 - Advanced Algorithms | April 19, 2016 21 / 53

Random Search on 3SAT | Analysis Part 1 - By DME Manupa Karunaratne

The Analysis 1

We only do the analysis on the satisfiable instance.

The set of assignments that satisfies all the clauses is
A∗ = {a∗1, a∗2, · · · , a∗p}
We’ll arbitrarily pick one assignment for the analysis a∗.

We want to analyze the distance of a particular assignment a and a∗.

Group 4 | CS6234 - Advanced Algorithms | April 19, 2016 21 / 53

Random Search on 3SAT | Analysis Part 1 - By DME Manupa Karunaratne

Hamming Distance

This distance is called the ”Hamming Distance”.

Example :
Let the number of variables, n = 3

Let V = {x1, x2, x3}

Let a∗ = (True,False,True)

Particular Assignment a = (False,True,True)

Since the difference is only at the first two locations and the third one
is same as a∗, the Hamming Distance is 2.

Group 4 | CS6234 - Advanced Algorithms | April 19, 2016 22 / 53

Random Search on 3SAT | Analysis Part 1 - By DME Manupa Karunaratne

Hamming Distance

This distance is called the ”Hamming Distance”.

Example :
Let the number of variables, n = 3

Let V = {x1, x2, x3}

Let a∗ = (True,False,True)

Particular Assignment a = (False,True,True)

Since the difference is only at the first two locations and the third one
is same as a∗, the Hamming Distance is 2.

Group 4 | CS6234 - Advanced Algorithms | April 19, 2016 22 / 53

Random Search on 3SAT | Analysis Part 1 - By DME Manupa Karunaratne

Hamming Distance

This distance is called the ”Hamming Distance”.

Example :
Let the number of variables, n = 3

Let V = {x1, x2, x3}

Let a∗ = (True,False,True)

Particular Assignment a = (False,True,True)

Since the difference is only at the first two locations and the third one
is same as a∗, the Hamming Distance is 2.

Group 4 | CS6234 - Advanced Algorithms | April 19, 2016 22 / 53

Random Search on 3SAT | Analysis Part 1 - By DME Manupa Karunaratne

Claim 1

Let the hamming distance between a given assignment a and the
satisfying assignment a∗ is k .

Claim 1

Pr(k ≤ n

2
) ≥ 1

2
.

Group 4 | CS6234 - Advanced Algorithms | April 19, 2016 23 / 53

Random Search on 3SAT | Analysis Part 1 - By DME Manupa Karunaratne

The Proof of Claim 1 : The Symmetry

There is a symmetry in the possible space of assignments along the k
(Hamming Distance) axis.

The vectors with k = p, are essentially the vectors which differ in k
number of locations to a∗

.

Therefore number of such vectors is
(n
p

)
.(

n

p

)
=

(
n

n − p

)

In other words,

assignments with {k = p} = assignments with {k = n − p}

Group 4 | CS6234 - Advanced Algorithms | April 19, 2016 24 / 53

Random Search on 3SAT | Analysis Part 1 - By DME Manupa Karunaratne

The Proof of Claim 1 : The Symmetry

There is a symmetry in the possible space of assignments along the k
(Hamming Distance) axis.

The vectors with k = p, are essentially the vectors which differ in k
number of locations to a∗.

Therefore number of such vectors is
(n
p

)
.(

n

p

)
=

(
n

n − p

)

In other words,

assignments with {k = p} = assignments with {k = n − p}

Group 4 | CS6234 - Advanced Algorithms | April 19, 2016 24 / 53

Random Search on 3SAT | Analysis Part 1 - By DME Manupa Karunaratne

The Proof of Claim 1 : The Symmetry

There is a symmetry in the possible space of assignments along the k
(Hamming Distance) axis.

The vectors with k = p, are essentially the vectors which differ in k
number of locations to a∗.

Therefore number of such vectors is
(n
p

)
.(

n

p

)
=

(
n

n − p

)

In other words,

assignments with {k = p} = assignments with {k = n − p}

Group 4 | CS6234 - Advanced Algorithms | April 19, 2016 24 / 53

Random Search on 3SAT | Analysis Part 1 - By DME Manupa Karunaratne

The Proof of Claim 1 : The Symmetry

There is a symmetry in the possible space of assignments along the k
(Hamming Distance) axis.

The vectors with k = p, are essentially the vectors which differ in k
number of locations to a∗.

Therefore number of such vectors is
(n
p

)
.(

n

p

)
=

(
n

n − p

)

In other words,

assignments with {k = p} = assignments with {k = n − p}

Group 4 | CS6234 - Advanced Algorithms | April 19, 2016 24 / 53

Random Search on 3SAT | Analysis Part 1 - By DME Manupa Karunaratne

The Proof of Claim 1 : The ”n is odd” Case

I’ll denote the number of assignments with k = p as fp.
Case : n is odd

Pr(k ≤ n

2
) =

∑ n−1
2

k=0 fk∑n
k=0 fk

Pr(k ≤ n

2
) =

∑ n−1
2

k=0 fk∑ n−1
2

k=0 fk +
∑n

k= n+1
2

fk

Since fp = fn−p,

Pr(k ≤ n

2
) =

∑ n−1
2

k=0 fk∑ n−1
2

k=0 fk +
∑ n−1

2
k=0 fk

Group 4 | CS6234 - Advanced Algorithms | April 19, 2016 25 / 53

Random Search on 3SAT | Analysis Part 1 - By DME Manupa Karunaratne

The Proof of Claim 1 : The ”n is odd” Case

I’ll denote the number of assignments with k = p as fp.
Case : n is odd

Pr(k ≤ n

2
) =

∑ n−1
2

k=0 fk∑n
k=0 fk

Pr(k ≤ n

2
) =

∑ n−1
2

k=0 fk∑ n−1
2

k=0 fk +
∑n

k= n+1
2

fk

Since fp = fn−p,

Pr(k ≤ n

2
) =

∑ n−1
2

k=0 fk∑ n−1
2

k=0 fk +
∑ n−1

2
k=0 fk

Group 4 | CS6234 - Advanced Algorithms | April 19, 2016 25 / 53

Random Search on 3SAT | Analysis Part 1 - By DME Manupa Karunaratne

The Proof of Claim 1 : The ”n is odd” Case

I’ll denote the number of assignments with k = p as fp.
Case : n is odd

Pr(k ≤ n

2
) =

∑ n−1
2

k=0 fk∑n
k=0 fk

Pr(k ≤ n

2
) =

∑ n−1
2

k=0 fk∑ n−1
2

k=0 fk +
∑n

k= n+1
2

fk

Since fp = fn−p,

Pr(k ≤ n

2
) =

∑ n−1
2

k=0 fk∑ n−1
2

k=0 fk +
∑ n−1

2
k=0 fk

Group 4 | CS6234 - Advanced Algorithms | April 19, 2016 25 / 53

Random Search on 3SAT | Analysis Part 1 - By DME Manupa Karunaratne

The Proof of Claim 1 : The ”n is odd” Case

The ”n is odd” Case : Claim 1

Pr(k ≤ n

2
) =

1

2
.

Group 4 | CS6234 - Advanced Algorithms | April 19, 2016 26 / 53

Random Search on 3SAT | Analysis Part 1 - By DME Manupa Karunaratne

The Proof of Claim 1 : The ”n is even” Case

Case : n is even

Pr(k ≤ n

2
) =

∑ n
2
k=0 fk∑n
k=0 fk

Pr(k ≤ n

2
) =

∑ n
2
k=0 fk∑ n

2
−1

k=0 fk + f n
2

+
∑n

k= n
2

+1 fk

Since fp = fn−p,

Pr(k ≤ n

2
) =

∑ n
2
k=0 fk∑ n

2
−1

k=0 fk + f n
2

+
∑ n

2
−1

k=0 fk
>

1

2

Group 4 | CS6234 - Advanced Algorithms | April 19, 2016 27 / 53

Random Search on 3SAT | Analysis Part 1 - By DME Manupa Karunaratne

The Proof of Claim 1 : The ”n is even” Case

Case : n is even

Pr(k ≤ n

2
) =

∑ n
2
k=0 fk∑n
k=0 fk

Pr(k ≤ n

2
) =

∑ n
2
k=0 fk∑ n

2
−1

k=0 fk + f n
2

+
∑n

k= n
2

+1 fk

Since fp = fn−p,

Pr(k ≤ n

2
) =

∑ n
2
k=0 fk∑ n

2
−1

k=0 fk + f n
2

+
∑ n

2
−1

k=0 fk
>

1

2

Group 4 | CS6234 - Advanced Algorithms | April 19, 2016 27 / 53

Random Search on 3SAT | Analysis Part 1 - By DME Manupa Karunaratne

The Proof of Claim 1 : The ”n is even” Case

Case : n is even

Pr(k ≤ n

2
) =

∑ n
2
k=0 fk∑n
k=0 fk

Pr(k ≤ n

2
) =

∑ n
2
k=0 fk∑ n

2
−1

k=0 fk + f n
2

+
∑n

k= n
2

+1 fk

Since fp = fn−p,

Pr(k ≤ n

2
) =

∑ n
2
k=0 fk∑ n

2
−1

k=0 fk + f n
2

+
∑ n

2
−1

k=0 fk
>

1

2

Group 4 | CS6234 - Advanced Algorithms | April 19, 2016 27 / 53

Random Search on 3SAT | Analysis Part 1 - By DME Manupa Karunaratne

The Proof of Claim 1 : The General Case

The ”n is even” Case : Claim 1

Pr(k ≤ n

2
) >

1

2
.

The General Case : Claim 1

Pr(k ≤ n

2
) ≥ 1

2
.

Group 4 | CS6234 - Advanced Algorithms | April 19, 2016 28 / 53

Random Search on 3SAT | Analysis Part 1 - By DME Manupa Karunaratne

The Proof of Claim 1 : The General Case

The ”n is even” Case : Claim 1

Pr(k ≤ n

2
) >

1

2
.

The General Case : Claim 1

Pr(k ≤ n

2
) ≥ 1

2
.

Group 4 | CS6234 - Advanced Algorithms | April 19, 2016 28 / 53

Random Search on 3SAT | Analysis Part 1 - By DME Manupa Karunaratne

”Good” and ”Bad” variables

Def n : Good variable = a value of the variable of the assignment that
differs from a∗.

Def n : Bad variable = a value of the variable of the assignment that
is same of a∗.

If the clause is violated, there should be at least one ”Good variable”

Therefore if we choose to flip one variable uniformly random in a
violated clause,

it would be a ”Good variable” with at least the probability of 1
3

it would be a ”Bad variable” with at most the probability of 2
3

Group 4 | CS6234 - Advanced Algorithms | April 19, 2016 29 / 53

Random Search on 3SAT | Analysis Part 1 - By DME Manupa Karunaratne

”Good” and ”Bad” variables

Def n : Good variable = a value of the variable of the assignment that
differs from a∗.

Def n : Bad variable = a value of the variable of the assignment that
is same of a∗.

If the clause is violated, there should be at least one ”Good variable”

Therefore if we choose to flip one variable uniformly random in a
violated clause,

it would be a ”Good variable” with at least the probability of 1
3

it would be a ”Bad variable” with at most the probability of 2
3

Group 4 | CS6234 - Advanced Algorithms | April 19, 2016 29 / 53

Random Search on 3SAT | Analysis Part 1 - By DME Manupa Karunaratne

”Good” and ”Bad” variables

Def n : Good variable = a value of the variable of the assignment that
differs from a∗.

Def n : Bad variable = a value of the variable of the assignment that
is same of a∗.

If the clause is violated, there should be at least one ”Good variable”

Therefore if we choose to flip one variable uniformly random in a
violated clause,

it would be a ”Good variable” with at least the probability of 1
3

it would be a ”Bad variable” with at most the probability of 2
3

Group 4 | CS6234 - Advanced Algorithms | April 19, 2016 29 / 53

Random Search on 3SAT | Analysis Part 1 - By DME Manupa Karunaratne

”Good” and ”Bad” variables

Def n : Good variable = a value of the variable of the assignment that
differs from a∗.

Def n : Bad variable = a value of the variable of the assignment that
is same of a∗.

If the clause is violated, there should be at least one ”Good variable”

Therefore if we choose to flip one variable uniformly random in a
violated clause,

it would be a ”Good variable” with at least the probability of 1
3

it would be a ”Bad variable” with at most the probability of 2
3

Group 4 | CS6234 - Advanced Algorithms | April 19, 2016 29 / 53

Random Search on 3SAT | Analysis Part 1 - By DME Manupa Karunaratne

Claim 2

Claim 2

Pr(
n

2
flips to be ”Good variables”) ≥ (

1

3
)
n
2

.

Group 4 | CS6234 - Advanced Algorithms | April 19, 2016 30 / 53

Random Search on 3SAT | Analysis Part 1 - By DME Manupa Karunaratne

Using Claim 1 and Claim 2

Using first claim,

Pr(a0 with k ≤ n

2
) ≥ 1

2

We want to do n
2 consecutive flips for a0, to make it a∗

Using second claim,

Pr(consecutive
n

2
flips to be ”Good variables”) ≥ (

1

3
)
n
2

Pr(finding a satisfying assignment in a single iteration) ≥ 1

2 · 3
n
2

= p

Group 4 | CS6234 - Advanced Algorithms | April 19, 2016 31 / 53

Random Search on 3SAT | Analysis Part 1 - By DME Manupa Karunaratne

Using Claim 1 and Claim 2

Using first claim,

Pr(a0 with k ≤ n

2
) ≥ 1

2

We want to do n
2 consecutive flips for a0, to make it a∗

Using second claim,

Pr(consecutive
n

2
flips to be ”Good variables”) ≥ (

1

3
)
n
2

Pr(finding a satisfying assignment in a single iteration) ≥ 1

2 · 3
n
2

= p

Group 4 | CS6234 - Advanced Algorithms | April 19, 2016 31 / 53

Random Search on 3SAT | Analysis Part 1 - By DME Manupa Karunaratne

Using Claim 1 and Claim 2

Using first claim,

Pr(a0 with k ≤ n

2
) ≥ 1

2

We want to do n
2 consecutive flips for a0, to make it a∗

Using second claim,

Pr(consecutive
n

2
flips to be ”Good variables”) ≥ (

1

3
)
n
2

Pr(finding a satisfying assignment in a single iteration) ≥ 1

2 · 3
n
2

= p

Group 4 | CS6234 - Advanced Algorithms | April 19, 2016 31 / 53

Random Search on 3SAT | Analysis Part 1 - By DME Manupa Karunaratne

Using Claim 1 and Claim 2

Using first claim,

Pr(a0 with k ≤ n

2
) ≥ 1

2

We want to do n
2 consecutive flips for a0, to make it a∗

Using second claim,

Pr(consecutive
n

2
flips to be ”Good variables”) ≥ (

1

3
)
n
2

Pr(finding a satisfying assignment in a single iteration) ≥ 1

2 · 3
n
2

= p

Group 4 | CS6234 - Advanced Algorithms | April 19, 2016 31 / 53

Random Search on 3SAT | Analysis Part 1 - By DME Manupa Karunaratne

Failure Probability

Failure Probability

With T iterations, the failure probability is at most 1
nd

.

Pr(not finding a satisfying assignment in T iterations) ≤ (1− p)T

(Using 1 + x ≤ ex),

(1− p)T ≤ e−pT

Choose,T = d ln n
p

(1− p)T ≤ e−pT = e− ln(nd) = 1
nd

Group 4 | CS6234 - Advanced Algorithms | April 19, 2016 32 / 53

Random Search on 3SAT | Analysis Part 1 - By DME Manupa Karunaratne

Failure Probability

Failure Probability

With T iterations, the failure probability is at most 1
nd

.

Pr(not finding a satisfying assignment in T iterations) ≤ (1− p)T

(Using 1 + x ≤ ex),

(1− p)T ≤ e−pT

Choose,T = d ln n
p

(1− p)T ≤ e−pT = e− ln(nd) = 1
nd

Group 4 | CS6234 - Advanced Algorithms | April 19, 2016 32 / 53

Random Search on 3SAT | Analysis Part 1 - By DME Manupa Karunaratne

Failure Probability

Failure Probability

With T iterations, the failure probability is at most 1
nd

.

Pr(not finding a satisfying assignment in T iterations) ≤ (1− p)T

(Using 1 + x ≤ ex),

(1− p)T ≤ e−pT

Choose,T = d ln n
p

(1− p)T ≤ e−pT = e− ln(nd) = 1
nd

Group 4 | CS6234 - Advanced Algorithms | April 19, 2016 32 / 53

Random Search on 3SAT | Analysis Part 1 - By DME Manupa Karunaratne

Failure Probability

Failure Probability

With T iterations, the failure probability is at most 1
nd

.

Pr(not finding a satisfying assignment in T iterations) ≤ (1− p)T

(Using 1 + x ≤ ex),

(1− p)T ≤ e−pT

Choose,T = d ln n
p

(1− p)T ≤ e−pT = e− ln(nd) = 1
nd

Group 4 | CS6234 - Advanced Algorithms | April 19, 2016 32 / 53

Random Search on 3SAT | Analysis Part 1 - By DME Manupa Karunaratne

Time Complexity

The outer loop,

T =
d ln(n)

p

Substitute p = 1

2.3
n
2

,

T =
d ln(n)

1

2·3
n
2

= 2d(
√

3)n ln(n) = Θ((
√

3)n log(n))

Group 4 | CS6234 - Advanced Algorithms | April 19, 2016 33 / 53

Random Search on 3SAT | Analysis Part 1 - By DME Manupa Karunaratne

Time Complexity

The outer loop,

T =
d ln(n)

p

Substitute p = 1

2.3
n
2

,

T =
d ln(n)

1

2·3
n
2

= 2d(
√

3)n ln(n) = Θ((
√

3)n log(n))

Group 4 | CS6234 - Advanced Algorithms | April 19, 2016 33 / 53

Random Search on 3SAT | Analysis Part 1 - By DME Manupa Karunaratne

Time Complexity

The outer loop,

T =
d ln(n)

p

Substitute p = 1

2.3
n
2

,

T =
d ln(n)

1

2·3
n
2

= 2d(
√

3)n ln(n) = Θ((
√

3)n log(n))

Group 4 | CS6234 - Advanced Algorithms | April 19, 2016 33 / 53

Random Search on 3SAT | Analysis Part 1 - By DME Manupa Karunaratne

Time Complexity

Conclusion

Taking T = Θ((1.74)n log n), the random search algorithm is correct

with a high probability.

Group 4 | CS6234 - Advanced Algorithms | April 19, 2016 34 / 53

Random Search on 3SAT | Analysis Part 2 – By Erick

Analysis Part 2 – By Erick

Group 4 | CS6234 - Advanced Algorithms | April 19, 2016 35 / 53

Random Search on 3SAT | Analysis Part 2 – By Erick

Planning

Keep the algorithm the same

Repeat T times

But prove better bound

Smaller T
Better analysis gives less iteration
Faster running time!

Group 4 | CS6234 - Advanced Algorithms | April 19, 2016 36 / 53

Random Search on 3SAT | Analysis Part 2 – By Erick

Planning

Keep the algorithm the same

Repeat T times

But prove better bound

Smaller T
Better analysis gives less iteration
Faster running time!

Group 4 | CS6234 - Advanced Algorithms | April 19, 2016 36 / 53

Random Search on 3SAT | Analysis Part 2 – By Erick

Observation on Version 1

Success probability of an iteration in Version 1

Pr[success] ≥ 1

2
·
(

1

3

) n
2

Only count initial assignments a0 where initial distance k ≤ n
2

Ignore the ones with initial distance k > n
2

Even though inner loop repeat n times

Want to count all values of initial distance k

Let the success probability be a function of k

Group 4 | CS6234 - Advanced Algorithms | April 19, 2016 37 / 53

Random Search on 3SAT | Analysis Part 2 – By Erick

Observation on Version 1

Success probability of an iteration in Version 1

Pr[success] ≥ 1

2
·
(

1

3

) n
2

Only count initial assignments a0 where initial distance k ≤ n
2

Ignore the ones with initial distance k > n
2

Even though inner loop repeat n times

Want to count all values of initial distance k

Let the success probability be a function of k

Group 4 | CS6234 - Advanced Algorithms | April 19, 2016 37 / 53

Random Search on 3SAT | Analysis Part 2 – By Erick

Observation on Version 1

Success probability of an iteration in Version 1

Pr[success] ≥ 1

2
·
(

1

3

) n
2

Only count initial assignments a0 where initial distance k ≤ n
2

Ignore the ones with initial distance k > n
2

Even though inner loop repeat n times

Want to count all values of initial distance k

Let the success probability be a function of k

Group 4 | CS6234 - Advanced Algorithms | April 19, 2016 37 / 53

Random Search on 3SAT | Analysis Part 2 – By Erick

Initial Assignment Probability

Probability an initial assignment a0 having initial distance k ?

Flip a sequence of n coins and get k heads

Pr[dist(a0, a
∗) = k] = ?

Group 4 | CS6234 - Advanced Algorithms | April 19, 2016 38 / 53

Random Search on 3SAT | Analysis Part 2 – By Erick

Initial Assignment Probability

Probability an initial assignment a0 having distance k :

Pr[dist(a0, a
∗) = k] =

(
n

k

)
2−n

Group 4 | CS6234 - Advanced Algorithms | April 19, 2016 39 / 53

Random Search on 3SAT | Analysis Part 2 – By Erick

Success Probability

Probability an iteration succeeds :

Pr[success] =
n∑

k=0

Pr [dist(a0, a
∗) = k] · Pr[success | dist(a0, a

∗) = k]

≥

n∑
k=0

(
n

k

)
2−n

(
1

3

)k

= 2−n

(
1 +

1

3

)n

=

(
2

3

)n

Group 4 | CS6234 - Advanced Algorithms | April 19, 2016 40 / 53

Random Search on 3SAT | Analysis Part 2 – By Erick

Success Probability

Probability an iteration succeeds :

Pr[success] =
n∑

k=0

Pr [dist(a0, a
∗) = k] · Pr[success | dist(a0, a

∗) = k]

≥
n∑

k=0

(
n

k

)
2−n

(
1

3

)k

=

2−n

(
1 +

1

3

)n

=

(
2

3

)n

Group 4 | CS6234 - Advanced Algorithms | April 19, 2016 40 / 53

Random Search on 3SAT | Analysis Part 2 – By Erick

Success Probability

Probability an iteration succeeds :

Pr[success] =
n∑

k=0

Pr [dist(a0, a
∗) = k] · Pr[success | dist(a0, a

∗) = k]

≥
n∑

k=0

(
n

k

)
2−n

(
1

3

)k

= 2−n

(
1 +

1

3

)n

=

(
2

3

)n

Group 4 | CS6234 - Advanced Algorithms | April 19, 2016 40 / 53

Random Search on 3SAT | Analysis Part 2 – By Erick

Outer Loop Iterations

By similar analysis in Version 1,

A single outer loop iteration success probability at least p =
(

2
3

)n
If we take T = d ln n

p for a constant d > 0, then the algorithm

succeeds except with inverse polynomial probability 1
nd

Substituting for p, the number of outer loop iterations

T = Θ

((
3

2

)n

log n

)

Group 4 | CS6234 - Advanced Algorithms | April 19, 2016 41 / 53

Random Search on 3SAT | Analysis Part 2 – By Erick

Outer Loop Iterations

By similar analysis in Version 1,

A single outer loop iteration success probability at least p =
(

2
3

)n
If we take T = d ln n

p for a constant d > 0, then the algorithm

succeeds except with inverse polynomial probability 1
nd

Substituting for p, the number of outer loop iterations

T = Θ

((
3

2

)n

log n

)

Group 4 | CS6234 - Advanced Algorithms | April 19, 2016 41 / 53

Random Search on 3SAT | Analysis Part 2 – By Erick

Schöning’s Algorithm (Version 2)

Conclusion

Taking T = Θ ((1.5)n log n), the random search algorithm is correct

with high probability

Group 4 | CS6234 - Advanced Algorithms | April 19, 2016 42 / 53

Random Search on 3SAT | Analysis Part 3 – By Dmitrii

Analysis Part 3 – By Dmitrii

Group 4 | CS6234 - Advanced Algorithms | April 19, 2016 43 / 53

Random Search on 3SAT | Analysis Part 3 – By Dmitrii

Success Probability

Pr[success] =
n∑

k=0

Pr [dist(a0, a
∗) = k] · Pr [success | dist(a0, a

∗)]

Group 4 | CS6234 - Advanced Algorithms | April 19, 2016 44 / 53

Random Search on 3SAT | Analysis Part 3 – By Dmitrii

Updated Schöning’s Algorithm for 3SAT

Let E = C1 ∧ C2 ∧ · · · ∧ Cm be the Boolean Expression where Ci is the
i-th Clause.
Let Ω be the set of all possible (2n) truth assignments of E .
repeat T times (or until a satisfying truth assignment is found)

choose a truth assignment a uniformly at random from Ω
repeat 3n times (or until a satisfies E)

Choose a clause C violated by the current assignment a.
Choose one of the literals from C uniformly at random, and
modify a by flipping the value of the corresponding variable.

if a satisfying assignment was found then
return “satisfiable”

else
return “unsatisfiable”

end if

Complexity: O(T · 3n)

Group 4 | CS6234 - Advanced Algorithms | April 19, 2016 45 / 53

Random Search on 3SAT | Analysis Part 3 – By Dmitrii

Intuition

Previously we counted only k consecutive ”Good variables” from the
start

k ”Bad variables” and 2k ”Good variables” also lead to success

Group 4 | CS6234 - Advanced Algorithms | April 19, 2016 46 / 53

Random Search on 3SAT | Analysis Part 3 – By Dmitrii

Intuition

Previously we counted only k consecutive ”Good variables” from the
start

k ”Bad variables” and 2k ”Good variables” also lead to success

Group 4 | CS6234 - Advanced Algorithms | April 19, 2016 46 / 53

Random Search on 3SAT | Analysis Part 3 – By Dmitrii

Updated probability of success

Pr[success] =
n∑

k=0

Pr [dist(a0, a
∗) = k] · Pr [success | dist(a0, a

∗)]

≥
n∑

k=0

2−n

(
n

k

)
·
(

3k

k

)(
1

3

)2k(2

3

)k

Group 4 | CS6234 - Advanced Algorithms | April 19, 2016 47 / 53

Random Search on 3SAT | Analysis Part 3 – By Dmitrii

Stirling’s approximation

n! = Θ

(√
n
(n

e

)n)

Group 4 | CS6234 - Advanced Algorithms | April 19, 2016 48 / 53

Random Search on 3SAT | Analysis Part 3 – By Dmitrii

Approximation of binomial coefficient

(
3k

k

)
=

(3k)!

(2k)! · k!
= Θ

(√
3k√

2k ·
√

k
·

(3k
e)3k

(2k
e)2k · (ke)k

)
= Θ

(1√
k
· 33k

22k

)

Group 4 | CS6234 - Advanced Algorithms | April 19, 2016 49 / 53

Random Search on 3SAT | Analysis Part 3 – By Dmitrii

Approximation of binomial coefficient 2

(
3k

k

)(
1

3

)2k(2

3

)k

= Θ
(1√

k
· 33k

22k
· 3−2k · 2k

3k

)
= Θ

(
2−k

√
k

)

Group 4 | CS6234 - Advanced Algorithms | April 19, 2016 50 / 53

Random Search on 3SAT | Analysis Part 3 – By Dmitrii

Approximation of success probability

Pr[success] ≥
n∑

k=0

2−n

(
n

k

)(
3k

k

)(
1

3

)2k(2

3

)k

≥

c · 2−n ·
n∑

k=0

(
n

k

)
2−k

√
k
≥ c√

n
· 2−n ·

n∑
k=0

(
n

k

)
2−k =

c√
n
· 2−n

(
1 +

1

2

)n
=

c√
n

(
3

4

)n

Group 4 | CS6234 - Advanced Algorithms | April 19, 2016 51 / 53

Random Search on 3SAT | Analysis Part 3 – By Dmitrii

Approximation of success probability

Pr[success] ≥
n∑

k=0

2−n

(
n

k

)(
3k

k

)(
1

3

)2k(2

3

)k

≥

c · 2−n ·
n∑

k=0

(
n

k

)
2−k

√
k

≥ c√
n
· 2−n ·

n∑
k=0

(
n

k

)
2−k =

c√
n
· 2−n

(
1 +

1

2

)n
=

c√
n

(
3

4

)n

Group 4 | CS6234 - Advanced Algorithms | April 19, 2016 51 / 53

Random Search on 3SAT | Analysis Part 3 – By Dmitrii

Approximation of success probability

Pr[success] ≥
n∑

k=0

2−n

(
n

k

)(
3k

k

)(
1

3

)2k(2

3

)k

≥

c · 2−n ·
n∑

k=0

(
n

k

)
2−k

√
k
≥ c√

n
· 2−n ·

n∑
k=0

(
n

k

)
2−k

=

c√
n
· 2−n

(
1 +

1

2

)n
=

c√
n

(
3

4

)n

Group 4 | CS6234 - Advanced Algorithms | April 19, 2016 51 / 53

Random Search on 3SAT | Analysis Part 3 – By Dmitrii

Approximation of success probability

Pr[success] ≥
n∑

k=0

2−n

(
n

k

)(
3k

k

)(
1

3

)2k(2

3

)k

≥

c · 2−n ·
n∑

k=0

(
n

k

)
2−k

√
k
≥ c√

n
· 2−n ·

n∑
k=0

(
n

k

)
2−k =

c√
n
· 2−n

(
1 +

1

2

)n

=
c√
n

(
3

4

)n

Group 4 | CS6234 - Advanced Algorithms | April 19, 2016 51 / 53

Random Search on 3SAT | Analysis Part 3 – By Dmitrii

Approximation of success probability

Pr[success] ≥
n∑

k=0

2−n

(
n

k

)(
3k

k

)(
1

3

)2k(2

3

)k

≥

c · 2−n ·
n∑

k=0

(
n

k

)
2−k

√
k
≥ c√

n
· 2−n ·

n∑
k=0

(
n

k

)
2−k =

c√
n
· 2−n

(
1 +

1

2

)n
=

c√
n

(
3

4

)n

Group 4 | CS6234 - Advanced Algorithms | April 19, 2016 51 / 53

Random Search on 3SAT | Analysis Part 3 – By Dmitrii

Schöning’s Algorithm (Version 3)

Conclusion

Taking T = Θ
(
1.33n ·

√
n log n

)
, the random search algorithm is correct

with high probability

Group 4 | CS6234 - Advanced Algorithms | April 19, 2016 52 / 53

Random Search on 3SAT | Analysis Part 3 – By Dmitrii

Summary

SAT problem

Brute force for 3SAT : Complexity: O(2n)

Schöning’s Algorithm for 3SAT

Analysis 1 : Complexity: O(1.74n · n log n)
Analysis 2 : Complexity: O (1.5n · n log n)
Analysis 3 : Complexity: O(1.33n · 3n

√
n log n)

Group 4 | CS6234 - Advanced Algorithms | April 19, 2016 53 / 53

	Boolean Satisfiability Problem - By Sapumal
	The Algorithm - By Naheed
	Analysis Part 1 - By DME Manupa Karunaratne
	Analysis Part 2 – By Erick
	Analysis Part 3 – By Dmitrii

