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Abstract

A basic question in complexity theory is whether the computational resources required for
solving k independent instances of the same problem scale as k times the resources required
for one instance. We investigate this question in various models of classical communication
complexity.

We introduce a new measure, the subdistribution bound , which is a relaxation of the well-
studied rectangle or corruption bound in communication complexity. We nonetheless show that
for the communication complexity of Boolean functions with constant error, the subdistribution
bound is the same as the latter measure, up to a constant factor. We prove that the one-
way version of this bound tightly captures the one-way public-coin randomized communication
complexity of any relation, and the two-way version bounds the two-way public-coin randomized
communication complexity from below. More importantly, we show that the bound satisfies the
strong direct product property under product distributions for both one- and two-way protocols,
and the weak direct product property under arbitrary distributions for two-way protocols. These
results subsume and strengthen, in a unified manner, several recent results on the direct product
question.

The simplicity and broad applicability of our technique is perhaps an indication of its po-
tential to solve yet more challenging questions regarding the direct product problem.
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1 Introduction

Consider two parties, Alice and Bob, who wish to communicate (classically) to solve several instances
of the same computational problem. The problem is modeled as a relation f ⊆ X × Y × Z, and
Alice receives an input x ∈ X , and Bob an input y ∈ Y. The goal is to find an element z ∈ Z that
satisfies the relation, i.e., to find a z such that (x, y, z) ∈ f . Given a communication protocol to
solve f , a straightforward method for solving k instances of f is to run the protocol independently
on each problem instance. This method has complexity that scales as k times the complexity of the
original protocol. Moreover, when the protocol is randomized, and is guaranteed to succeed with
probability at least 2/3, then the probability of simultaneously succeeding on all k instances is only
guaranteed to be at least (2/3)k. A basic question in complexity theory is whether this method of
solution is essentially optimal. A proof of its optimality is called a strong direct product theorem.

Direct product results and their variants appear in many different areas of complexity theory,
ranging from hardness amplification in the theory of pseudo-randomness (see, e.g., [17]), to parallel
repetition in interactive proof systems (see, e.g., [34, 13]), to time-space trade-offs in concrete
models of computation (for some recent examples, see [1, 27, 3]). We concentrate on the setting of
classical communication complexity. Forms of the direct product property for communication have
repercussions for other areas of computational complexity. Karchmer, Raz, and Wigderson [25]
showed that a direct sum result for certain relations would imply NC1 6= NC2. Bar-Yossef, Jayram,
Kumar, and Sivakumar [6] use direct sum results to place space lower bounds in the datastream
model [6]. Pǎtraşcu and Thorup [33] used direct sum type results to prove stronger lower bounds
for approximate near-neighbour (ANN) search in the cell probe model. Work on the direct sum
property has also inspired earlier lower bounds for ANN due to Chakrabarti and Regev [11].

Although they seem highly plausible, it is well-known that strong direct product results fail to
hold for several modes of communication and computation. For example, testing the equality
of k = log n pairs of n-bit strings with a constant-error private-coin communication protocol has
complexity O(k log k + log n) = O(log n log log n) (see, e.g., [29, Example 4.3, page 43]), where we
might expect a complexity of Ω(k log n) = Ω(log2 n). Similarly, Shaltiel [36] gives an example for
which a strong direct product result fails to hold for average case (i.e., distributional) communica-
tion complexity.

Notwithstanding the above mentioned counterexamples, various forms of direct product result
have been discovered in special cases. Early attempts at the question can be found in [19], and the
references therein. Parnafes, Raz, and Wigderson [32] prove a direct product result for “collections”
of protocols. In their result the bound on the success probability, however, is only shown to behave
like 2−Ω(k/c) for the communication complexity c of the problem at hand. Shaltiel [36] proves a
strong direct product property in cases where the discrepancy method is used under the uniform
distribution; Klauck, Špalek, and de Wolf [27] prove it for the quantum communication complexity
of Set Disjointness; Beame, Pitassi, Segerlind, and Wigderson [7] prove it in cases where the rectangle
or corruption bound is tight under product distributions; and Gavinsky [16] proves it for the one-way
complexity of a certain class of relational problems. The result by Beame et al. for instance allows
the conclusion that solving k instances of Set Disjointness with communication complexity o(k

√
n)

has success probability at most 2−Ω(k). De Wolf [15] proves a strong direct product theorem for the
one-way public-coin randomized communication complexity of the Index function. In more recent
work (albeit subsequent to ours), Ben-Aroya, Regev, and de Wolf [8] derive a similar direct product
theorem for the one-way quantum communication complexity of Index. Since Index captures the
notion of VC-dimension, similar results follow for the one-way distributional (classical and quantum)
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communication complexity of any Boolean function under the worst case product distribution.

Whether the strong direct product theorem holds in general for public-coin randomized protocols
remains a frustrating open question in communication complexity theory. Research on weaker types
of property, namely the direct sum or the weak direct product property, has met with better success.
A direct sum theorem states that solving k instances with constant probability of success incurs
at least k times the cost of solving 1 instance. (A strong direct product theorem would show that
even with probability of success that is exponentially small in k, the cost would be k times the cost
of solving one instance.)

For deterministic protocols it is known that k times the square root of the deterministic complexity
of a function f is needed to compute k instances of f (see, e.g., [29, Exercise 4.11, page 46]).
It is also straightforward to show that the deterministic one-way communication complexity of
every function f has the direct sum property. For randomized protocols, Chakrabarti, Shi, Wirth,
and Yao [12] give a lower bound for the direct sum problem in the simultaneous message passing
(SMP) model in terms of “information cost”. This has also been extended to two-way classical and
quantum communication [6, 22].

Jain, Radhakrishnan, and Sen [24] show a tight direct sum theorem for the one-way and SMP models
for both quantum and randomized classical communication, along with a weak direct sum result for
two-way communication. In other work, Jain, Radhakrishnan, and Sen [21] give a direct sum type
lower bound for bounded round private-coin protocols in terms of the average case communication
complexity under product distributions. Harsha, Jain, McAllester, and Radhakrishnan [18] have
strengthened the latter lower bound by reducing to a large extent its dependence on the number
of rounds. (As mentioned above, these have influenced the work of Chakrabarti and Regev [11] on
the approximate nearest neighbour problem in the cell probe model. Pǎtraşcu and Thorup [33] use
direct sum type results to prove bigger lower bounds for this problem.)

In a weak direct product theorem, one shows that the success probability of solving k instances
of a problem with the resources needed to solve one instance (with probability 2/3) goes down
exponentially with k. Klauck [26] shows such a result for the rectangle/corruption bound under
arbitrary distributions, leading to the conclusion that solving k instances of Set Disjointness with
communication complexity o(n) is possible only with success probability 2−Ω(k).

In this article, we develop a new information-theoretic framework for proving results of a direct-
product flavour. We begin by introducing subdistribution bounds, measures of hardness of com-
puting a function (more generally, a relation) through various kinds of two-party communication
protocol. Subdistribution bounds are based on the notion of relative co-min-entropy of two dis-
tributions (see Section 2.2 for a formal definition) which in turn is closely connected to relative
entropy , a well-studied notion in information theory. This allows us to draw on a rich, burgeoning
body of techniques from information theory for its analysis. Subdistribution bounds are in fact a
relaxation of rectangle/corruption bounds. We show that these quantities are nonetheless within
a constant factor of each other for Boolean functions. (Lemma 3.2 contains the precise statement
for relations.) We are therefore also able to draw on existing work on the rectangle bound. In
particular, we can infer estimates for subdistribution bounds for explicit relations from estimates
on rectangle bounds.

In the setting of public-coin randomized one-way communication, we show that the one-way vari-
ant of subdistribution complexity equals, essentially up to a constant factor, the communication
complexity of any relation. The public-coin randomized two-way communication complexity of any
relation is bounded from below by its (two-way) subdistribution complexity. More importantly,
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we show that both the one- and two-way subdistribution bounds satisfy the strong direct product
property under any product distribution. This way we get strong direct product lower bounds for
both kinds of randomized protocol. In particular, we establish strong direct product theorems for
problems whose one- or two-way complexity is achieved by the rectangle/corruption bound un-
der product distributions. Finally, we prove that the two-way subdistribution bound satisfies the
weak direct product property under arbitrary distributions. As a consequence, we get weak direct
product theorems for problems whose two-way complexity is achieved by the rectangle/corruption
bound.

The proofs we present for the direct product properties of the subdistribution bound belong to a
line of work based on the powerful substate theorem due to Jain, Radhakrishnan, and Sen [20].
The substate theorem establishes an approximate equivalence between relative co-min-entropy and
relative entropy. This equivalence, and the super-additivity of relative entropy enable us to give a
simple information-theoretic explanation of why the direct product properties hold.

We point out that the our approach provides a unified view of several recent works on the topic,
simultaneously generalizing and strengthening them. These works include the strong direct product
property for the rectangle/corruption bound for Boolean functions due to Beame et al. [7] (and
its consequence for the two-way classical communication complexity of Set Disjointness, which was
also independently shown by Klauck et al. [27, Theorem 20]), a direct product property for the
one-way classical communication complexity of certain relations due to Gavinsky [16], the direct
product theorem for the one-way classical communication complexity of Index due to de Wolf [15]
(which also follows from the subsequent work of Ben-Aroya et al. [8]), and the weak direct product
property for the rectangle/corruption bound for Boolean functions due to Klauck [26].

The subdistribution approach is strictly more powerful than those followed in all of the above
mentioned works, except possibly that of Beame et al. For example, the direct product theorem we
derive for the one-way randomized communication complexity of the Hidden Matching relation is
optimal, and better by a logarithmic factor both in the communication and in the error-exponent
than the one due to [16]. The methods in [15] and [8] are specialized for Boolean functions, and do
not apply to relations. Specifically, it is unclear how these methods could yield lower bounds for
Hidden Matching. Of course, the results of [8] also pertain to quantum communication; these do
not follow from our work. (We leave the extension of the subdistribution framework to quantum
communication to future work.) Because of the intimate connection between the subdistribution
and the rectangle/corruption bounds, it is plausible that the method followed by Beame et al. be
extensible, with additional arguments, to the case of one-way communication and general relations.

The subdistribution technique makes an important link between rectangle/corruption methods and
methods from information theory, two of the most successful approaches to proving lower bounds
for communication complexity. We believe that the results described above signify its potential
to solve yet more challenging questions regarding the direct product problem, and communication
complexity in general.

Organization of the article

We follow standard terminology and notation in communication complexity, as in the text [29].
For completeness, this is summarized in Section 2.1. Section 2.2 contains the notation, and the
definition and properties of information theoretic concepts that we use. We introduce subdis-
tribution bounds in Section 3 and relate them to rectangle/corruption bounds. We characterize
one-way communication complexity in terms of the one-way subdistribution bound in Section 4.
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In Section 5.1 we present strong direct product results in the setting of two-way communication.
These are extended to one-way communication in Section 5.2. The weak direct product theorem
for the subdistribution bound is derived in Section 6. We describe the immediate consequences of
our direct product theorems, in particular how they imply results in prior works on the topic, in
the sections in which the theorems occur. The remaining consequences are described in Section 7.
Several proofs are deferred to Appendix B.

2 Preliminaries

2.1 Communication complexity

In this section we briefly review the model of communication complexity. For a comprehensive
introduction to the subject we refer the reader to the text by Kushilevitz and Nisan [29].

We consider the two-party model of communication. Let X ,Y,Z be finite sets, and let f ⊆ X×Y×Z
be a relation. In a two-party communication protocol the parties, say Alice and Bob, get inputs
x ∈ X and y ∈ Y respectively. They alternately send messages to each other with the goal of
determining an element z ∈ Z such that (x, y, z) ∈ f . We assume that for every (x, y) ∈ X × Y
given as input, there is at least one z ∈ Z such that (x, y, z) ∈ f .

One-way communication

We first consider the one-way model of communication, in which there is a single message, from
Alice to Bob at the end of which Bob determines the answer z from the single message from Alice,
and his input y. (In the one-way protocols we consider, the single message is always from Alice to
Bob.) Let 0 ≤ ε < 1/3, and let µ be a probability distribution on X ×Y. We let D1,µ

ε (f) represent
the distributional one-way communication complexity of f under µ with expected error ε, i.e., the
communication of the best private-coin one-way protocol for f , with distributional error (average
error over the coins and the inputs) at most ε under µ. We note that D1,µ

ε (f) is achieved by a
deterministic one-way protocol, and will henceforth restrict ourselves to deterministic protocols in
the context of distributional communication complexity. We let R1,pub

ε (f) represent the public-coin
randomized one-way communication complexity of f with worst case error ε, i.e., the communication
of the best public-coin randomized one-way protocol for f with error for each input (x, y) being at
most ε. The analogous quantity for private coin randomized protocols is denoted by R1

ε (f). The
following is a consequence of the min-max theorem in game theory [29, Theorem 3.20, page 36].

Lemma 2.1 (Yao principle) R1,pub
ε (f) = maxµ D1,µ

ε (f).

The communication complexity of a relation may reduce significantly when µ is restricted to product
distributions over X × Y. We define R

1,[]
ε (f) ∆= maxµ product D1,µ

ε (f).

The VC-dimension of a Boolean function f is an important combinatorial concept and has close
connections with the one-way communication complexity of f .

Definition 2.1 (Vapnik-Chervonenkis (VC) dimension) A set S is said to be shattered by a
set G of Boolean functions from S to {0, 1}, if ∀R ⊆ S, ∃gR ∈ G such that ∀s ∈ S, (s ∈ R) ⇐⇒
(gR(s) = 1).
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Let f : X × Y → {0, 1} be a Boolean function. For all x ∈ X let fx : Y → {0, 1} be defined as
fx(y) ∆= f(x, y),∀y ∈ Y. Let F ∆= {fx : x ∈ X}. Then the Vapnik-Chervonenkis dimension of f is
defined as VC(f) ∆= maxS⊆Y {|S| : S is shattered by F}.

Kremer, Nisan, and Ron [28, Theorem 3.2] relate VC-dimension to communication complexity. The
tighter lower bound (stated below) on the communication complexity in terms of the error ε in the
communication protocol appears in Ambainis, Nayak, Ta-Shma, and Vazirani [2, Theorem 1.1].

Theorem 2.2 ([28, 2]) Let f : X × Y → {0, 1} be a Boolean function, and let ε ∈ (0, 1/2). Then
there is a universal constant κ0 such that

(1− H2(ε)) · VC(f) ≤ R1,[]
ε (f) ≤ κ0 · 1

ε log 1
ε · VC(f),

where H2(p) = −p log2 p− (1− p) log2(1− p) is the binary entropy function defined on [0, 1].

Two-way communication

Next we consider two-way protocols, which are defined analogously. These allow communication
between Alice and Bob over multiple rounds at the end of which both parties output the same
element z ∈ Z that depends upon the transcript of the protocol alone. Following Kushilevitz and
Nisan [29], we assume Alice and Bob disregard their inputs when they determine their output. This
is unlike in one-way protocols, where we (necessarily have to) allow Bob to determine his output
from Alice’s message and his input . The relevant complexity measures for this model are denoted
Dµ
ε (f), R

[]
ε (f), Rpub

ε (f), Rε(f) etc. (without the superscript ‘1’). Lemma 2.1 holds for two-way
protocols mutatis mutandis.

An arbitrary two-way communication protocol (in which the two parties consider their inputs for
the computation of their respective outputs) may be converted into the form above. One party may
send an additional message consisting of his/her output. The consequent increase in communication
complexity is at most log |Z|.

2.2 Information theory

In this section we present some information theoretic notation, definitions and facts that we use in
our proofs. For an introduction to information theory, we refer the reader to the text by Cover and
Thomas [14]. Most of the facts stated in this section without proof may be found in this book.

All logarithms in the article are taken with base 2. For an integer t ≥ 1, [t] represents the set
{1, . . . , t}. For square matrices P,Q, by Q ≥ P we mean that Q− P is positive semi-definite. For
a matrix A, ‖A‖1 denotes its `1 norm.

Specializing from the quantum case, we view a discrete probability distribution P as a positive semi-
definite trace one diagonal matrix indexed by its (finite) sample space. For a distribution P with
support on set X , and x ∈ X , P (x) denotes the (x, x) diagonal entry of P , and P (E) =

∑
x∈E P (x)

denotes the probability of the event E ⊆ X . For a random variable X, we sometimes also let X
represent its distribution.

Let X ,Y be sets and let P be a distribution with support on X ×Y. For x ∈ X , we define PX (x) =∑
y∈Y P (x, y), the probability of x in the marginal distribution on X ; PY(y) is similarly defined
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for y ∈ Y. Further, if y ∈ Y occurs with probability PY(y) > 0, we define PX (x|y) = P (x,y)
PY (y) ,

the conditional probability given the event X × {y}. The distribution P is said to be a product
distribution if there are distributions Q,R on X ,Y respectively such that P = Q ⊗ R, where ⊗
denotes the tensor product operation. Equivalently, for a product distribution, P (x, y) = PX (x) ·
PY(y).

The relative entropy or the Kullback-Leibler divergence of the distribution P with respect to the
distribution Q is defined as S(P ‖Q) ∆= Tr(P logP −P logQ). Relative entropy is jointly convex in
its arguments.

Lemma 2.3 Let P1, P2, Q1, Q2 be probability distributions. Then for r ∈ [0, 1],

S(rP1 + (1− r)P2) ‖ rQ1 + (1− r)Q2) ≤ rS(P1 ‖Q1) + (1− r)S(P2 ‖Q2).

Relative entropy satisfies the following chain rule:

Lemma 2.4 (Chain rule for relative entropy) Let M1, . . . ,Mk and N1, . . . , Nk be jointly dis-
tributed random variables. For 1 ≤ i ≤ k, let M̃i represent the random variable M1 . . .Mi−1.
Similarly define Ñi. Then

S(M1 . . .Mk ‖N1 . . . Nk) =
k∑
i=1

Em∼M̃i
[S(Mi|M̃i = m ‖Ni|Ñi = m)].

Lemma 2.5 Let M1M2 be random variables and let N1N2 be mutually independent random vari-
ables. Then

S(M1M2 ‖N1N2) ≥ S(M1 ‖N1) + S(M2 ‖N2).

Proof: Using the chain rule (Lemma 2.4), the independence of N1 and N2, and finally convexity
(Lemma 2.3), we have

S(M1M2 ‖N1N2) = S(M1 ‖N1) + Em∼M1 [S(M2|M1 = m ‖N2|N1 = m)]
= S(M1 ‖N1) + Em∼M1 [S(M2|M1 = m ‖N2)]
≥ S(M1 ‖N1) + S(M2 ‖N2),

as claimed.

For distributions P,Q, with support on set X , we define

S∞(P ‖Q) ∆= inf{c : Q ≥ P/2c},

as the relative co-min-entropy of P with respect to Q. This quantity measures the least scaling
(i.e., shrinking) of the distribution P with which it “sits inside” the distribution Q. For a finite
sample space X , we may equivalently define relative co-min-entropy as

S∞(P ‖Q) ∆= max
x∈X

log2
P (x)
Q(x) .

Note that the relative co-min-entropy of P with respect to the uniform distribution on X is pre-
cisely log |X | − H∞(P ), where H∞(P ) = minx log 1

P (x) is the min-entropy of P .

The notion of relative co-min-entropy is closely connected to the notion of relative entropy. The
monotonicity of the logarithm function implies that:
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Lemma 2.6 Let P,Q be distributions. Then S(P ‖Q) ≤ S∞(P ‖Q).

This fact is a special case of Theorem 1(7) in [23]. The converse of this statement also holds in an
approximate sense, and gives us a powerful operational characterization of relative entropy. This
fact has come to be known as the substate theorem [20, Proposition 1].

Lemma 2.7 (Substate theorem) Let P,Q be probability distributions over the same finite sam-
ple space such that S(P ‖Q) ≤ c. Then for all r > 1, there exist distributions Pr such that
‖P − Pr‖1 ≤

2
r and

(1− 1
r ) Pr

2r(c+1) ≤ Q. (1)

The condition in Eq. (1) is equivalent to

S∞(Pr ‖Q) ≤ r(c+ 1) + log r
r−1 .

Following relationship between l1-distance and relative entropy between distributions will be useful
for us. It can be derived using a relationship between fidelity (a notion of distance) between
distributions and their relative entropy due to Dachunha-Castelle [?] and a standard relationship
between fidelity and trace distance.

Lemma 2.8 Let P,Q be distributions. Then, ‖P −Q‖1 ≤ 2
√

ln 2(S(P ‖Q)).

The following fact is readily verified:

Lemma 2.9 If P,Q are distributions on the same sample space such that ‖P −Q‖1 ≤ ε, then for
any event E, we have |P (E)−Q(E)| ≤ ε/2.

The following fact may be verified from the definition of relative co-min-entropy.

Lemma 2.10 Let X1, X2, Y1, Y2 be random variables. Then S∞(X1 ‖Y1) ≤ S∞(X1X2 ‖Y1Y2).

Random variables X,Y, Z form a Markov chain, represented as X → Y → Z, iff for all x, y, the
conditional random variable Z|(XY = xy) is equal to Z|(Y = y). The following lemma may be
verified readily from this definition.

Lemma 2.11 If X → Y → Z is a Markov chain, then so is Z → Y → X.

We use various forms of the Markov inequality from probability theory [14] in our arguments without
proof.

3 Subdistribution bounds

Here we introduce,subdistribution bounds, new measures of communication complexity. Let f ⊆
X × Y × Z be a relation. Let 0 ≤ ε ≤ 1/3.

Definition 3.1 Let λ, µ be distributions on X × Y.
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1. ε-monochromatic: We say that the distribution λ is (ε, z)-monochromatic for f if the prob-
ability PrXY∼λ[(X,Y, z) ∈ f ] ≥ 1 − ε. We say that λ is ε-monochromatic for f if it is (ε, z)-
monochromatic for f for some z ∈ Z.

2. one-way ε-monochromatic: We call λ one-way ε-monochromatic for f if there is a func-
tion g : Y → Z such that PrXY∼λ[(X,Y, g(Y )) ∈ f ] ≥ 1− ε.

3. one-message-like: We call λ one-message-like for µ with respect to X if for all (x, y) ∈ X×Y,
whenever λX (x) > 0, we have µX (x) > 0 and λY(y|x) = µY(y|x). We similarly define the
notion of “one-message-like with respect to Y”. In the context of one-way protocols, we use
the term “one-message-like” to mean “one-message-like with respect to X”.

4. SM-like: We call λ SM-like (simultaneous-message-like) for µ, if there is a distribution θ
on X × Y such that θ is one-message-like for µ with respect to X and λ is one-message-like
for θ with respect to Y.

These definitions are motivated by properties of distributions that arise in one-way, two-way, and
simultaneous-message communication protocols. For instance, the distribution λ is one-way ε-
monochromatic precisely when there is a one-way communication protocol for f with zero commu-
nication cost and distributional error at most ε under λ. Furthermore, suppose P is a deterministic
one-way protocol for f , with a single message from Alice to Bob. Let X,Y denote random variables
with joint distribution µ, corresponding to Alice and Bob’s inputs respectively. For any message
string m in P, we may readily verify that the conditional distribution XY |(M = m) is one-message-
like for µ (with respect to X ). Finally, suppose the distributional error made by P is at most ε.
Then, for any δ ∈ (0, 1], the distribution of XY |(M = m) is one-way ε

δ -monochromatic for f with
probability at least 1− δ over the messages m.

We begin by defining subdistribution bounds on one-way communication complexity.

Definition 3.2 (One-way subdistribution bounds) For a distribution µ over X × Y, define
sub1
Y(f, ε, µ) ∆= minλ S∞(λ ‖µ), where λ ranges over all distributions which are both one-message-

like for µ (with respect to X ) and one-way ε-monochromatic for f . We define the one-way subdis-
tribution bound as sub1

Y(f, ε) ∆= maxµ sub1
Y(f, ε, µ), where µ ranges over all distributions on X ×Y.

When the maximization is restricted to product distributions µ, we refer to the quantity as the
one-way product subdistribution bound sub

1,[]
Y (f, ε).

Remark: First, in the above definition, the subscript Y is used to emphasize the fact that in
the definition of one-way ε-monochromatic, we allow for different values of output depending upon
Bob’s input y ∈ Y in a zero-communication protocol for f under distribution λ. Second, note
that a distribution λ which is one-message-like for a product distribution µ is itself a product
distribution. Third, when we take the distribution λ to range over µ conditioned upon rectangles
of the form S × Y, where S ⊆ X , we get a one-way variant of the rectangle or corruption bound
in communication complexity as introduced by Yao, and applied by Razborov and others. We
elaborate on the precise connection between the rectangle and subdistribution bounds below.

We define two-way subdistribution bounds in a manner analogous to the one-way bounds. We also
consider variants of such bounds corresponding to fixed outputs, since these variants better capture
communication complexity in some important cases.

Definition 3.3 (Two-way subdistribution bounds) For a distribution µ over X × Y, define
sub(f, ε, µ) ∆= minλ S∞(λ ‖µ), where λ ranges over all distributions which are both SM-like for µ

8



and ε-monochromatic for f . When we restrict the minimization to distributions that are SM-like
and (ε, z)-monochromatic, for some fixed value z ∈ Z, we denote the resulting quantity sub(f, ε, z, µ).
We define the two-way subdistribution bound as sub(f, ε) ∆= maxµ sub(f, ε, µ), where µ ranges over

all distributions on X ×Y. Similarly, sub(f, ε, z) ∆= maxµ sub(f, ε, z, µ). When the maximization is
restricted to product distributions µ, we refer to the quantities as two-way product subdistribution
bounds sub[](f, ε) and sub[](f, ε, z).

Remark: First, suppose m is a possible message transcript in a deterministic two-way proto-
col P for f when run on inputs X,Y distributed according to µ. Let M denote the random
variable corresponding to the transcript of P. We may readily verify that the conditional distri-
bution XY |(M = m) is SM-like for µ. Second, the distributions that are SM-like for a product
distribution µ are precisely the set of all product distributions over X × Y. Third, it is important
to restrict λ appropriately in the definition of sub(f, ε, µ) to get non-trivial bounds. For instance,
if we do not restrict λ to product distributions in the definition of sub[](f, ε, µ) (with µ being a
product distribution), the quantity is at most 1 for Boolean functions: consider the possibly non-
product distribution λ that results from conditioning upon f−1(1) or f−1(0), whichever has higher
probability under µ. The distribution λ is 0-monochromatic for f , and “sits well inside µ” (i.e.,
S∞(λ‖µ) ≤ 1), since the event on which we condition has probability ≥ 1

2 .

To state the precise connection between the subdistribution bound and the rectangle/corruption
bound from communication complexity, we define the latter bound precisely. A rectangle in X ×Y
is a subset of the form S×T , where S ⊆ X , T ⊆ Y. For a distribution µ, and an event R ⊆ X ×Y,
let µR denote the conditional distribution of µ given the event R.

Definition 3.4 (Rectangle/corruption bounds) For a possibly non-product distribution µ, de-
fine rec(f, ε, µ) ∆= minR S∞(µR ‖µ), where R ranges over all rectangles in X × Y such that µR
is ε-monochromatic for f . Define rec(f, ε) ∆= maxµ rec(f, ε, µ). When the maximization is restricted
to product distributions µ, we get the two-way product rectangle bound rec[](f, ε). The quanti-
ties rec(f, ε, z) and rec[](f, ε, z) for a fixed value z ∈ Z are defined in a manner analogous to the
two-way subdistribution bounds.

As is evident from the above definitions, subdistribution bounds are a relaxation of the correspond-
ing rectangle bounds, and are therefore always dominated by the latter. Nevertheless, we show
that they are approximately equal to each other.

We begin with this connection for the product two-way bound.

Lemma 3.1 Let µ be a product distribution on X × Y and let δ ∈ (0, 1). Then

rec(f, ε, µ) ≥ sub[](f, ε, µ) ≥ rec
(
f, ε

δ2
, µ
)
− log 1

(1−δ)2 .

The same inequalities hold between rec(f, ε, z, µ) and sub[](f, ε, z, µ) mutatis mutandis for any z ∈ Z.

Proof: Let µ = µA ⊗ µB be a product distribution on X × Y. By definition, rec(f, ε, µ) ≥
sub[](f, ε, µ). For the second inequality we argue as follows. Consider any ε-monochromatic product
distribution λ = λA ⊗ λB along with an output z ∈ Z which makes it ε-monochromatic. View λ
as a convex combination of distributions λx on {x}×Y. Note that the marginal distribution of λx
on Y is λB for all x. Using the Markov Inequality, we get a subset S ⊆ X such that λA(S) ≥ 1− δ
and for each x ∈ S, the distribution λx is (ε/δ)-monochromatic for the same output z. Therefore,
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the distribution π = µA,S ⊗ λB, where µA,S is the distribution on X conditioned upon event S,
is also (ε/δ)-monochromatic for f with output z. Similarly we identify a subset T ⊆ Y such
that λB(T ) ≥ 1 − δ, and each distribution πy on X × {y} with marginal µA,S on X is (ε/δ2)-
monochromatic for every y ∈ T .

Thus, we get a rectangle R = S × T with probability λ(R) ≥ (1 − δ)2 such that the distribution
µR, the distribution µ conditioned on R, is (ε/δ2)-monochromatic. Moreover, if S∞(λ‖µ) = c,
then µ(R) ≥ λ(R) · 2−c ≥ (1− δ)2 · 2−c. In other words, rec(f, ε/δ2, µ) ≤ c+ log 1

(1−δ)2 . Minimizing

over all such λ, we see that rec(f, ε/δ2, µ) ≤ sub[](f, ε, µ) + log 1
(1−δ)2 .

The case of non-product distributions is more technical, and is deferred to Appendix A. We simply
state the connection here.

Lemma 3.2 Let µ be any distribution on X ×Y. There exist universal positive constants κ1, κ2, κ3

such that

rec(f, ε, µ) ≥ sub(f, ε, µ)
≥ κ1 ·min

{
rec(f, κ2ε, µ), rec(f, 0, µ)− log2 |Z| − log2

1
ε

}
− κ3,

Similar inequalities hold between rec(f, ε, z, µ) and sub(f, ε, z, µ) for any z ∈ Z.

Thus, in spite of being a relaxation of rectangle bounds, subdistribution bounds give us lower
bounds that are as strong as the ones obtained from the former. Accurate estimates for the subdis-
tribution bounds for explicit functions may be obtained from the corresponding rectangle bounds.
Furthermore, subdistribution bounds have the distinct advantage of being readily amenable to
analysis with tools from information theory, as is illustrated by the proof of Theorem 5.1 (which
states that they satisfy the direct product property).

The rectangle bound rec(f, ε) is well-known to be a lower bound for two-way randomized commu-
nication complexity. We refer the reader to [7, Section 3] for a precise formulation of this bound,
and state a consequence of this connection for Boolean functions.

Theorem 3.3 Let f : X × Y → {0, 1}, ε ∈ (0, 1], µ be any probability distribution on X × Y.
For z ∈ {0, 1}, let pz = µ(f−1(z)), and δ ∈ [0, εpz). Then

Rpub
δ (f) ≥ max

z

[
rec(f, ε, z)− log2

1
pz−δ/ε

]
.

The product rectangle bound rec[](f, ε) may be arbitrarily smaller than the (unrestricted) rectan-
gle bound [37], but is still known to give strong bounds for important functions. For example,
when f is the Set Disjointness problem on n-bit inputs, Rpub

1/3(f) = Θ(n) = rec(f, 1/3, 0) [29, Sec-

tion 4.6, Lemma 4.49]. On the other hand, rec[](f, 1/3, 0) and R
[]
1/3(f) are both O(

√
n log n) and

at least Ω(
√
n) [4].

4 A characterization of one-way communication complexity

In this section we present a new characterization of randomized one-way communication complexity
in terms of the one-way subdistribution bound. Throughout this section, we use the term “one-
message-like” to mean “one-message-like with respect to X”.
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We begin by showing that the one-way communication complexity of a relation is always larger
than the subdistribution bound.

Lemma 4.1 Let f ⊆ X × Y × Z be a relation. Let 0 ≤ ε ≤ 1/3 and k > 0 be non-negative real
numbers. Then

R1,pub
ε(1−2−k)

(f) ≥ sub1
Y(f, ε)− k.

Proof: For any distribution µ on X × Y, we show

D1,µ
ε(1−2−k)

(f) ≥ sub1
Y(f, ε, µ)− k. (2)

Maximizing over µ, noting that distributional complexity is bounded by worst-case complexity (see
the Yao min-max principle, Lemma 2.1), and the definition of sub1

Y(f, ε) we get our bound.

Let c ∆= sub1
Y(f, ε, µ). If bc− kc ≤ 0, Eq. (2) holds vacuously. Otherwise, let P be a deterministic

one-way protocol with communication at most bc− kc. Let the random variables X,Y with joint
distribution µ represent the inputs of Alice and Bob respectively. Let M represent the correlated
random variable corresponding to Alice’s message. For a message string m with pm

∆= Pr[M = m] >
0 let εm denote the probability of error of P conditional on M = m. LetM be the set of messages
m such that pm > 2−c. Since there are at most 2c−k messages, we get that

∑
m/∈M pm ≤ 2−k. Let

λm be the distribution of XY |(M = m). Note that S∞(λm ‖µ) = − log2 pm < c for for m ∈ M.
Since λm is one-message-like for µ, from the definition of sub1

Y(f, ε, µ) we have εm > ε. Hence the
overall error of the protocol P is > ε(1− 2−k). Therefore, by its definition D1,µ

ε(1−2−k)
(f) > bc− kc,

which is the communication in P.

For the other direction, we first show that for a relation f with low subdistribution complexity, any
distribution µ may be decomposed into a small number of one-message-like distributions that are
one-way ε-monochromatic for f .

Lemma 4.2 Let f ⊆ X ×Y ×Z be a relation, 0 ≤ ε < 1, and c ∆= sub1
Y(f, ε). For any distribution

µ on X × Y, and δ ∈ (0, 1], there exists an integer r ≥ 1, distributions {λj , j ∈ [r + 1]} on X × Y
and numbers {pj , j ∈ [r + 1], 0 ≤ pj ≤ 1} such that:

1. ∀j ∈ [r + 1], λj is one-message-like for µ and one-way ε-monochromatic for f ,

2. µ =
∑r+1

j=1 pjλj,

3. pr+1 ≤ δ, and

4. For j ∈ [r], pj > 2−cδ and r < 2c

δ .

Proof: By hypothesis, c = sub1
Y(f, ε) = maxν sub1

Y(f, ε, ν). This means for every distribution
ν there exists a distribution θν with the properties that θν is one-message-like for ν, one-way
ε-monochromatic for f , and S∞(θν ‖ ν) ≤ c.
We obtain the distributions λ1, . . . , λr+1 in the decomposition of µ inductively:

• Let µ1
∆= µ, λ1

∆= θµ1 and p1
∆= 2−S∞(λ1 ‖µ). By definition of relative co-min-entropy, we

have p1λ1 ≤ µ.
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• Suppose for some j ≥ 1, distributions λ1, . . . , λj and numbers p1, . . . , pj have been obtained
such that

∑j
k=1 pkλk ≤ µ.

Let qj+1
∆=
∥∥∥µ−∑j

k=1 pkλk

∥∥∥
1
, and µj+1

∆= 1
qj+1

(
µ−

∑j
k=1 pkλk

)
. By construction, µj+1 is a

probability distribution on X × Y.

In case qj+1 > δ, we let λj+1
∆= θµj+1 and pj+1

∆= qj+12−S∞(λj+1 ‖µj+1) and move to j+2. Note
that by definition of relative co-min-entropy, we have pj+1λj+1 ≤ qj+1µj+1 ≤ µ−

∑j
k=1 pkλk,

i.e.,
∑j+1

k=1 pkλk ≤ µ.

In case qj+1 ≤ δ we stop the process and let λj+1
∆= µj+1, pj+1

∆= qj+1 and r
∆= j.

Part 1 of the lemma is immediate from our construction and the following properties of the ‘one-
message-like’ relation. Let ν, σ, τ be distributions over X × Y.

• If σ is one-message-like for ν, and p ≥ 0 is such that pσ ≤ ν, the distribution ν−pσ
‖ν−pσ‖1

is also
one-message-like for ν.

• The distributions that are one-message-like for a fixed distribution ν form a convex set. I.e.,
if σ, τ are one-message-like for ν, the distribution pσ + (1− p)τ is also one-message-like for ν
for any 0 ≤ p ≤ 1.

• The ‘one-message-like’ relation is transitive. I.e., if σ is one-message-like for τ , and τ is
one-message-like for ν, then σ is one-message-like for ν.

Parts 2 and 3 of the lemma may be verified from our construction. For Part 4 we note that for
any 1 ≤ j ≤ r,

pj = qj 2−S∞(λj ‖µj) > δ2−c.

Since
∑r

j=1 pj ≤ 1, we get r < 2c/δ.

Using the above decomposition of distributions, we can design efficient protocols for relations with
small subdistribution complexity.

Lemma 4.3 Let f ⊆ X × Y × Z be a relation, and 0 ≤ ε ≤ 1/6 and 0 < δ ≤ 1/6. Then,

R1,pub
ε+δ (f) ≤ sub1

Y(f, ε) + log 1
δ + 2.

Proof: We show that for every distribution µ on X × Y,

D1,µ
ε+δ(f) ≤ sub1

Y(f, ε) + log 1
δ + 2. (3)

The result then follows from the Yao min-max principle (Lemma 2.1).

We exhibit a private coin protocol P for f whose distributional error under µ is at most ε+ δ and
communication is at most c+log(1/δ)+2, where c ∆= sub1

Y(f, ε). From P we also get a deterministic
protocol with the same communication and distributional error. This implies Eq. (3).

In the protocol P, Alice and Bob start with their inputs XY in distribution µ. Using the decom-
position of µ as given by Lemma 4.2, we define a random variable M that is correlated with XY .
We then argue that M may be produced from the knowledge of X alone, and therefore be used as
a message to derive a protocol with small distributional error.
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Let µ =
∑

j∈[r+1] pjλj with pj , λj and r as given by Lemma 4.2 for δ as in the statement of this
lemma. The random variable M has support in [r + 1]. The joint distribution of XYM is defined
by

Pr[XYM = (x, y, j)] = pj λj(x, y),

for (x, y, j) ∈ X × Y × [r + 1]. Note that Pr[M = j] = pj and the distribution of XY |(M = j) is
λj . Since for all j, the distribution λj is one-message-like for µ, we have Y |(X = x,M = m) =
Y |(X = x) for all x,m. Hence M → X → Y is a Markov chain. From Lemma 2.11, Y → X →M
is also a Markov chain. Therefore, the random variable M is a function of X alone, and Alice can
generate it using private coins.

To summarize the protocol P, on input x, Alice generates message M as above using private coins,
and sends it to Bob. From the construction of XYM , on receiving message j, Bob knows that the
conditional distribution on XY is λj . On each λj with j ∈ [r] we can ensure that the error of P is
at most ε since λj is one-way ε-monochromatic. On message r + 1, which occurs with probability
at most δ, the error may be as large as 1. Therefore P has distributional error at most ε+ δ on µ.
The communication in P is bounded by dlog(r + 1)e ≤ c+ log(1/δ) + 2.

Combining the bounds in Lemmata 4.1 and 4.3 with standard probability amplification techniques,
we get our characterization of one-way communication complexity in terms of the subdistribution
bound.

Theorem 4.4 Let f ⊆ X × Y × Z be a relation and let 0 ≤ ε ≤ 1/6. There are universal
constants κ1, κ2 such that

sub1
Y(f, ε)− 1 ≤ κ1 · R1,pub

ε (f) ≤ κ2

[
sub1
Y(f, ε) + log 1

ε + 2
]
.

Remark: From proofs of Lemma 4.3 and Lemma 4.1, we also conclude that for a distribution µ
such that sub1

Y(f, ε) = sub1
Y(f, ε, µ) we have D1,µ

ε (f) = Θ(sub1
Y(f, ε, µ)) (for a constant ε). However

for other distributions, sub1
Y(f, ε, µ) may be much smaller than D1,µ

ε (f). As an example consider

the function f : {0, 1}n×{0, 1}n → {0, 1} defined as f(x, y) ∆= x1∨
⊕n

i=2 xi∧yi. While the one-way
communication required for computing this function with distributional error at most 1/5 under
the uniform distribution U is Ω(n), we have sub1

Y(f, 0,U) ≤ 1. This is because the distribution with
x1 = 1 and remaining bits uniform has 0 error and sits inside U with a scaling of 1/2.

The proof of Theorem 4.4 readily adapts to give a similar relationship between R
1,[]
ε (f), which

is the maximum distributional communication complexity of f under product distributions, and
sub

1,[]
Y (f, ε).

Theorem 4.5 Let f ⊆ X × Y × Z be a relation and let 0 ≤ ε ≤ 1/6. There are universal
constants κ1, κ2 such that

sub
1,[]
Y (f, ε)− 1 ≤ κ1 · R1,[]

ε (f) ≤ κ2

[
sub

1,[]
Y (f, ε) + log 1

ε + 2
]
.

Since the one-way distributional communication complexity under product distributions of a Boolean
function is captured by its VC-dimension (Theorem 2.2) both quantities in the above theorem are
of the same order as the VC-dimension of f (for constant ε). The precise dependence on ε (when
it is not set to a constant) may be inferred from the preceding theorems.

Corollary 4.6 Let f : X ×Y → {0, 1} be a Boolean function. Let 0 ≤ ε ≤ 1/6 be a constant. Then
R

1,[]
ε (f) = Θ(sub

1,[]
Y (f, ε)) = Θ(VC(f)).
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5 Direct product theorems for communication complexity

5.1 Two-way protocols

Let f ⊆ X × Y × Z be a relation. We define the k-fold product of f , f⊗k ⊆ X k × Yk × Zk

as f⊗k ∆= {(x1, . . . xk, y1, . . . , yk, z1, . . . , zk) : ∀i ∈ [k], (xi, yi, zi) ∈ f}. This relation captures k
independent instances of the relation f . We show that the two-way product subdistribution bound
satisfies the direct product property by considering f and its k-fold product.

Theorem 5.1 Let ε, δ ∈ (0, 1/6), k be a positive integer, and let q ∆= (1 − ε/2)(1−δ)k. Let µ ∆=
µA ⊗ µB be any product distribution on X × Y such that sub[](f, ε, µ) > 48

δε . Then,

sub[](f⊗k, 1− 2q, µ⊗k) > δε
16 · k · sub[](f, ε, µ).

The same relation holds mutatis mutandis between sub[](f⊗k, 1− 2q, z, µ⊗k) and sub[](f, ε, u, µ),
where z = uk, and u ∈ Z is any fixed output.

Proof: Let c ∆= sub[](f, ε, µ) and l
∆= δε

16 · k · c. Let λ ∆= λA ⊗ λB be a product distribution on
X k × Yk, such that S∞(λ ‖ µ⊗k) ≤ l. Let XY be joint random variables distributed according to
λ. For i ∈ [k], let Xi, Yi represent the components of X,Y respectively in the ith coordinate. The
symbol 1 denotes a sequence of appropriate length of ones (that is implied by the context).

We show that for any output string z = z1 . . . zk ∈ Zk, the distributional error under λ is greater
than 1 − 2q. Formally, define Boolean random variables Si such that Si = 1 iff the output in the
ith coordinate is correct, i.e., (Xi, Yi, zi) ∈ f ; Si = 0 otherwise. We show the following.

Lemma 5.2 PrXY∼λ[S1 . . . Sk = 1] ≤ 2q.

This lemma directly implies our theorem.

Proof of Lemma 5.2: Let t ∆= d(1− δ)ke. Our goal is to identify t indices i1, . . . , it ∈ [k] such
that for each successive index ij in this sequence, the probability, conditioned upon success on
the previous j − 1 coordinates, that the protocol succeeds with output zij for the coordinate ij is
bounded by 1− ε

2 . (This implies our lemma.) We do this by choosing the coordinate ij such that the
marginal distribution of XY in that coordinate “sits well” inside µ, and is a product distribution.
We ensure that this property holds even when we condition on success in the previous coordinates.
Ensuring a product distribution involves conditioning on the inputs to one party (say, Bob) in the
previous coordinates. As a consequence, we only identify the required t coordinates for all but a
small fraction of “atypical” values for the conditioned input variables. We elaborate on this below.

For a string y ∈ Yk and i ∈ [k], let yi denote the sub-string in the ith coordinate of y. We
extend this notation to a subset of coordinates I = {i1, . . . , ij} ⊆ [k] as yI = yi1 . . . yij (where the
coordinates in the subset are always taken in a canonical order). Similarly for x ∈ X k.
In the interest of readability, we sometimes use non-standard notation in our arguments below. For
a subset I ⊆ [k], we abbreviateXIYI asXYI . Similarly, we writeXYi forXiYi. The subscript (I, w),
where I ⊆ [k] and w ∈ Y |I|, indicates conditioning on the event YI = w. For example, XYi,(I,w) is
the random variable XiYi conditioned upon the event YI = w.
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Let X ′Y ′ be distributed according to µ⊗k. We identify a set BI ⊆ Y |I| of “atypical” inputs sub-
strings for Bob for each subset I. Let w ∈ BI ⊆ Y |I|, iff

S∞(XY(I,w) ‖ X ′Y ′(I,w)) > l + 2k.

In Appendix B we bound the probability that Bob’s input has an atypical sub-string.

Lemma 5.3 PrXY∼λ[ (∃I ⊂ [k]) YI ∈ BI ] < 2−k.

Inputs with sub-strings in a set BI are precisely the ones for which we are not able to carry out the
line of argument outlined above.

We also identify a set LI ⊆ Y |I| of “lucky” input sub-strings for Bob, for each I ⊆ [k] of size less
than t. Let w ∈ LI iff Pr[SI = 1|YI = w] < 2−k. Since 2−k ≤ q, for such lucky sub-strings we
already have Pr[S1 . . . Sk = 1|YI = w] < q.

The following lemma captures the main step in our proof.

Lemma 5.4 Let I ⊆ [k] be of size less than t,and let w ∈ Y |I|. Then, either

1. The sub-string w ∈ BI , i.e., S∞(XY(I,w) ‖X ′Y ′(I,w)) > l + 2k, or

2. The sub-string w ∈ LI , i.e., Pr[SI = 1 | YI = w] < 2−k, or

3. There exists an i ∈ [k]− I, such that Pr[Si = 1 | SI = 1, YI = w] < 1− ε
2 .

Below we sketch how this implies Lemma 5.2; the technical details are deferred to Appendix B.
Lemma 5.4 allows us to select t indices on which the success probability of the protocol is bounded
appropriately, so long as parts 1 and 2 are not satisfied. Part 1 is satisfied only for a 2−k fraction
of inputs, and we ignore these. As we successively add indices to I = {j1, j2, . . . , jm}, if for any
value of m ≤ t, part 2 of the Lemma 5.4 holds, then, in that “branch of conditioning” on the
value of YI , the probability of success on all k coordinates is bounded by 2−k. If part 2 does not
hold for any m ≤ t − 1, then we keep choosing the indices as given by part 3. As long as Bob’s
input Y does not contain an atypical sub-string, either part 2 or 3 hold. Therefore we get that the
probability of success on all k instances is at most q + 2−k. Along with Lemma 5.3 this implies
that Pr[S1 · · ·Sk = 1] < 2q.

For the final piece of the argument we prove a key property of sub-distributions.

Lemma 5.5 Let 0 < η < 1/2 and ζ ≤ 1. Let µ ∆= µA⊗µB and ω ∆= ωA⊗ωB be product distributions
on X×Y. If S(ω ‖µ) < η·sub[](f, ζ, µ), and sub[](f, ζ, µ) > 9

η , then any zero-communication protocol
for f with output u ∈ Z has error at least ζ − 4η under ω, i.e., PrXY∼ω[(X,Y, u) 6∈ f ] ≥ ζ − 4η.

Proof: Suppose sub[](f, ζ, µ) = d, S(ωA ‖µA) = sA and S(ωB ‖µB) = sB. Note that S(ω ‖µ) =
sA + sB < ηd. Let r ∆= 1/2η. Applying Lemma 2.7 to ωA and ωB separately, we get a distribu-
tion ω′ = ω′A ⊗ ω′B with ‖ω − ω′‖1 ≤ 4/r and S∞(ω′ ‖µ) ≤ r(sA + sB + 2) + 2 log r

r−1 < d. This
implies, from definition of sub[](f, ζ, µ) = d, that any zero-communication protocol with output
u ∈ Z has error > ζ under ω′. Since ‖ω − ω′‖1 ≤ 4/r = 8η, Lemma 2.9 tells us that the protocol
has error at least ζ − 4η under ω.

Proof of Lemma 5.4: We follow the previously described non-standard notation for conditional
random variables. In addition, a superscript ‘1’ indicates conditioning on the event SI = 1, with I
and SI as in the statement of the lemma.
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To prove the lemma, we show that when parts 1 and 2 are false, part 3 holds. By hypothesis, we
have

S∞(XY(I,w) ‖ X ′Y ′(I,w)) ≤ l + 2k
⇒ S∞(XY 1

(I,w) ‖ X
′Y ′(I,w)) ≤ l + 3k, since Pr[SI,(I,w) = 1] ≥ 2−k;

⇒ S∞(XY 1
(I,w),[k]−I ‖ X

′Y ′[k]−I) ≤ l + 3k, from Lemma 2.10;
⇒ S(XY 1

(I,w),[k]−I ‖ X
′Y ′[k]−I) ≤ l + 3k, from Lemma 2.6;

⇒
∑

i∈[k]−I S(XY 1
i,(I,w) ‖ X

′Y ′i ) ≤ l + 3k, from Lemma 2.5;
⇒ ∃(i ∈ [k]− I) S(XY 1

i,(I,w) ‖ X
′Y ′i ) ≤ l+3k

k−(1−δ)k <
εc
8

(4)

In the third inequality, we also used the independence of X ′Y ′I and X ′Y ′[k]−I . The last inequality

follows from l = δε
16kc and the assumption that sub[](f, ε, µ) = c > 48

δε .

We show in Appendix B that:

Lemma 5.6 The distribution of the random variables XY 1
i,(I,w) is product on X × Y.

Lemma 5.5 tells us that the error in the ith coordinate is therefore at least ε− ε
2 ≥

ε
2 . This implies

part 3 of the lemma.

The direct product property of the subdistribution bound translates to a similar result for the
communication complexity of two-way protocols. Its proof appears in Appendix B.

Theorem 5.7 Let f ⊆ X ×Y ×Z be a relation. Let ε, δ ∈ (0, 1/6) and k be a positive integer. Let
q

∆= (1− ε/2)(1−δ)k. Suppose sub[](f, ε) > 48
δε . Then,

Rpub
1−3q(f

⊗k) ≥ R
[]
1−3q(f

⊗k) > k ·
[
δε
16 · sub[](f, ε)− 1

]
.

The same lower bound holds with sub[](f, ε, u) substituted for sub[](f, ε), for any fixed output u ∈ Z.

Theorem 5.1 along with Lemma 3.1 implies the direct product for the rectangle/corruption bound
due to Beame et al. [7, Theorem 4.2] (with different parameters). The (two-way) product rectangle
bound rec[](f, 1/3, 0) for the Set Disjointness function f is Ω(

√
n) [4]. As a consequence (see [7,

Theorem 4.8]), there is a constant κ such that any two-way protocol for its k-fold product with
communication at most κk

√
n has success probability at most 2−Ω(k).

5.2 One-way protocols

We now explain how similar ideas (however with important differences) as in the two-way case
lead to a direct product results for one-way communication. The differences in the arguments in
this case arise mainly due to the fact that the output of a one-way protocol cannot in general be
inferred from the single message sent by Alice.

We first state and prove our one-way direct-product result for total functions.

Theorem 5.8 Let 0 < ε, δ < 1/6 and k be a positive integer and let

q
∆= (1− ε/2)d(1−δ)ke + 2−k + k · 2−ε2δk/32.
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Let f : X × Y → Z be a function and let µ ∆= µA ⊗ µB be any product distribution on X × Y such
that sub1(f, ε, µ) > 64

δε . Then

sub1(f⊗k, 1− q, µ⊗k) > δε
64 · k · sub1(f, ε, µ).

Proof: Let c ∆= sub1(f, ε, µ) and l
∆= δε

64 · k · c. Let λ ∆= λA ⊗ µ⊗kB be a product distribution on
X k×Yk (which is one-way for µ⊗k) such that S∞(λ ‖ µ⊗k) ≤ l. Let XY be joint random variables
distributed according to λ. For i ∈ [k], let Xi, Yi represent the components of X,Y respectively in
the ith coordinate.

We show that for any fixed function g : Yk → Zk, the distributional error under λ is greater
than 1− q.

Lemma 5.9 Let g : Yk → Zk be a function. Then,

Pr
XY∼λ

[g(Y ) = f(X1, Y1) . . . f(Xk, Yk)] ≤ q.

This lemma directly implies our theorem.

Proof of Lemma 5.9: Let t ∆= d(1− δ)ke. We continue to use most of the same (non-standard)
notation as before. In addition, for strings u, v ∈ X r,Yr respectively we use a non-standard
notation and let f(u, v) represent the string f(u1, v1) . . . f(ur, vr). Let Z ∆= g(Y ) and for all i ∈ [k],
let Zi ∈ Z be projection of Z in the i-th coordinate.

The following lemma, which we prove later captures the main step in our proof.

Lemma 5.10 Let I ⊆ [k] (|I| < t), v ∈ Y |I| and w ∈ Z |I|. Then, either

1. Pr[ZI = w | YI = v] < 2−ε
2δk/32, or

2. Pr[f(XI , v) = w] < 2−k, or

3. There exists an i0 ∈ [k]− I, such that

Pr[f(Xi0 , Yi0) = Zi0 | f(XI , v) = w, YI = v, ZI = w] < 1− ε
2 .

Let us divide the set Yk into subsets using the following process. Let us first invoke Lemma 5.10
with I being the empty set. In this case only part 3 could be true and this gives the first coordinate
say i1. For all strings v1 ∈ Y, w1 ∈ Z, consider the set S(v1, w1) = {y ∈ Yk : yi1 = v1, g(y)i1 = w1}.
For all v1, w1, let us further divide S(v1, w1) into subsets as follows. Let us invoke Lemma 5.10
again with I = {i1}, v = v1 and w = w1. If part 1 holds then we stop further subdividing S(v1, w1)
into subsets and include it in the set Sa. If part 2 holds then we stop subdividing S(v1, w1) into
subsets and include it in the set Ss. If part 3 holds then let i2 be the coordinate obtained. Now
for all strings v2 ∈ Y, w2 ∈ Z, let S(v1v2, w1w2) ⊆ S(v1, w1) be as follows: S(v1v2, w1w2) = {y ∈
S(v1, w1) : yi2 = v2, g(y)i2 = w2}. We proceed in this manner. Let I(v1 . . . vr, w1 . . . wr) be the set
of coordinates obtained during the process while constructing the set S1(v1 . . . vr, w1 . . . wr). Note
that all the sets we produce in this manner are disjoint subsets of Yk. Let S be the set of all such
subsets obtained which do not belong to Sa,Ss.
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Now, note that

Pr
XY∼λ

[g(Y ) = f(X,Y )] ≤
∑

S(v,w)∈Ss

Pr
µkB

[S(v, w)]× Pr[f(XI(v,w), v) = w]

+
∑

S(v,w)∈Sa

Pr
µkB

[S(v, w)]× Pr[f(XI(v,w), v) = w]

+
∑

S(v,w)∈S

Pr
µkB

[S(v, w)]× Pr[f(XI(v,w), v) = w].

Since for all S(v, w) ∈ Ss we have Pr[f(XI(v,w), v) = w] < 2−k, it implies,∑
S(v,w)∈Ss

Pr
µkB

[S(v, w)]× Pr[f(XI(v,w), v) = w] < 2−k
∑

S(v,w)∈Ss

Pr
µkB

[S(v, w)] ≤ 2−k.

Note that, from our construction, for a fixed v and different w,w′ (with |v| = |w| = |w′|), the sets
S(v, w), S(v, w′) are disjoint. Hence,∑

S(v,w)∈Sa

Pr
µkB

[S(v, w)]× Pr[f(XI(v,w), v) = w]

=
∑

S(v,w)∈Sa

Pr
µkB

[YI(v,w) = v]× Pr[ZI(v,w) = w | YI(v,w) = v]× Pr[f(XI(v,w), v) = w]

≤ 2−ε
2δk/32

∑
S(v,w)∈Sa

Pr
µkB

[YI(v,w) = v]× Pr[f(XI(v,w), v) = w] (from part 1)

≤ 2−ε
2δk/32

∑
v:S(v,w)∈Sa

Pr
µkB

[YI(v,w) = v]

≤ 2−ε
2δk/32 × k.

Let S(v′, w′) /∈ Ss ∪ Sa at some stage of subsets subdivision process. In this case part 3 holds on
invoking Lemma 5.10 with v = v′, w = w′ and I = I(v′, w′). Let i0 be the index obtained from
part 3. Therefore,∑
ṽ∈Y,w̃∈Z

Pr
µkB

[S(v′ṽ, w′w̃)]× Pr[f(XI(v′ṽ,w′w̃), v
′ṽ) = w′w̃ | YI(v′ṽ,w′w̃) = v′ṽ, ZI(v′ṽ,w′w̃) = w′w̃]

= Pr[f(XI(v′,w′), v
′) = w′ | YI(v′,w′) = v′, ZI(v′,w′) = w′]× Pr

µkB

[S(v′, w′)]× ∑
ṽ∈Y,w̃∈Z

Pr
µk
B

[S(v′ṽ,w′w̃)]

Pr
µk
B

[S(v′,w′)] Pr[f(Xi0 , ṽ) = w̃ | f(XI(v′,w′), v
′) = w′, YI(v′ṽ,w′w̃) = v′ṽ, ZI(v′ṽ,w′w̃) = w′w̃]


= Pr[f(XI(v′,w′), v

′) = w′ | YI(v′,w′) = v′, ZI(v′,w′) = w′]× Pr
µkB

[S(v′, w′)]×

Pr[f(Xi0 , Yi0) = Zi0 | f(XI(v′,w′), v
′) = w′, YI(v′,w′) = v′, ZI(v′,w′) = w′]

< Pr
µkB

[S(v′, w′)]× Pr[f(XI(v′,w′), v
′) = w′ | YI(v′,w′) = v′, ZI(v′,w′) = w′]× (1− ε

2).

Therefore we can conclude (using iterative sum) that:∑
S(v,w)∈S

Pr
µkB

[S(v, w)]× Pr[f(XI(v,w), v) = w] ≤ (1− ε
2)t.
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Therefore finally we have:

Pr
XY∼λ

[g(Y ) = f(X,Y )] < 2−k + 2−ε
2δk/32 × k + (1− ε

2)t

For proving Lemma 5.10, we will need the following key property of sub-distributions.

Lemma 5.11 Let 0 < η1, η2 < 1/4 and ζ ≤ 1. Let µ ∆= µA ⊗ µB and ω
∆= ωA ⊗ ωB be product

distributions on X ×Y. Let g : Y → Z be a function. Let sub1(f, ζ, µ) > 2 + 1/η1. If S(ωA ‖µA) <
η1 · sub1(f, ζ, µ) and ‖ωB − µB‖1 < η2, then PrXY∼ω[f(X,Y ) = g(Y )] < 1− ζ + 2η1 + η2/2.

Proof: Let d ∆= sub1(f, ζ, µ), s ∆= S(ωA ‖µA) and r
∆= 1/2η1. Applying Lemma 2.7 to ωA, we get a

distribution ω′A with ‖ωA − ω′A‖1 ≤ 2/r and S∞(ω′A ‖µA) ≤ r(s + 1) + log r
r−1 < d. This implies,

from definition of sub1(f, ζ, µ), that PrXY∼ω′A⊗µB [f(X,Y ) = g(Y )] < 1 − ζ. Since ‖ωA − ω′A‖1 ≤
2/r = 4η1, and ‖µB − ωB‖1 ≤ η2, we have ‖ωA ⊗ ωB − ω′A ⊗ µB‖1 ≤ 4η1 + η2. Lemma 2.9 now
tells us that PrXY∼ωA⊗ωB [f(X,Y ) = g(Y )] < 1− ζ + 2η1 + η2/2.

Proof of Lemma 5.10: We follow the previously described non-standard notation for conditional
random variables. In addition, a superscript ‘1’ indicates conditioning on the event f(XI , v) = w,
with I as in the statement of the lemma. Let X ′Y ′ be joint random variables distributed according
to µ⊗k.

To prove the lemma, we show that when parts 1 and 2 are false, part 3 holds. Note that by
hypothesis we have,

S∞(X ‖ X ′) = S∞(λ | µ⊗kA ) ≤ l
⇒ S∞(X1 ‖ X ′) ≤ l + k, since Pr[f(XI , v) = w] < 2−k;
⇒ S∞(X1

[k]−I ‖ X
′
[k]−I) ≤ l + k, from Lemma 2.10;

⇒ S(X1
[k]−I ‖ X

′
[k]−I) ≤ l + k, from Lemma 2.6;

⇒
∑

i∈[k]−I S(X1
i ‖ X ′i) ≤ l + k, from Lemma 2.5;

⇒ Ei∈[k]−I [S(X1
i ‖ X ′i)] ≤ l+k

k−(1−δ)k < εc
32 .

(5)

The last inequality follows from l = δε
64kc and the assumption that sub1(f, ε, µ) = c > 64

δε .

Similarly we have,

S∞(Y(I,v)|(ZI = w) ‖ Y ′(I,v)) ≤
kε2δ
32 , since Pr[ZI = w] ≥ 2−

kε2δ
32 ;

⇒ S∞(Y(I,v),[k]−I |(ZI = w) ‖ Y ′[k]−I) ≤
kε2δ
32 , from Lemma 2.10;

⇒ S(Y(I,v),[k]−I |(ZI = w) ‖ Y ′[k]−I) ≤
kε2δ
32 , from Lemma 2.6;

⇒
∑

i∈[k]−I S(Yi,(I,v)|(ZI = w) ‖ Y ′i ) ≤ kε2δ
32 , from Lemma 2.5;

⇒ Ei∈[k]−I [S(Yi,(I,v)|(ZI = w) ‖ Y ′i )] ≤ ε2/32.

(6)

Using standard applications of Markov’s inequality we can conclude that there exists an i0 ∈ [k]−I
such that S(X1

i0
‖ X ′i0) < εc

16 and S(Yi0,(I,v)|(ZI = w) ‖ Y ′i0) ≤ ε2/16. Using Lemma 2.8 we get that∥∥(Yi0,(I,v)|(ZI = w))− Y ′i0
∥∥

1
≤
√

ln 2
4 · ε. Note that as before we can show that the distribution of
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the random variables XY 1
i0,(I,w) is product on X ×Y. Now using Lemma 5.11 we finally get part 3

of the lemma.

This implies the following direct product result for one-way communication. Its proof is presented
in Appendix B.

Corollary 5.12 Let f : X × Y → Z be a total function. Let 0 < ε, δ < 1/6 and k be a positive
integer. Let q ∆= (1− ε/2)d(1−δ)ke+ 2−k +k ·2−ε2δk/32. There are universal constants γ0, γ1 > 0 such
that if sub1,[](f, ε) > γ0

δε . Then,

R1,pub
1−2q (f

⊗k) ≥ R
1,[]
1−2q(f

⊗k) > k ·
[
δε
γ1
· sub1,[](f, ε)− 1

]
.

This combined with Theorem 4.6 subsumes the strong direct product result due to de Wolf [15]
for the one-way randomized communication complexity of Index. As has been previously noted,
similar results immediately follow for other functions like Set Disjointness and Inner product, whose
one-way communication complexity is captured by their VC-dimension.

One-way direct-product for relations

We now state and prove our one-way direct-product result for relations. For a relation f ⊆ X×Y×Z,
we have the following weaker result.

Theorem 5.13 Let f ⊆ X ×Y ×Z be a relation. Let 0 < ε < 1/6 and k be a positive integer. Let
t

∆= d ε2k
128 log |Z|e. Let

q
∆= (1− ε/2)t + 2−k + k · 2−ε2k/128.

Let µ ∆= µA ⊗ µB be any product distribution on X × Y such that sub1(f, ε, µ) > 128
ε . Then

sub1(f⊗k, 1− q, µ⊗k) > ε
128 · k · sub1(f, ε, µ).

Proof: Let c ∆= sub1(f, ε, µ) and l
∆= ε

128 · k · c. Let λ ∆= λA ⊗ µ⊗kB be a product distribution on
X k×Yk (which is one-way for µ⊗k) such that S∞(λ ‖ µ⊗k) ≤ l. Let XY be joint random variables
distributed according to λ. For i ∈ [k], let Xi, Yi represent the components of X,Y respectively in
the ith coordinate.

We show that for any fixed function g : Yk → Zk, the distributional error under λ is greater
than 1− q.

Lemma 5.14 Let g : Yk → Zk be a function. Then,

Pr
XY∼λ

[f(X,Y, g(Y ))] ≤ q.

This lemma directly implies our theorem.

Proof of Lemma 5.14: We continue to use most of the same (non-standard) notation as before.
In addition, for strings u ∈ X r, v ∈ Yr, w ∈ Zr respectively we use a non-standard notation and
let f(u, v, w) represent the predicate f(u1, v1, w1) ∧ . . . ∧ f(ur, vr, wr). Let Z ∆= g(Y ) and for all
i ∈ [k], let Zi ∈ Z be projection of Z in the i-th coordinate.

The following lemma, captures the main step in our argument and its proof follows on very similar
lines as the proof of Lemma 5.10 and we skip it for brevity.
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Lemma 5.15 Let I ⊆ [k] (|I| < t), v ∈ Y |I| and w ∈ Z |I|. Then, either

1. Pr[ZI = w | YI = v] < 2−ε
2k/64, or

2. Pr[f(XI , v, w)] < 2−k, or

3. There exists an i0 ∈ [k]− I, such that

Pr[f(Xi0 , Yi0 , Zi0) | f(XI , v, w), YI = v, ZI = w] < 1− ε
2 .

For strings v1 . . . vr ∈ Yr and w1 . . . wr ∈ Zr, let I(v1 . . . vr, w1 . . . wr), S(v1 . . . vr, w1 . . . wr) be
defined very similarly as in the proof of Lemma 5.9. Similarly let S,Sa,Ss be also defined as in the
proof of Lemma 5.9.

Now, note that

Pr
XY∼λ

[f(X,Y, g(Y ))] ≤
∑

S(v,w)∈Ss

Pr
µkB

[S(v, w)]× Pr[f(XI(v,w), v, w)]

+
∑

S(v,w)∈Sa

Pr
µkB

[S(v, w)]× Pr[f(XI(v,w), v, w)]

+
∑

S(v,w)∈S

Pr
µkB

[S(v, w)]× Pr[f(XI(v,w), v, w)].

Since for all S(v, w) ∈ Ss we have Pr[f(XI(v,w), v, w)] < 2−k, it implies,∑
S(v,w)∈Ss

Pr
µkB

[S(v, w)]× Pr[f(XI(v,w), v, w)] < 2−k
∑

S(v,w)∈Ss

Pr
µkB

[S(v, w)] ≤ 2−k.

Also, ∑
S(v,w)∈Sa

Pr
µkB

[S(v, w)]× Pr[f(XI(v,w), v, w)]

≤
∑

S(v,w)∈Sa

Pr
µkB

[S(v, w)] =
∑

S(v,w)∈Sa

Pr
µkB

[YI(v,w) = v]× Pr[ZI(v,w) = w | YI(v,w) = v]

≤ 2−ε
2k/64

∑
S(v,w)∈Sa

Pr
µkB

[YI(v,w) = v] (from part 1)

≤ 2−ε
2k/64

∑
v1...vr, w1...ws, r,s ≤ t

Pr
µkB

[YI(v,w) = v]

≤ 2−ε
2k/64

∑
v1...vr, r≤t

|Z|t Pr
µkB

[YI(v,w) = v]

≤ 2−ε
2k/128

∑
v1...vr, r≤t

Pr
µkB

[YI(v,w) = v] ≤ 2−ε
2k/128 × k.

Let S(v′, w′) /∈ Ss ∪ Sa at some stage of subsets subdivision process. In this case part 3 holds on
invoking Lemma 5.15 with v = v′, w = w′ and I = I(v′, w′). Let i0 be the index obtained from
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part 3. Therefore,∑
ṽ∈Y,w̃∈Z

Pr
µkB

[S(v′ṽ, w′w̃)]× Pr[f(XI(v′ṽ,w′w̃), v
′ṽ, w′w̃)]

= Pr[f(XI(v′,w′), v
′, w′)]× Pr

µkB

[S(v′, w′)]× ∑
ṽ∈Y,w̃∈Z

Pr
µk
B

[S(v′ṽ,w′w̃)]

Pr
µk
B

[S(v′,w′)] Pr[f(Xi0 , ṽ, w̃) | f(XI(v′,w′), v
′, w′)]


= Pr[f(XI(v′,w′), v

′, w′)]× Pr
µkB

[S(v′, w′)]× Pr[f(Xi0 , Yi0 , Zi0) | f(XI(v′,w′), v
′, w′)]

< Pr
µkB

[S(v′, w′)]× Pr[f(XI(v′,w′), v
′, w′)]× (1− ε

2).

Therefore we can conclude (using iterative sum) that:∑
S(v,w)∈S

Pr
µkB

[S(v, w)]× Pr[f(XI(v,w), v) = w] ≤ (1− ε
2)t.

Therefore finally we have:

Pr
XY∼λ

[g(Y ) = f(X,Y )] < 2−k + 2−ε
2k/128 × k + (1− ε

2)t .

This implies the following direct product result for one-way communication. Its proof follows very
similarly on the lines of Corollary 5.12 and hence skipped.

Corollary 5.16 Let f ⊆ X × Y × Z be a relation. Let 0 < ε < 1/6 and k be a positive integer.
Let t ∆= d ε2k

128 log |Z|e and q ∆= (1− ε/2)t + 2−k + k · 2−ε2k/128. There are universal constants γ0, γ1 > 0

such that if sub1,[](f, ε) > γ0
ε . Then,

R1,pub
1−2q (f

⊗k) ≥ R
1,[]
1−2q(f

⊗k) > k ·
[
ε
γ1
· sub1,[](f, ε)− 1

]
.

6 The weak direct product property

Here we derive, in our framework, the weak direct product property of the subdistribution bound.
In combination with Lemma 3.2, this subsumes the same result due to Klauck [26] for the rectangle
bound in the case of Boolean functions.

Theorem 6.1 Let f ⊆ X × Y × Z be a relation. Let ε ∈ (0, 1/4), k be a positive integer, and let
q

∆= (1− ε/2)k. Let µ be any distribution on X × Y such that k < rec(f, ε, µ)/4. Then,

rec(f⊗k, 1− q, µ⊗k) > 1
4 · rec(f, ε, µ).

The same inequality holds between rec(f⊗k, 1−q, z, µ⊗k) and rec(f, ε, u, µ) mutatis mutandis for z =
uk and any u ∈ Z.
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Proof: Let c ∆= rec(f, ε, µ). Let R be a rectangle on X k × Yk, such that S∞(µ⊗kR ‖ µ⊗k) ≤ c/4.
Let XY be joint random variables distributed according to µ⊗kR . We use the same notation as in
the proof of the strong direct product theorem.

We show that for any output string z = z1 . . . zk ∈ Zk, the distributional error under µ⊗kR is greater
than 1− q. Formally, define boolean random variables Si such that Si = 1 iff the output in the ith
coordinate is correct, i.e., (Xi, Yi, zi) ∈ f ; Si = 0 otherwise. We show the following.

Lemma 6.2 PrXY∼µ⊗kR
[S1 . . . Sk = 1] < q.

This lemma directly implies our theorem.

Proof of Lemma 6.2: For i ∈ [k], let ĩ denote the set [k]−{i}. Let X ′Y ′ be distributed according
to µ⊗k. Now,

c/4 ≥ S∞(XY ‖ X ′Y ′)
≥ S(XY ‖ X ′Y ′)
≥ Ew∼XY1̃

[S(XY1,(1̃,w) ‖ X
′Y ′

1,(1̃,w)
)]

= Ew∼XY1̃
[S∞(XY1,(1̃,w) ‖ X

′Y ′
1,(1̃,w)

)]

The third inequality above follows from the Chain rule for relative entropy (Lemma 2.4). For the
last inequality note that for every w, the distribution of XY1,(1̃,w) corresponds to a rectangle and
for a rectangle T ⊆ X × Y , S(µT ‖ µ) = S∞(µT ‖ µ).

Now from Markov’s inequality, Prw∼XY1̃
[S∞(XY1,(1̃,w) ‖ X ′Y ′1,(1̃,w)

) ≤ c/2] > 1/2. For w, such
that S∞(XY1,(1̃,w) ‖ X ′Y ′1,(1̃,w)

) ≤ c/2, from definition of rec(f, ε, µ), we get that Pr[S1 = 1|XY1̃ =
w] ≤ 1− ε. Hence overall Pr[S1 = 1] < 1− ε/2.

Let us now condition on S1 = 1. The superscript 1 on a random variable indicates conditioning
on S1 = 1. If Pr[S1 = 1] ≤ 2−k then we are done (since 2−k ≤ q). Hence lets assume that
Pr[S1 = 1] > 2−k. Now S∞(XY 1 ‖ X ′Y ′) < k + c/4 < c/2. Hence as before we would get
Pr[S2 = 1|S1 = 1] < 1−ε/2. Proceeding this way we would finally obtain Pr[S1S2 . . . Sk = 1] < q.

The same proof shows that (two-way) subdistribution bound satisfies the weak direct product
property; the only difference is that we reason about a distribution λ that is SM-like for µ. Any
such distribution remains SM-like in any one coordinate when conditioned on the remaining inputs
and on success in any of the remaining coordinates.

7 Consequences

7.1 Entanglement versus communication

Some of the most important questions in quantum communication concern the power of entan-
glement. Here we consider quantum communication complexity, as introduced by Yao [38], and
investigated extensively thereafter. For definitions concerning quantum computing we refer the
reader to Nielsen and Chuang’s monograph [31].
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There are several models of quantum communication complexity: with entanglement and quantum
communication, with entanglement and classical communication, and without entanglement but
with quantum communication. Due to the phenomenon of quantum teleportation [9], any protocol
with shared entanglement and c qubits of quantum communication may be converted to a protocol
with an additional c shared EPR-pairs, and a total of 2c classical communication.

We are interested in the question whether the quantum communication complexity can be reduced
drastically by allowing prior entanglement. So far only small savings in the quantum communication
complexity are known when entanglement is allowed. Basically, superdense coding [10] allows us
to compress classical messages by a factor of 2 when entanglement is available, hence saving a
factor of 2 in the quantum communication complexity for the model with entanglement. Also,
entanglement can be used like public randomness, leading to additive Θ(log n) savings for some
functions, e.g., Equality. This gives rise to the question as to how much entanglement is actually
necessary to compute a function optimally.

In the analogous situation for public randomness, Newman [30] shows that O(log n) public random
bits are enough to compute any function with optimal communication complexity. His proof is a
black box simulation, in the sense that is does not change the protocol, but rather chooses uniformly
at random from a polynomial-size set of strings and runs the protocol with this randomness. Can
the amount of entanglement be reduced in the same way for quantum protocols? Jain et al. [24]
showed that in fact such a black box approach does not work. Recently, Gavinsky [16] showed that
there is a relation that can be computed with O(k log n) communication and entanglement in a
simultaneous message passing protocol, while every one-way protocol with o(k/ log n) entanglement
and only classical messages needs communication Ω(k

√
n/ log n). Hence trying to work with less

entanglement increases the communication complexity, or requires drastic changes to the protocol,
e.g., going from classical to quantum messages.

Gavinsky derives his result using a direct product theorem for the one-way communication com-
plexity of a certain class of relations. Here we follow the same approach, but use the direct product
theorem we prove for one-way communication complexity to get stronger trade-offs.

We begin by defining the relation used in the result. Recall that a perfect matching is an undirected
graph in which there is exactly one edge incident on each vertex.

Definition 7.1 (Hidden Matching Relation) In the hidden matching problem HMn, Alice gets
a string x ∈ {0, 1}2n, and Bob gets a perfect matching M on 2n vertices. Bob is required to output
an edge {j, k} in M along with the bit xj ⊕ xk.

Bar-Yossef, Jayram, and Kerenidis [5] show that there is a large gap between the classical and
quantum one-way complexity of the relation HMn.

Theorem 7.1 ([5]) The one-way quantum communication complexity (with no error and with no
prior shared entanglement) of the hidden matching relation HMn is O(log n). Moreover, R

1,[]
1/3(HMn) =

Ω(
√
n).

As mentioned above, with quantum teleportation we can implement the quantum protocol for HMn

as a one-way protocol with O(log n) shared EPR-pairs and O(log n) classical communication.

Like Gavinsky, we show that a certain amount of entanglement is necessary to preserve the optimal
communication complexity of the k-fold product of Hidden Matching.
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Theorem 7.2 The relation HM⊗kn , with input length Θ(kn log n), can be computed exactly (with
no error) by a one-way quantum protocol with prior entanglement in the form of O(k log n) shared
EPR-pairs, and (classical) communication O(k log n). There is a constant γ > 0 such that any one-
way quantum protocol which uses an entangled state on γk qubits needs classical communication
Ω(k
√
n).

Proof: By Theorem 7.1 and the remark following it, HM⊗kn can be computed by a one-way protocol
with no error with O(k log n) EPR-pairs and using O(k log n) bits of classical communication.

From the direct product theorem we prove for one-way classical protocols, Theorem 5.12, there is
a constant d > 0 such that

R1,pub
1−2−dk

(HM⊗kn ) ≥ R
1,[]

1−2−dk
(HM⊗kn ) > Ω(k(

√
n− 2 log n− 2)) = Ω(k

√
n). (7)

Suppose we are given a one-way protocol for HM⊗kn with entanglement ρ over dk/2 qubits, classical
communication c, and error at most 1/3. The initial state of the protocol is the entangled state
given to Alice and Bob, in tensor product with their inputs. The entire computation of the protocol
(unitary operations and measurements) followed by the acceptance criterion is captured by a POVM
element E that depends upon the input alone, and acts on the entangled state. The probability of
acceptance is then Tr(Eρ). We replace the entangled state by the maximally mixed state over dk/2
qubits. This decreases the success probability of the protocol to no worse than (2/3)·2−dk/2 > 2−dk.
This holds because any quantum state ρ on l qubits (formally a positive semi-definite 2l × 2l

matrix with trace 1) “sits inside” the maximally mixed state Ul with probability at least 2−l, i.e.,
Ul − 2−lρ ≥ 0.

An l-qubit maximally mixed state is physically and computationally equivalent to the uniform
distribution on l-bit strings. This is a product distribution. As a result, we are left with a private-
coin randomized protocol for HM⊗kn with classical communication c and success probability > 2−dk.
From Eq. (7) we conclude that c = Ω(k

√
n).

If we choose k = np for some constant p > 0, we get a polynomial gap between the two bounds in
the theorem, when the entanglement used is reduced only slightly (from Θ(np log n) to O(np)).

7.2 One-way direct product bound due to Gavinsky

In this section we show that a direct product lower bound shown by Gavinsky [16] follows directly
from the one-way direct product theorem we prove.

For a set S, let US denote the uniform distribution over the set.

Theorem 7.3 (Gavinsky) Let f ⊆ X × Y × Z be a relation, where X = {0, 1}m. Let σ ∈
[logm,m], and log(1/δ) ≥ 4 + 6(log |Z|)/ logm. Assume that for any random variable X taking
values in X with H(X) ≥ m− σ, we have

Pr
(Y,Z)∼UY×Z

[
Pr[(X,Y, Z) ∈ f ] ≥ 2

3

]
≤ δ

|Z| . (8)

Then, for m ≥ 64 and k ≥ logm, for any set B ⊆ X k of size at least 2km−kσ/logm the following
holds:

Pr
Y∼UYk

[
∃z ∈ Zk : |By,z| ≥ (2/3)k/ logm |B|

]
≤ 2−k,

where By,z =
{
x ∈ B : (x, y, z) ∈ f⊗k

}
.
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Proof: Consider any random variable X with min-entropy at least m− σ (and therefore Shannon
entropy also at least as much), and Y ∼ UY . The distribution of XY is one-way for UX×Y and
has relative co-min-entropy at most σ. The hypothesis Eq. (8) implies that the probability that
any z ∈ Z satisfies the relation is at most δ. Let X̃ ∼ UB, Ỹ ∼ UYk . The random variables X̃Ỹ
are one-message-like for the k-fold product of the uniform distribution, and have relative co-min-
entropy at most kσ/ logm. By our direct product theorem, therefore, every zero communication
protocol for f⊗k under this distribution succeeds with probability at most 2−Ω(k). This is the
essence of the conclusion of the theorem.
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Appendix

A Subdistribution versus the rectangle bound

In this section, we show that the two-way subdistribution bounds under an arbitrary (possibly
non-product) distributions are within a constant factor of the corresponding rectangle bounds. We
begin with some observations.

The set of all distributions T such that S∞(T ‖Q) ≤ k is a convex polytope. We call a distribution
P a k-restriction of Q iff P is the distribution of Q conditioned on an event E which is the support
of some extreme point of this polytope.
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Lemma A.1 Any k-restriction P of Q has relative co-min entropy S∞(P ‖Q) ≤ k and is within η =
2−(H∞(Q)−k−1) of the corresponding extreme point (in `1 distance).

Proof: Let S be the sample space on which Q is defined. Let P be a k-restriction of Q de-
rived from the distribution P̃ which is an extreme point of the polytope of distributions T such
that S∞(T ‖Q) ≤ k.

Let E = supp(P̃ ), so that P = P̃ |E . For each i ∈ S, we have 0 ≤ P̃ (i) ≤ 2kQ(i). Since P̃ is an
extreme point, except possibly for one sample point, we have P̃ (i) = 0, or P̃ (i) = 2kQ(i). If this
holds for all i, we have Q(E) = 2−k, and P = P̃ . Evidently, S∞(P ‖Q) = k and

∥∥∥P − P̃∥∥∥
1

= 0 ≤ η.

Suppose there is a unique i0 ∈ E such that 0 < P̃ (i0) < 2kQ(i0). Then

Q(E) = Q(i0) +
∑

i∈E,i 6=i0

Q(i)

= Q(i0) + 1−P̃ (i0)
2k

(9)

> P̃ (i0)
2k

+ 1−P̃ (i0)
2k

= 1
2k
.

So S∞(P ‖Q) = − logQ(E) < k. Furthermore, using Eq. (9) we get∥∥∥P − P̃∥∥∥
1

=
∑
i∈E

∣∣∣P (i)− P̃ (i)
∣∣∣

=
∣∣∣Q(i0)
Q(E) − 1 + 2k(Q(E)−Q(i0))

∣∣∣+
∑

i∈E,i 6=i0

∣∣∣ Q(i)
Q(E) − 2kQ(i)

∣∣∣
= 2

(
1− Q(i0)

Q(E)

)
(2kQ(E)− 1)

≤ 2(2kQ(E)− 1)
= 2(2kQ(i0)− P̃ (i0)).

This is at most η.

Since every point in a convex polytope is a convex combination of its extreme points [35], we have

Corollary A.2 Every distribution P such that S∞(P ‖Q) ≤ k, is a convex combination of distri-
butions that within η (in `1 distance) of k-restrictions of Q, with η = 2−(H∞(Q)−k−1).

Therefore, when Q has sufficiently high min-entropy, i.e., H∞(Q) � k, then we may identify its
k-restrictions with the corresponding extreme points.

Definition A.1 (Sampling matrix) A sampling matrix M is any positive semi-definite diagonal
matrix such that I −M is also positive semi-definite, where I is the identity matrix of the same
dimension.

In the following, we identify a sampling matrix M with its diagonal, and abbreviate the en-
try M(x, x) as M(x). The following is immediate.

Lemma A.3 Let λ, µ be two distributions on X × Y.
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1. The distribution λ is one-message-like for µ with respect to X if and only if there exists a
non-zero sampling matrix M such that λ = (M⊗I)µ

Tr(M⊗I)µ .

2. If λ is one-message-like for µ with respect to X and M is the corresponding sampling matrix,
then S∞(λ‖µ) = − log Tr((M ⊗ I)µ) + maxx∈X logM(x).

3. The distribution λ is SM-like for µ if and only if there exist non-zero sampling matrices M,N
such that λ = (M⊗N)µ

Tr(M⊗N)µ .

4. If λ is SM-like for µ and M,N are the corresponding sampling matrices, then S∞(λ‖µ) =
− log Tr((M ⊗N)µ) + maxx∈X ,y∈Y log(M(x) ·N(y)).

Proof: Consider a distribution λ that is one-message-like for µ with respect to X , and let k =
S∞(λ‖µ) = S∞(λX ‖µX ). Define M(x) = λX (x)/2kµX (x). The diagonal matrix M is a sampling
matrix, and λ = (M ⊗ I)µ/Tr((M ⊗ I)µ). Conversely, any distribution of the latter form is one-
message-like for µ with respect to X . This proves part 1. Part 3 follows along the same lines and
its proof is omitted.

For part 2, we have

S∞(λ‖µ) = max
x∈X ,y∈Y

log λ(x,y)
µ(x,y)

= max
x∈X ,y∈Y

log M(x)µ(x,y)
µ(x,y)·Tr((M⊗I)µ)

= − log Tr((M ⊗ I)µ) + max
x∈X

logM(x).

Part 4 follows along the same lines and its proof is omitted.

The following lemma is useful in the approximation of successive k-restrictions of a distribution
over a product space.

Lemma A.4 Let µ, ν, ω be probability distributions on X ×Y, such that ν is one-message-like for µ
with respect to X , and ω is one-message-like for ν with respect to Y. Let S ⊆ X and T ⊆ Y be
such that

‖ν − µS×Y‖1 ≤ ε1, and
‖ω − νX×T ‖1 ≤ ε2.

Then

‖ω − µS×T ‖1 ≤ 1.5 ε1
ν(X×T ) + ε2.

Proof: We have

‖ω − µS×T ‖1 ≤ ‖ω − νX×T ‖1 + ‖νX×T − µS×T ‖1
≤ ε2 + ‖νX×T − µS×T ‖1 . (10)

We bound the second term in Eq. (10) above as

‖νX×T − µS×T ‖1
=

∑
x∈X ,y∈T

∣∣∣ ν(x,y)
ν(X×T ) −

µS×Y (x,y)
µS×Y (S×T )

∣∣∣
≤

∑
x∈X ,y∈T

∣∣∣ ν(x,y)
ν(X×T ) −

µS×Y (x,y)
ν(X×T )

∣∣∣+
∑

x∈X ,y∈T

∣∣∣µS×Y (x,y)
ν(X×T ) −

µS×Y (x,y)
µS×Y (S×T )

∣∣∣ . (11)
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Further, the first term in Eq. (11) above is bounded as

1
ν(X×T )

∑
x∈X ,y∈T

|ν(x, y)− µS×Y(x, y)| ≤ ε1
ν(X×T ) .

Similarly, the second term in Eq. (11) is bounded as∑
x∈X ,y∈T

∣∣∣µS×Y (x,y)
ν(X×T ) −

µS×Y (x,y)
µS×Y (S×T )

∣∣∣ = µS×Y(S × T ) ·
∣∣∣ 1
ν(X×T ) −

1
µS×Y (S×T )

∣∣∣
≤ ε1

2 ν(X×T ) .

This gives us the claimed bound.

We now move to the connection between the subdistribution and the rectangle bound.

Lemma A.5 Let f ⊆ X × Y × Z be a relation. Let ε, δ ∈ (0, 1). Let µ be a distribution on
X × Y, a = maxx µX (x) = 2−H∞(µX ), b = maxy µY(y) = 2−H∞(µY ), and c = sub(f, ε, µ). If (a +
b)2(c+1)/(1−δ)+2 ≤ ε, then

rec(f, ε, µ) ≥ sub(f, ε, µ) ≥ (1− δ) · rec
(
f,
(
1 + 1

δ

)
ε, µ
)
− 1.

The same inequalities hold between rec(f, ε, z, µ) and sub(f, ε, z, µ) mutatis mutandis for any fixed z ∈
Z.

Proof: The first inequality follows from definitions. For the second inequality let

λ = (M⊗N)µ
Tr((M⊗N)µ)

be the SM-like distribution that is ε-monochromatic for f and achieves S∞(λ‖µ) = c = sub(f, ε, µ).
Let θ ∆= (M⊗I)µ

Tr(M⊗I)µ , where I is the identity matrix, c0 = S∞(θ‖µ) and c1 = S∞(λ‖θ). It follows from
parts 2 and 4 of Lemma A.3 that

c0 + c1 = S∞(θ‖µ) + S∞(λ‖θ) = S∞(λ‖µ) = c.

By applying Lemma A.2 to the pair θX , µX , we see that θ =
∑

i piθi with S∞(θi‖µ) ≤ c0 and∑
i pi = 1. Furthermore, for all i, there is a rectangle Ri = Si × Y in X × Y such that

‖θi − µRi‖1 ≤ 2c0+1a, (12)

and S∞(µRi‖µ) ≤ c0. (Recall that the notation µRi refers to the distribution µ conditioned upon
the event Ri.)

For all i, let λi
∆= (I⊗N)θi

Tr(I⊗N)θi
. We have,

λ = (I⊗N)θ
Tr (I⊗N)θ =

∑
i

pi
(I⊗N)θi

Tr (I⊗N)θ =
∑
i

pi Tr (I⊗N)θi
Tr(I⊗N)θ λi.

Let qi
∆= pi

Tr(I⊗N)θi
Tr(I⊗N)θ , and c1i = S∞(λi‖θi). Note that

∑
i qi = 1 and λ =

∑
i qiλi. Using Lemma A.3,

part 2,
c1i − c1 = S∞(λi‖θi)− S∞(λ‖θ) = log Tr (I⊗N)θ

Tr (I⊗N)θi
.
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Therefore, ∑
i

qi (c1i − c1) =
∑
i

qi log Tr (I⊗N)θ
Tr (I⊗N)θi

=
∑
i

pi
Tr (I⊗N)θi
Tr (I⊗N)θ log Tr (I⊗N)θ

Tr (I⊗N)θi

≤
∑
i

pi = 1. (13)

The last inequality above follows from the fact that x log(1/x) ≤ 1 for x > 0.

Applying Lemma A.2 to the marginal distributions λi,Y and θi,Y , we again express λi =
∑

j rijγij ,
for all i. Here S∞(γij‖θi) ≤ c1i for all i, j, and

∑
j rij = 1. Furthermore, for each i, j there is a

rectangle Rij = X × Tij ⊆ X × Y such that

‖γij − θij‖1 ≤ 2c1i+1bi (14)

and S∞(θij‖θi) ≤ c1i, where θij is the distribution θi conditioned upon the event Rij , and bi =
maxy θi,Y(y) = 2−H∞(θi,Y ).

Since

S∞(θij‖µ) ≤ S∞(θij‖θi) + S∞(θi‖µ)
≤ c1i + c0,

we have ∑
i,j

qirij S∞(θij‖µ) ≤
∑
i,j

qirij (c1i + c0)

≤
∑
i

qi c1i + c0

≤ c1 + 1 + c0 = c+ 1.

Let z ∈ Z be an output such that λ is (ε, z)-monochromatic for f . Let εij ≥ 0 be such that γij
is (εij , z)-monochromatic for f . Then

∑
i,j qi rij εij ≤ ε. By the Markov Inequality, there is a set I

of pairs ij such that εij ≤ ε/δ, and
∑

i,j∈I qi rij ≥ 1−δ. Thus, the expectation of c1i+c0 conditioned
on i, j ∈ I is at most 1

1−δ (c+1). So there exist a pair i0, j0 ∈ I, such that S∞(θi0j0‖µ) ≤ c1i0 +c0 ≤
1

1−δ (c+ 1). By the construction of I, we have εi0j0 ≤ ε/δ.
Let R be the rectangle Si0 × Ti0j0 . We claim that

S∞(µR‖µ) ≤ 1
1−δ (c+ 1), and (15)

‖γi0j0 − µR‖1 ≤ ε. (16)

The first property says that R is a rectangle with probability at least 2−(c+1)/(1−δ) under µ, and
the second implies that the rectangle is ((1 + 1/δ)ε, z)-monochromatic. This in turn implies the
statement of the lemma.

For Eq. (15), observe that for all (x, y) ∈ Rij , we have

θij(x, y) ≤ 2c1iθi(x, y) ≤ 2c1i+c0µ(x, y).
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Applying this to i = i0, j = j0, and summing up over (x, y) ∈ R = Ri0j0 , we get µ(R) ≥ 2−(c1i0+c0) ≥

2
−(c+1)

1−δ . This is equivalent to the first claim.

For Eq. (16), we invoke the bounds in Eqs. (12) and (14), along with Lemma A.4, as applied
to µ, θi, γij . We get ∥∥γij − µRij∥∥1

≤ 1.5
θi(X×Tij)2c0+1a+ 2c1i+1bi.

Since θi ≤ 2c0µ, we have bi ≤ 2c0b. Moreover, θi(X × Tij) ≥ 2−c1i , as θij ≤ 2c1iθi. Taking i =
i0, j = j0, therefore,

‖γi0j0 − µR‖1 ≤ 2c0+c1i0+2a+ 2c1i0+c0+1b

≤ (a+ b)2(c+1)/(1−δ)+2

≤ ε,

by hypothesis. This completes the proof of the lemma.

The relationship between the subdistribution bound and the rectangle bound stated in Section 3
now follows.

Proof of Lemma 3.2: Let a = 2−H∞(µX ) and b = 2−H∞(µY ). Now either,

(a+ b)2(c+1)/(1−δ)+2 ≤ ε

and the hypothesis of Lemma A.5 is satisfied and Lemma 3.2 follows. Otherwise assume W.l.o.g
that (if instead it is b then a similar argument follows),

a ≥ ε · 2−(c+1)/(1−δ)−3 (17)

For any particular x ∈ X , we can find a subset T ⊂ Y and an output z ∈ Z such that (x, T, z) ∈ f
and µ({x} × T ) ≥ µX (x)/ |Z|. So rec(f, 0, µ) is upper bounded by H∞(µX ) + log |Z|. Now from
Eq. (17) we have,

sub(f, ε, µ) ≥ (1− δ)(H∞(µX )− log 1
ε − 3)− 1

≥ (1− δ)(rec(f, 0, µ)− log |Z| − log 1
ε − 3)− 1,

and Lemma 3.2 follows.

B Proofs of some lemmas and theorems

Proof of Lemma 5.3: Let w ∈ BI for some I ⊆ [k]. Since

S∞(XY(I,w) ‖ X ′Y ′(I,w)) > l + 2k,

there exist x, y ∈ X k × Yk with yI = w such that

1
2l+2k · Pr[X = x, Y = y | YI = w] > Pr[X ′ = x, Y ′ = y | Y ′I = w].
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Since S∞(λ ‖ µ⊗k) ≤ l we have, Pr[X = x, Y = y] ≤ 2l · Pr[X ′ = x, Y ′ = y]. Combining these, we
get

Pr[YI = w] < 2−2k · Pr[Y ′I = w].

Summing up over all possibilities for w, we get

Pr[YI ∈ BI ] < 2−2k.

Therefore, by the union bound over subsets I,

Pr[ (∃I ⊆ [k]) YI ∈ BI ] <
∑
I⊆[k]

2−2k = 2−k.

Proof of Lemma 5.2: Here we rigorously complete the proof of this lemma following the informal
sketch in Section 5.1.

In order to bound Pr[S1 . . . Sk = 1], we recursively define a subset J = {j1, . . . , jt} ⊆ [k] of size t for
every y ∈ Yk. The set J depends upon Bob’s input y, and therefore is a random variable correlated
with XY . For the purposes of analysis, we also introduce Boolean random variables Am, Lm,
for m ∈ [t].

Since S∞(λ‖µ) ≤ l, parts 1 and 2 of Lemma 5.4 are false (with the I = ∅ and w set to the null
string). Let j1 be the smallest index given by part 3 of the lemma. We set J = {j1}, A1 = 0 = L1.

Suppose indices I = {j1, . . . , jm} have been defined for input y for some m ∈ [t]. If yI ∈ BI ∪ LI ,
i.e., part 1 or 2 of Lemma 5.4 is satisfied with w = yI , then we extend I arbitrarily to a subset J
of size t containing I. If part 1 is satisfied we define Ap = 1, Lp = 0 for all p > m. If part 2
is, then we set Lp = 1, Ap = 0 for all p > m. Otherwise, we let jm+1 be the smallest index i
given by part 3 of Lemma 5.4 for I as above and w = yI , and set Am+1 = 0 = Lm+1. Thus, the
random variables Ap, Lp are monotonically non-decreasing functions that indicate if parts 1 or 2
were satisfied at any point in the recursive definition of J . In particular, they indicate if the input y
is atypical or is lucky.

Lemma 5.3 tells us that Pr[At = 1] ≤ Pr[ (∃I ⊆ [k]) YI ∈ BI ] < 2−k. Since

Pr[S1 . . . Sk = 1]
= Pr[S1 . . . Sk = 1, At = 1] + Pr[S1 . . . Sk = 1, At = 0]
< 2−k + Pr[S1 . . . Sk = 1, At = 0],

if we show that
Pr[S1 . . . Sk = 1, At = 0] < q + 2−k, (18)

we would get a bound of q + 2−k+1 ≤ 2q as required to prove our lemma.

Now,

Pr[S1 . . . Sk = 1, At = 0]
= Pr[S1 . . . Sk = 1, At = 0, Lt = 1] + Pr[S1 . . . Sk = 1, At = 0, Lt = 0]
< 2−k + Pr[S1 . . . Sk = 1, At = 0, Lt = 0], (19)

since Lt = 1 implies that there is a subset J as defined above such that

Pr[S1 . . . Sk = 1, At = 0, Lt = 1] ≤ EYJ Pr[SJ = 1|YJ ] < 2−k.
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We bound the second term in Eq. (19) by an inductive argument. We show that for all m ∈ [t],

Pr[Sj1 . . . Sjm = 1, Am = 0, Lm = 0] < (1− ε/2)m. (20)

This is true for m = 1 by virtue of Lemma 5.4. Assume that Eq. 20 holds for some m ≥ 1. Then,

Pr[Sj1 . . . Sjm+1 = 1, Am+1 = 0, Lm+1 = 0]

=
∑
w∈Ym

Pr[Sjm+1 = 1 | Sj1 . . . Sjm = 1, Am+1 = 0, Lm+1 = 0, Yj1 · · ·Yjm = w]

×Pr[Sj1 . . . Sjm = 1, Am+1 = 0, Lm+1 = 0, Yj1 · · ·Yjm = w]

< (1− ε/2) ·
∑
w∈Ym

Pr[Sj1 . . . Sjm = 1, Am+1 = 0, Lm+1 = 0, Yj1 · · ·Yjm = w]

= (1− ε/2) · Pr[Sj1 . . . Sjm = 1, Am+1 = 0, Lm+1 = 0]
≤ (1− ε/2) · Pr[Sj1 . . . Sjm = 1, Am = 0, Lm = 0]
< (1− ε/2)m+1.

Here, we invoked part 3 of Lemma 5.4 in the first inequality, the monotone non-decreasing property
of Ap, Lp in the penultimate step, and the induction hypothesis in the final step. This proves that
the second term in Eq. (19) is bounded by q, and therefore Eq. (18) holds.

Proof of Lemma 5.6: Recall that XY ∼ λ = λA ⊗ λB, and therefore are in a product distri-
bution. Therefore, XY(I,w) = XY |(YI = w) = X ⊗ (Y |(YI = w)) are in a product distribution.
Also SI |(YI = w) = 1 is the event (XI , w, zI) ∈ f⊗|I|. So XY 1

(I,w) = XY |(YI = w, SI = 1) are
also in a product distribution. Consequently, the marginal of these random variables on the ith
coordinate is also in a product distribution.

Proof of Theorem 5.7: The first inequality follows from the definitions. For the second inequality
consider a product distribution µ such that sub[](f, ε) = sub[](f, ε, µ). Arguing as in the proof of
Lemma 4.1, and noting that the the conditional distribution of the inputs given any message is still
a product distribution, we get

Dµ⊗k

1−2q−2−k
(f⊗k) > sub[](f⊗k, 1− 2q, µ⊗k)− k.

Since q ≥ 2−k, we get:

R
[]
1−3q(f

⊗k) ≥ Dµ⊗k

1−3q(f
⊗k) ≥ Dµ⊗k

1−2q−2−k
(f⊗k)

> sub[](f⊗k, 1− 2q, µ⊗k)− k
> δε

16 · k · sub[](f, ε)− k.

The last inequality above follows from Theorem 5.1.

Proof of Theorem 5.12: The first inequality follows from the definitions. For the second in-
equality consider a product distribution µ such that sub1,[](f, ε) = sub1(f, ε, µ). Arguing as in the
proof of Lemma 4.1, we get

D1,µ⊗k

1−q−2−k
(f⊗k) > sub1(f⊗k, 1− q, µ⊗k)− k.

35



Now since q ≥ 2−k, we get

R
1,[]
1−2q(f

⊗k) ≥ D1,µ⊗k

1−2q (f⊗k) ≥ D1,µ⊗k

1−q−2−k
(f⊗k)

> sub1(f⊗k, 1− q, µ⊗k)− k
> δε

64 · k · sub1(f, ε, µ)− k (21)

= δε
64 · k · sub1,[](f, ε)− k

≥ k ·
[
δε
64 · sub1,[](f, ε)− 1

]
.

The Eq. (21) follows from Theorem 5.8.
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