
Optimal Direct Sum Results for Deterministic and Randomized

Decision Tree Complexity ∗

Rahul Jain† Hartmut Klauck‡ Miklos Santha§

Abstract

A Direct Sum Theorem holds in a model of computation, when for every problem solving some
k input instances together is k times as expensive as solving one. We show that Direct Sum
Theorems hold in the models of deterministic and randomized decision trees for all relations. We
also note that a near optimal Direct Sum Theorem holds for quantum decision trees for boolean
functions.

Keywords: Computational Complexity, Direct Sum, Decision Tree Complexity.

1 Introduction

One of the goals of complexity theory is to understand the structural properties of different models of
computation. A fundamental question that can be asked in every model of computation is how well
different computations may be combined. Can we achieve substantial savings when solving the same
problem on k (independent) inputs together? Or is the straightforward approach, namely running
the same algorithm k times, optimal? This question is known as the direct sum problem, and has
been studied in many different settings and variations.

We say that a Direct Sum Theorem holds for a measure of complexity, when solving k input
instances together is roughly as costly as k times solving one instance according to that measure.
Since we are often interested in bounded error computations, we also need to specify how the error
on k input instances relates to the error on one instance. The direct sum question in a narrower
sense relates to solving k instances with constant error, while a Strong Direct Product Theorem holds
when even using roughly k times the resources required to solve one instance with constant error,
the success probability goes down exponentially in k. This happens when we solve the k instances
independently, and a Strong Direct Product Theorem states that this is optimal with respect to
resources and error. In this paper we only consider the direct sum problem in the narrower sense:
we compare solving one instance with constant (resp. no) error to solving k instances with constant
(resp. no) error.

The decision tree model (see [BW02]) is perhaps the simplest model of computation, measuring
the number of input positions that need to be accessed in order to compute a function/solve a
∗Research supported in part by the French ANR QRAC project under contract ANR-08-EMER-012. Research at

the Centre for Quantum Technologies is funded by the Singapore Ministry of Education and the National Research
Foundation.
†Centre for Quantum Technologies and Department of Computer Science, National University of Singapore. Email:

rahul@comp.nus.edu.sg
‡Centre for Quantum Technologies (NUS) and School of Physical and Mathematical Sciences, Nanyang Technological

University. Email: hklauck@gmail.com
§CNRS - LRI, Université Paris-Sud, Orsay, France and Centre for Quantum Technologies, National University of

Singapore. Email: santha@lri.fr

1



relation. Still many questions about this model remain open. In this paper we show that the direct
sum property holds for deterministic and randomized decision trees.

Previously, a Strong Direct Product Theorem for decision trees was established by Nisan et
al. [NRS94]. However, their result does not imply a Direct Sum Theorem in our sense, because it
is only shown in a weaker setting. Instead of analyzing a single algorithm that has access to all k
inputs and produces all k outputs, Nisan et al. consider a setting where k algorithms (that can access
all inputs), each making at most d queries, compute one of the k outputs each, where d is the query
complexity of computing one instance (with bounded error). Hence this does not establish a Direct
Sum Theorem in the above sense.

Previous papers [NRS94, BN95] have dismissed the direct sum problem for decision trees as
either very simple, or uninteresting. To quote [NRS94]: “While it is an easy exercise to see that
‘direct-sum holds for decision tree depth, the other two problems (direct product and help bits) are
more difficult.” The paper does not make it clear, what kind of decision tree is meant (the setting
considered there is distributional complexity). In the distributional setting a general counterexample
by Shaltiel [Sha01] makes it clear that some very tight direct sum statements are not even true for
the model where there is one decision tree that has to solve all k input instances together.

Ben-Asher and Newman claim in [BN95]: “In the standard decision tree model the question is
quite uninteresting as queries do not involve variables of more than one of the problem instances at a
time.” This does not seem to be a valid assessment of the problem, because with the same argument
the strong direct product question for decision trees could be dismissed, which has only very recently
been resolved (in the setting where one algorithm makes all outputs) by Drucker [D10].

The following partial results are known about the direct sum question for randomized and quan-
tum decision trees. Klauck et al. [KSW07] show a Strong Direct Product Theorem (and hence a
Direct Sum Theorem) for the randomized complexity of all functions, for which the block-sensitivity
bound is tight, as well as for the quantum complexity of all functions, for which the square root of
block-sensitivity is a tight bound. Ambainis et al. [ASW09] show a Strong Direct Product Theorem
for the quantum complexity of all symmetric functions. Spalek [S01] shows a Strong Direct Product
Theorem for all functions for which the “multiplicative quantum adversary bound” is tight.

We give proofs of Direct Sum Theorems for the case of deterministic and randomized decision
trees. In the deterministic case the main problem is to construct a more efficient decision tree for one
instance from a given tree for two instances. In the randomized case the proof is along the lines of
some proofs of Direct Sum Theorems in communication complexity e.g. [JRS05]. After a preprint of
the present paper was circulated, Drucker [D10] showed various Strong Direct Product Theorems for
randomized query complexity. His Theorem 12.3 implies a Direct Sum Theorem for the randomized
query complexity of all relations with somewhat worse parameters (and a more complicated proof)
than ours.

One may ask if a similar direct sum result is true for quantum decision trees, also known as
quantum query algorithms. A somewhat weaker statement than for the randomized and deterministic
cases can be derived from recent results by Reichardt. In [R09, R10] he shows that the general
quantum adversary bound is tight for the quantum decision tree complexity of every boolean function
(his Theorem 1.3 in [R10]). He also shows that the general adversary bound has a direct sum behavior
for boolean functions (see Theorem 7.2 in the long version of [R09]. Note that one has to choose
a good “connection” function f like the parity function). The direct sum for the general adversary
bound has also been shown previously in Ambainis, Childs, Le Gall and Tani [ACGT09]. Hence we
can conclude that in the quantum case, at least for boolean functions, a Direct Sum Theorem also
holds.

2



2 Preliminaries

A deterministic decision tree on m variables is a rooted binary tree T whose internal vertices are
labeled by the boolean variables x1, . . . , xm, and whose leaves are labeled by the output values from
a set Y. For every vertex v in T , we denote by v0 (respectively v1) the left son (respectively the
right son) of v, and by T (v) the subtree of T rooted at v. We set Tb = T (vb), for b ∈ {0, 1}, where
v is the root of T . The depth dT (v) of vertex v in tree T , is defined recursively: it is 0 if v is a
leaf, otherwise dT (v) = max{dT (v0), dT (v1)} + 1. The depth d(T ) of T is simply the depth of its
root. Every tree naturally computes a function fT on m variables, whose value at an assignment
x = (x1, . . . , xm) ∈ {0, 1}m is defined recursively as follows: If the root of T is a leaf, then fT (x) is
the value of its label. Otherwise, if xi is the label of the root and xi = b, then fT (x) = fTb

(x).
Clearly, more than one decision tree computes the same function f . The deterministic decision

tree complexity of f , denoted D(f), is the minimal depth of a decision tree T such that fT = f .
The above definitions naturally extend to trees whose leaves are labeled by elements of Yk, for

some positive integer k. We call these trees k-output deterministic decision trees, they compute
k-output functions whose range is by definition Yk. We will use the notation f = (f (1), . . . , f (k))
for k-output functions, where f (i) is the function computing the ith output of f . In particular,
we are interested here in the case when m = kn and the functions do not share common input
variables. More precisely, let f : {0, 1}kn → Yk be a k-output function whose input variables are
x1,1, . . . , x1,n, . . . , xk,1, . . . , xk,n. We set x̄i = (xi,1, . . . , xi,n), and say that f is k-independent if the
value of f (i) depends only on x̄i.

One can also extend the definition of deterministic decision trees and k-independence to relations
f ⊆ {0, 1}m ×Y instead of functions in a straightforward way (decision trees are required to find an
output y for each input x ∈ {0, 1}m so that (x, y) ∈ f).

In particular, for a relation f ⊆ {0, 1}m×Yk, the relation f (i) ⊆ {0, 1}m×Y consists of all (x, y),
such that (x, y1, . . . , yi−1, y, yi+1, . . . , yk) ∈ f for some y1 . . . , yi−1, yi+1, . . . , yk.

Note that for inputs x for which there is no y with (x, y) ∈ f no requirement on the output is
made, and hence we can assume that all relations are total without loss of generality. Since for each
input only one output can be produced, each deterministic tree automatically computes a function
that is consistent with the relation in question.

For a relation f ⊆ {0, 1}n × Y, we define the kth tensor power of f as the relation f⊗k ⊆
{0, 1}kn×Yk by f⊗k = {((x̄1, . . . , x̄k), (y1, . . . , yk)) : ∀i : (x̄i, yi) ∈ f}. Note that f⊗k is k-independent.

A randomized decision tree onm variables with error ε is a probability distribution on deterministic
m-variable decision trees, such that for each input x a correct output is computed with probability
1 − ε by a tree chosen from the distribution. If not mentioned otherwise ε = 1/3. Note that for
k-output relations f an output (y1, . . . , yk) is considered erroneous, if (x̄i, yi) 6∈ f (i) for some i, i.e.,
all k outputs are required to be correct simultaneously. The depth (or maximum number of queries)
of a randomized decision tree is the maximal depth of any tree occurring in the distribution with
positive probability.

For ε > 0, let Rε(f) denote the ε-error randomized query complexity of f , which is the maximum
number of queries made by the minimal depth randomized decision tree with error at most ε. Let µ be
a distribution on {0, 1}n. Let Rµε (f) represent the ε-error distributional query complexity of f under
µ, which is the maximum number of queries made by the minimal depth randomized decision tree
that has average error at most ε under µ (note that such a tree can be assumed to be deterministic
w.l.o.g., but sometimes it is simpler to give a randomized tree).

We also consider randomized decision trees that make no errors. In this case we are interested in
the expected number of queries of a randomized tree, i.e., the maximum (over inputs) of the expected
(over the distribution on trees) length of the path that the input determines in the tree. Let R0(f)

3



denote the 0-error randomized query complexity of f which is the minimum over all randomized
decision trees T that make no error in computing f of the maximum over inputs x of the expected
number of queries that T makes on x. Let Rµ0 (f) represent the 0-error distributional query complexity
of f under µ, which is the expected number (now over inputs as well) of queries made by the best
randomized (w.l.o.g deterministic) decision tree with no error.

We have the following fact from [Y83].

Fact 1 (Yao’s Principle) Let ε > 0, then Rε(f) = maxµR
µ
ε (f). Also R0(f) = maxµR

µ
0 (f).

3 Direct Sum for Deterministic Complexity

Let f ⊆ {0, 1}kn×Yk be a k-output relation. Obviously D(f) ≤
∑k

i=1Df (i) since the values f (i) can
be evaluated sequentially. We prove that for k-independent relations this is in fact the least expensive
way to evaluate f , that is the inverse inequality also holds.

Theorem 1 (Deterministic Direct Sum) For every k-independent relation f ⊆ {0, 1}kn × Yk,
we have D(f) ≥

∑k
i=1D(f (i)).

Proof Let T be a k-output deterministic decision tree on variables {x1,1, . . . , xk,n}. For i = 1, . . . , k,
we refer to {xi,1, . . . , xi,n} as the ith group of variables. For every vertex v of T , we define recursively
k single output decision trees T1(v), . . . , Tk(v), where the vertices of Ti(v) are labeled by the variables
from the ith group. If v is a leaf with label (b1, . . . , bk), then Ti(v) is a single node tree (a leaf), with
label bi. Otherwise, let v be an internal node and let’s suppose that its label is from the jth group of
variables. The root of Tj(v) is by definition v with the same label as in T , its left subtree is Tj(v0)
and its right subtree is Tj(v1). For all i 6= j, the tree Ti(v) is defined as the shallower (smaller depth)
tree between Ti(v0) and Ti(v1).

Claim 1 For every vertex v of T , we have
∑k

i=1 d(Ti(v)) ≤ dT (v).

Proof The proof is by induction on the depth of v, and the statement is obviously true when
v is a leaf. We suppose without loss of generality that the label of v is from the jth group. Let
b ∈ {0, 1} such that d(Tj(v)) = d(Tj(vb)) + 1. By definition, for all i 6= j, we have d(Ti(v)) =
min{d(Ti(v0)), d(Ti(v1))}, and therefore d(Ti(v)) ≤ d(Ti(vb)). Thus

k∑
i=1

d(Ti(v)) ≤ d(Tj(vb)) + 1 +
∑
i 6=j

d(Ti(vb))

≤ dT (vb) + 1
≤ dT (v),

where the second inequality follows from the inductive hypothesis, and the third one from the defi-
nition of the depth. �

We say that T is parsimonious if no variable appears twice on the same root-leaf path.

Claim 2 Let T be parsimonious. Then for every vertex v in T , for every 1 ≤ i ≤ k, and for every
assignment x̄i ∈ {0, 1}n for the variables in the ith group, there exists, for all j 6= i, an assignment
x̄j ∈ {0, 1}n for the variables in the jth group such that

fTi(v)(x̄i) = f
(i)
T (v)(x̄1, . . . , x̄i, . . . , x̄k).

4



Proof The proof is again by induction on the depth of v. Fix 1 ≤ i ≤ k. If v is a leaf, we can
choose for every x̄i ∈ {0, 1}n an arbitrary x̄j ∈ {0, 1}n, for j 6= i. Otherwise, we distinguish two
cases, according to the label of v.

Case 1: The label of v is xi,p from the ith group of variables, for some 1 ≤ p ≤ n. Let x̄i ∈ {0, 1}n
be an assignment for the variables in the ith group, and let xi,p = b. By the inductive hypothesis
there exists x̄′j , for j 6= i, such that

fTi(vb)(x̄i) = f
(i)
T (vb)

(x̄′1, . . . , x̄i, . . . , x̄
′
k).

We set x̄j = x̄′j , for j 6= i. Then we have

fTi(v)(x̄i) = fTi(vb)(x̄i)

= f
(i)
T (vb)

(x̄′1, . . . , x̄i, . . . , x̄
′
k)

= f
(i)
T (v)(x̄1, . . . , x̄i, . . . , x̄k).

The first equality follows from the definition of fTi(vb)(x̄i) since xi,p = b. The third equality also holds
because by definition fT (v)(x̄1, . . . , x̄i, . . . , x̄k) = fT (vb)(x̄1, . . . , x̄i, . . . , x̄k).

Case 2: The label of v is xj,p from the jth set of variables for some j 6= i and 1 ≤ p ≤ n. Let b be
such that Ti(v) = Ti(vb). Then again by the inductive hypothesis, for every x̄i ∈ {0, 1}n, there exists
x̄′j , for j 6= i, that satisfy

fTi(vb)(x̄i) = f
(i)
T (vb)

(x̄′1, . . . , x̄i, . . . , x̄
′
k).

We define xl,q for l 6= i and q = 1, . . . , n by

xl,q =

{
b if (l, q) = (j, p),
x′l,q otherwise.

Then, similarly to Case 1, we have the following series of equalities:

fTi(v)(x̄i) = fTi(vb)(x̄i)

= f
(i)
T (vb)

(x̄′1, . . . , x̄i, . . . , x̄
′
k)

= f
(i)
T (v)(x̄1, . . . , x̄i, . . . , x̄k).

The first equality is true because Ti(v) = Ti(vb). The path followed on input (x̄1, . . . , x̄i, . . . , x̄k)
in T (v) goes from v to vb since xj,p = b, and then it is identical to the path followed on in-
put (x̄′1, . . . , x̄i, . . . , x̄

′
k) in T (vb) because T is parsimonious. Therefore fT (vb)(x̄

′
1, . . . , x̄i, . . . , x̄

′
k) =

fT (v)(x̄1, . . . , x̄i, . . . , x̄k), and the last equality also holds. �

We now prove Theorem 1 by contradiction. Let us suppose that D(f) <
∑n

i=1D(f (i)). Let T
be a deterministic decision tree of depth D(f) which computes a function f̃ that is consistent with
the relation f . Since T is a minimal depth decision tree computing f̃ , we can suppose without loss
of generality that T is parsimonious. Let r be the root of T , then d(r) = D(f). For i = 1, . . . , k, let
Ti = Ti(r). By Claim 2 and k-independence, Ti computes an f̃ (i), which is consistent with f (i), and
therefore D(f (i)) ≤ d(Ti). Thus d(r) <

∑k
i=1 d(Ti), contradicting Claim 1. �

Corollary 1 For every relation f ⊆ {0, 1}n×Y and for every integer k, we have D(f⊗k) = k ·D(f).

5



4 Direct Sum for Randomized Query Complexity

Theorem 2 (Randomized Direct Sum) Let f ⊆ {0, 1}n × Y be a relation. Let k be a positive
integer and let ε, δ > 0. Then

1. Rε(f⊗k) ≥ δ · k ·Rε′(f), where ε′ = ε+ δ.

2. R0(f⊗k) = k ·R0(f).

Proof

1. Let c = Rε(f⊗k). Let P be a randomized protocol for f⊗k with c queries and worst case error
at most ε. Let µ be a distribution on {0, 1}n. Let µ⊗k represent the distribution on {0, 1}kn
which consists of k independent copies of µ. Now let us consider the situation when we provide
inputs to P distributed according to µ⊗k. In such a situation we can fix the random coins of
P in a suitable manner to get another protocol P1 such that E(x1...xk)←µ⊗k [e(x1 . . . xk)] ≤ ε,
where e(x1 . . . xk) represents the error made by P1, which is now a deterministic protocol, on
input (x1 . . . xk) (each xi ∈ {0, 1}n represents the input for the ith instance of f ; for notional
convenience we use xi here instead of xi as used in the previous section). Let q(x1 . . . xk)
represent the number of queries made by P1 on input (x1 . . . xk). For each 1 ≤ i ≤ k, let
qi(x1 . . . xk) represent the number of queries made by P1 on xi on input (x1 . . . xk). Since
q(x1 . . . xk) =

∑k
i=1 qi(x1 . . . xk), we have,

c ≥ E(x1...xk)←µ⊗k [q(x1 . . . xk)]

= E(x1...xk)←µ⊗k [
k∑
i=1

qi(x1 . . . xk)]

=
k∑
i=1

E(x1...xk)←µ⊗k [qi(x1 . . . xk)] .

Therefore there exists 1 ≤ j ≤ k such that E(x1...xk)←µ⊗k [qj(x1 . . . xk)] ≤ c
k . Now P1 naturally

gives rise to a protocol P2 for f which imitates P1 as follows. In P2, the actual input x ∈
{0, 1}n is considered to be the input xj of P1 and the inputs x1, . . . , xj−1, xj+1, . . . , xk of P1

are generated according to µk−1, using random coins. The protocol P2 then imitates P1 and
outputs the answer corresponding to the jth coordinate. The expected number of queries of P2

under µ is at most c
k and expected error under µ is at most ε. Now let us consider a protocol P3

which proceeds exactly as P2 but terminates whenever the number of queries exceeds c
δk . Using

Markov’s inequality we can argue that the expected error of P3 under µ is at most ε′ = ε + δ
and of course the maximum queries made by P3 is at most c

δk . Hence by definition Rµε′(f) ≤ c
δk .

Since this is true for every distribution µ on {0, 1}n, we get from Yao’s Principle, Fact 1, the
desired result as follows.

Rε′(f) = max
µ

Rµε′(f) ≤ c

δk
=
Rε(f⊗k)
δk

.

2. The inequality R0(f⊗k) ≤ k ·R0(f) is easily seen, indeed k independent executions of the best
protocol for f give a protocol for f⊗k. Consider now the reverse inequality. Let c = R0(f⊗k).
Let P be a randomized protocol for f⊗k with expected queries on any input at most c and
no error. Let µ be a distribution on {0, 1}n. Let µ⊗k be as before. Now let us consider the
situation when we provide input to P distributed according to µ⊗k. In such a situation we can

6



fix the random coins of P in a suitable manner to get a deterministic 0-error protocol P1 such
that E(x1...xk)←µ⊗k [q(x1 . . . xk)] ≤ c, where q(x1 . . . xk) represents the number of queries made
by P1, on input (x1 . . . xk) (each xi ∈ {0, 1}n represents the input for the ith instance of f).
For each 1 ≤ i ≤ k, let qi(x1 . . . xk) represent the number of queries made by P1 on xi on input
(x1 . . . xk). Since q(x1 . . . xk) =

∑k
i=1 qi(x1 . . . xk), we have,

c ≥ E(x1...xk)←µ⊗k [q(x1 . . . xk)]

= E(x1...xk)←µ⊗k [
k∑
i=1

qi(x1 . . . xk)]

=
k∑
i=1

E(x1...xk)←µ⊗k [qi(x1 . . . xk)] .

Therefore there exists 1 ≤ j ≤ k such that E(x1...xk)←µ⊗k [qj(x1 . . . xk)] ≤ c
k . Without loss

of generality assume j = 1. Using this we can argue that there exist x′2 . . . x
′
k ∈ {0, 1}kn−n

such that Ex1←µ[q1(x1x
′
2 . . . x

′
k)] ≤

c
k . Therefore fixing x′2 . . . x

′
k in P1 naturally gives rise to a

protocol P2 for f with expected number of queries under µ being at most c
k and zero error.

Hence by definition Rµ0 (f) ≤ c
k . Since this is true for every distribution µ on {0, 1}n, we get

from Yao’s Principle, Fact 1, the desired result as follows.

R0(f) = max
µ

Rµ0 (f) ≤ c

k
=
R0(f⊗k)

k
.

�

5 Open Problems

We proved direct sum theorems for deterministic and randomized query complexity. Note that it
is also very easy to establish the direct sum property for nondeterministic query complexity (also
known as certificate complexity C(f), see [BW02]): C(f⊗k) = k · C(f). However, several related
open problems remain:

1. The direct sum theorem in the randomized case loses a factor of δ in the lower bound, as well
as an additive δ in the error bound. While at least the factor in the lower bound is unavoidable
in the setting of distributional complexity according to a result by Shaltiel [Sha01], this might
not be necessary in the worst case complexity setting.

2. In the quantum case the result following from Reichardt’s work holds only for boolean functions.
Can a tight result be established, even for all relations?

3. In the randomized setting the obvious way to compute k instances with constant error requires
a success amplification step that costs a factor of log k. This is known to be unnecessary in the
quantum case [BNRW07], but unknown to be tight in the randomized case.

6 Acknowledgements

The authors would like to thank the anonymous referees for helpful comments.

7



References

[ACGT09] A. Ambainis, A. M. Childs, F. Le Gall, S. Tani. The quantum query complexity of
certification. Preprint, arXiv:0903.1291.

[ASW09] A. Ambainis, R. palek, and R. de Wolf. A New Quantum Lower Bound Method, with
Applications to Direct Product Theorems and Time-Space Tradeoffs. Algorithmica,
55(3):422-461, 2009.

[BN95] Y. Ben-Asher and I. Newman. Decision Trees with AND, OR Queries. In Proceedings of
10th IEEE Conference Structure in Complexity Theory, pp. 74–81, 1995.

[BW02] H. Buhrman and R. de Wolf. Complexity measures and decision tree complexity: A
survey. Theoretical Computer Science, 288(1):21–43, 2002.

[BNRW07] H. Buhrman, I. Newman, H. Rhrig, and R. de Wolf. Robust Quantum Algorithms and
Polynomials. Theory of Computing Systems 40(4):379-395, 2007.

[D10] Andrew Drucker. Improved Direct Product Theorems for Randomized Query Complexity.
Preprint: arXiv:1005.0644, 2010.

[JRS05] R. Jain, J. Radhakrishnan and P. Sen. Prior entanglement, message compression and
privacy in quantum communication. In Proceedings of 20th IEEE Conference on Com-
putational Complexity, pp. 285–296, 2005.

[KSW07] H. Klauck, R. palek, and R. de Wolf. Quantum and Classical Strong Direct Product The-
orems and Optimal Time-Space Tradeoffs. In SIAM Journal on Computing, 36(5):1472-
1493, 2007.

[NRS94] N. Nisan, S. Rudich and M.E. Saks. Products and Help Bits in Decision Trees. In
Proceedings of 35th IEEE Symposium on Foundations of Computer Science, pp. 318–329,
1994.

[R09] B. W. Reichardt. Span programs and quantum query complexity: The general adversary
bound is nearly tight for every boolean function. In Proceedings of 50th IEEE Symposium
on Foundations of Computer Science, pp. 544–551, 2009. Long version under quant-
ph/0904.2759

[R10] B. W. Reichardt. Reflections for quantum query algorithms. Preprint: arXiv:1005.1601,
2010.

[Sha01] R. Shaltiel. Towards proving strong direct product theorems. In Proceedings of 16th
IEEE Conference on Computational Complexity, pp. 107–119, 2001.

[S01] Robert Spalek. The Multiplicative Quantum Adversary. In Proceedings of 23rd IEEE
Conference on Computational Complexity, pp.237–248, 2008

[Y83] A.C.C. Yao. Lower Bounds by Probabilistic Arguments. In Proceedings of 24th IEEE
Symposium on Foundations of Computer Science, pp. 420–428, 1983.

8


