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Abstract

We show a near optimal direct-sum theorem for the two-party randomized communication
complexity. Let f ⊆ X × Y × Z be a relation, ε > 0 and k ≥ 1 be an integer. We show,

Rpub
ε (fk) · log(Rpub

ε (fk)) ≥ Ω(k · Rpub
ε (f)) ,

where fk = f × . . .× f (k-times) and Rpub
ε (·) represents the public-coin randomized communi-

cation complexity with worst-case error ε.
Given a protocol P for fk with communication cost c · k and worst-case error ε, we exhibit

a protocol Q for f with external-information-cost O(c) and worst-error ε. We then use a
message compression protocol due to Barak, Braverman, Chen and Rao [2] for simulating Q
with communication O(c · log(c · k)) to arrive at our result.

To show this reduction we show some new chain-rules for capacity, the maximum information
that can be transmitted by a communication channel. We use the powerful concept of Nash-
Equilibrium in game-theory, and its existence in suitably defined games, to arrive at the chain-
rules for capacity. These chain-rules are of independent interest.

1 Introduction

A fundamental question in complexity theory is how much resource is needed to solve k independent
instances of a problem compared to the resource required to solve one instance. More specifically,
suppose for solving one instance of a problem with probability of correctness p, we require c units of
some resource in a given model of computation. A natural way to solve k independent instances of
the same problem is to solve them independently, which needs k · c units of resource and the overall
success probability is pk. A direct-product (a.k.a. parallel-repetition) theorem for this problem would
state that any algorithm, which solves k independent instances of this problem with o(k · c) units of
the resource, can only compute all the k instances correctly with probability at most p−Ω(k). The
weaker direct-sum theorems state that in order to compute k independent instances of a problem,
if we provide o(k ·c) units of resource, then the success probability for computing all the k instances
correctly is at most a constant q < 1.

In this work, we are concerned with the model of communication complexity [35]. In this model
there are different parties who wish to compute a joint relation of their inputs. They do local
computation, use public and-or private coins, and communicate to achieve this task. The resource
that is counted is the number of bits communicated. The text by Kushilevitz and Nisan [26] is an
excellent reference for this model.

Direct-product and direct-sum questions have been extensively investigated in different sub-
models of communication complexity, a partial list includes [30, 29, 10, 1, 31, 20, 14, 21, 24, 27, 34,
18, 12, 23, 17, 3, 22, 32, 9, 13, 4, 2, 5, 8, 6, 19, 25, 7, 33].

*Centre for Quantum Technologies, Department of Computer Science, National University of Singapore. MajuLab,
UMI 3654, Singapore. Email: rahul@comp.nus.edu.sg
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Our result

In this paper, we show a direct-sum theorem for the two-party randomized communication com-
plexity. In this model, for computing a relation f ⊆ X ×Y×Z (where X , Y, and Z are finite sets),
one party, say Alice, is given an input x ∈ X and the other party, say Bob, is given an input y ∈ Y.
They do local computation, use public and-or private coins, exchange messages between them and
at the end output an element z ∈ Z. They succeed if (x, y, z) ∈ f . For ε ∈ (0, 1), let Rpub

ε (f)
be the two-party communication complexity of f with worst case error ε (see Definition 2.7). Let
fk = f × . . .× f (k-times). In a protocol for fk, Alice receives input from X k, Bob receives input
from Yk and the output of the protocol is in Zk. We show the following.

Theorem 1.1. Let f ⊆ X × Y × Z be a relation, ε, δ > 0 and k ≥ 1 be an integer. Then,

Rpub
ε (fk) · log(Rpub

ε (fk)/δ) ≥ Ω
(
δ2 · k · Rpub

ε+δ(f)
)
,

implying (using Fact 2.9),

Rpub
ε (fk) · log(Rpub

ε (fk)) ≥ Ω
(
k · Rpub

ε (f)
)
.

Our techniques

Most previous direct-sum results involved information theoretic arguments and proceeded as follows.
Let ε, δ > 0 and µ be a distribution on X × Y (possibly non-product across X and Y) such that

Rpub
ε+δ(f) = Dµ

ε+δ(f)
def
= c (as guaranteed by Yao’s principle, see Fact 2.8). Consider a protocol

P for fk with CC(P) = o(kc) and err(P) = ε (see Definition 2.7). Using chain-rule for mutual-
information and use of correlation-breaking random variables one is able to obtain a protocol Q
for f such that the internal-information-cost [1, 6] ICµINT(Q) = o(c) and errQ(f) = ε. So the
key question that remains is: can one simulate Q with another protocol Q′ such that CC(Q′) =
O(ICµINT(Q) · polylog(CC(Q))) and err(Q′) = err(Q) + δ? Compression results are known that
introduce dependence on the number of rounds of communication in Q or heavier (than polylog)
dependence on CC(Q) implying various direct-sum results [2, 4].

On the other hand it is known [2] that Q can be simulated with another protocol Q′ such that
CC(Q′) = O(ICµEXT(Q) · log(CC(Q))) and errµQ′(f) = errµQ(f) + δ, where ICµEXT represents external-
information-cost [10]. So the question then is: can one obtain a protocol Q such that ICµEXT(Q) =
o(c) and errQ(f) = ε? We answer this in the affirmative. To obtain this reduction (from P to Q),
we show some new chain-rules for capacity, the maximum information that can be transferred by a
communication channel. Chain-rules for capacity (instead of chain-rules for information) facilitate
bounds on external-information-cost instead of bounds on internal-information-cost. We use the
powerful concept of Nash-Equilibrium in game-theory, and its existence in suitably defined games,
to arrive at the chain-rules for capacity. These chain-rules are of independent interest.

Use of chain-rules for capacity to obtain a direct-sum result has been done previously by Jain and
Klauck [13] to obtain an optimal direct-sum result for the private-coin classical and entanglement-
unassisted quantum Simultaneous-Message-Passing (SMP) models. They used a chain-rule for
capacity due to Jain [15] (see Fact 3.5).
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Organization

In Section 2 we present some background on information theory and communication complexity.
In Section 3, we prove chain-rules for capacity. In Section 4 we present the proof of the direct-sum
result.

2 Preliminaries

Information theory

For natural number k, let [k] represent the set {1, 2, . . . , k}. For i ∈ [k] let −i def
= [k]−{i};≤ i def

= [i].
Similarly define ≥ i;< i;> i. For string x = (x1, . . . , xk) and T ⊆ [k], let xT be sub-string of x with

indices in T . For all i, define (xi, x−i)
def
= x. For a random variable X = (X1, . . . , Xk), similarly

define XT , X−i, X<i and so on.
Let X ,Y,M be finite sets (we only consider finite sets in this work unless otherwise specified).

Let D(X ) be the set of probability distributions supported on X . For µ ∈ D(X ), let µ(x) represent
the probability of x ∈ X according to µ. For a random variable X taking values in {0, 1}∗ we define

|X| def
= max{n | Pr[X ∈ {0, 1}n] > 0}. We use the same symbol to represent a random variable

and its distribution whenever it is clear from the context. For jointly distributed random variables
XY distributed according to µ, denoted XY ∼ µ, let (Y |X = x) = Yx ∼ µx.

Definition 2.1. 1. The expectation value of function f is denoted as

E
x←X

[f(x)]
def
=
∑
x∈X

Pr[X = x] · f(x) .

2. For µ, λ ∈ D(X ), the distribution µ ⊗ λ is defined as (µ ⊗ λ)(x1, x2)
def
= µ(x1) · λ(x2). We

sometimes use (µ, λ) to represent µ⊗λ when it is clear from the context. Let µk
def
= µ⊗· · ·⊗µ,

k times.

3. The `1 distance between µ and λ is defined to be half of the `1 norm of µ− λ; that is,

‖λ− µ‖1
def
=

1

2

∑
x

|λ(x)− µ(x)| = max
S⊆X
|λS − µS | ,

where λS
def
=
∑

x∈S λ(x).

4. The entropy of X is defined as: H(X)
def
= −

∑
x Pr[X = x] · log Pr[X = x] .

5. The conditional-entropy of Y conditioned on X is defined as

H(Y |X)
def
= E

x←X
[H(Yx)] = H(XY )−H(X) .

6. The relative-entropy between X and Y is defined as

S(X‖Y )
def
= E

x←X

[
log

Pr[X = x]

Pr[Y = x]

]
.
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7. The mutual-information between X and Y is defined as

I(X : Y )
def
= H(X) + H(Y )−H(XY ) .

We say that X and Y are independent iff I(X : Y ) = 0.

8. The conditional-mutual-information between X and Y , conditioned on Z, is defined as:

I(X : Y |Z)
def
= E

z←Z
[I(X : Y |Z = z)] = H (X|Z) + H (Y |Z)−H (XY |Z) .

9. Let g : X × Y → D(M) be a map (a.k.a channel). For distribution µ ∈ D(X × Y), define

gµ(x) = E
y←µx

[g(x, y)] ; gµ(y) = E
x←µy

[g(x, y)] ; gµ = E
(x,y)←µ

[g(x, y)] .

We will need the following basic facts. A very good text for reference on information theory
is [11].

Fact 2.2 (Chain-rule for mutual-information).

I(X1 . . . Xk : M) =

k∑
i=1

I(Xi : M |X<i) .

If (X1, . . . , Xk) are independent then: I(X1 . . . Xk : M) ≥
∑k

i=1 I(Xi : M) .

Fact 2.3 (Joint-convexity for relative-entropy). For all µ, µ′, λ, λ′ and p ∈ [0, 1],

S
(
pµ+ (1− p)µ′

∥∥pλ+ (1− p)λ′
)
≤ p · S(µ‖λ) + (1− p) · S

(
µ′
∥∥λ′) .

Fact 2.4 (Chain-rule for relative-entropy). For random variables XY and X ′Y ′,

S
(
X ′Y ′

∥∥XY ) = S
(
X ′
∥∥X)+ E

x←X′

[
S
(
Y ′x
∥∥Yx)] .

In particular, using Fact 2.3:

S
(
X ′Y ′

∥∥X ⊗ Y ) = S
(
X ′
∥∥X)+ E

x←X′

[
S
(
Y ′x
∥∥Y )] ≥ S

(
X ′
∥∥X)+ S

(
Y ′
∥∥Y ) .

Fact 2.5 (see e.g Fact 2.5 [19]).

|X| ≥ H(X) ≥ I(X : Y ) = E
y←Y

[S(Xy‖X)] = E
x←X

[S(Yx‖Y )] = S(XY ‖X ⊗ Y )

= min
X′,Y ′

S
(
XY

∥∥X ′ ⊗ Y ′) = min
Y ′

E
x←X

[
S
(
Yx
∥∥Y ′)] = min

X′
E

y←Y

[
S
(
Xy

∥∥X ′)] .

Game theory

This work relies on the following powerful theorem from game theory, which is a consequence of
the Kakutani fixed-point theorem in real analysis.

Fact 2.6 (Nash-Equilibrium, Proposition 20.3 [28]). Let k, n be a positive integers. Let A =
A1 × . . .×Ak, where each Ai is a non-empty, convex and compact subset of Rn. For each i ∈ [k],
let ui : A → R be a continuous function such that

∀a = (a1, . . . , ak) ∈ A : the set {a′i ∈ Ai : ui(a
′
i, a−i) ≥ ui(a)} is convex.

There is an equilibrium point a∗ ∈ A such that

∀i : max
ai∈Ai

ui(ai, a
∗
−i) = ui(a

∗) .
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Communication complexity

Let f ⊆ X × Y × Z be a relation and ε ∈ (0, 1). In this work we only consider complete relations,
that is for every (x, y) ∈ X × Y, there is some z ∈ Z such that (x, y, z) ∈ f . In a two-party
communication protocol (or just a protocol) P for f , Alice with input x ∈ X and Bob with input
y ∈ Y, do local computation, use public and-or private coins and exchange messages. The last
message consists of output z ∈ Z. Let XY represent the inputs, M the messages exchanged and
R the public-coin used in P. We call messages and public-coin together as transcript of P. We use
P to present the transcript random variable of P and also the map P : X ×Y → D(M), whereM
is the set of transcripts of P.

Definition 2.7. Let P be a protocol, µ ∈ D(X × Y) and XY ∼ µ. Define,

CC(P) = max
x,y
|M(x, y)| ; outP(x, y) = output random variable on input (x, y),

errP(f, (x, y)) = Pr((x, y, outP(x, y)) /∈ f),

errP(f) = max
x,y

errP(f, (x, y)) ; errµP(f) = E
(x,y)←µ

[errP(f, (x, y))] ,

Rpub
ε (f) = min

P: errP (f)≤ε
CC(P) ; Dµ

ε (f) = min
P: errµP (f)≤ε

CC(P),

ICµINT(P) = I(X : P|Y ) + I(Y : P|X) ; ICµEXT(P) = I(XY : P) ,

ICINT(P) = max
µ

ICµINT(P) ; ICEXT(P) = max
µ

ICµEXT(P).

The following is a consequence of the min-max theorem in game theory which in turn is a
consequence of Fact 2.6.

Fact 2.8 (Yao’s principle [35]). Rpub
ε (f) = maxµ Dµ

ε (f).

Success in randomized protocols can be boosted by the standard repetition and taking majority
arguments.

Fact 2.9. Let ε, ε′ > 0 be constants, then, Rpub
ε (f) = Θ(Rpub

ε′ (f)).

Following fact is known in previous works, we provide a proof for completeness.

Fact 2.10. Let P be protocol and µ = µA ⊗ µB have full support in X × Y. Then

∀(x, y) ∈ X × Y : S(P(x, y)‖Pµ) = S(P(x, y)‖Pµ(x)) + S(P(x, y)‖Pµ(y)) .

Proof. Let M = (M1 . . .Mt) be the transcript of P, correlated with the inputs XY ∼ µ (Mi

represents the ith bit in the transcript). Let A ⊆ [t] be the set of bits transmitted by Alice and
B ⊆ [t] be the set of bits transmitted by Bob. Note that,

∀i ∈ [t],m<i : I(X : Y |M<i = m<i) = 0 .

This implies,

∀i ∈ [A],m<i : I(XMi : Y |M<i = m<i) = 0 ,

∀i ∈ [B],m<i : I(YMi : X |M<i = m<i) = 0 . (1)
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Consider,

S(P(x, y)‖Pµ)

=
t∑

i∈A
E

m<i←M<i

[S(Mi(x, y)|m<i‖Mi|m<i)] +
t∑

i∈B
E

m<i←M<i

[S(Mi(x, y)|m<i‖Mi|m<i)] (Fact 2.4)

=

t∑
i∈A

E
m<i←M<i

[S(Mi(x, y)|m<i‖Mi(y)|m<i)] +

t∑
i∈B

E
m<i←M<i

[S(Mi(x, y)|m<i‖Mi(x)|m<i)] . (Eq. (1))

(2)

Also,

S(P(x, y)‖Pµ(x))

=
t∑

i∈A
E

m<i←M<i

[S(Mi(x, y)|m<i‖Mi(x)|m<i)] +
t∑

i∈B
E

m<i←M<i

[S(Mi(x, y)|m<i‖Mi(x)|m<i)] (Fact 2.4)

=
t∑

i∈B
E

m<i←M<i

[S(Mi(x, y)|m<i‖Mi(x)|m<i)] . (Eq. (1))

(3)

Similarly,

S(P(x, y)‖Pµ(y)) =
t∑

i∈A
E

m<i←M<i

[S(Mi(x, y)|m<i‖Mi(y)|m<i)] . (4)

Combining Eq. (2), (3), (4) we get the desired.

Definition 2.11 (Simulation of a protocol). Let δ > 0. We say a protocol Q, δ-simulates a protocol
P with inputs XY , if there exists a function g such that:

E
(x,y)←XY

[‖g(Q(x, y))− P(x, y)‖1] ≤ δ .

Barak et al. [2] showed that any protocol P with low external-information-cost can be simulated
by a protocol Q with low communication. A very nice property is that communication in Q does
not depend on the number of rounds of P. We use the version as stated in Theorem 10 in [5] where
it is credited to [2].

Fact 2.12 (Compression to external-information [2]). Let δ > 0, µ ∈ D(X ×Y) and P be a protocol.
There exists a protocol Q that δ-simulates P and

CC(Q) = O
(

1

δ2
· ICµEXT(P) · log(CC(P)/δ)

)
.
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3 Chain rules for capacity

Capacity

Let g : X → D(M) be a map (a.k.a channel)1.

Definition 3.1 (Capacity). The capacity of g is defined as

cap(g)
def
= max

µ∈D(X )
E
x←µ

[S(g(x)‖gµ)] .

Following notion of a capacity-dual was considered by Jain [16].

Definition 3.2 (Capacity-dual). The capacity-dual of g is defined as

c̃ap(g)
def
= min

γ∈D(X )
max
x∈X

S(g(x)‖gγ) .

Using Fact 2.3 and Fact 2.6, Jain [16] showed that capacity is lower bounded by capacity-dual.

Fact 3.3 (Lemma 2. [16]).

cap(g) ≥ max
µ∈D(X )

min
γ∈D(X )

E
x←µ

[S(g(x)‖gγ)] = min
γ∈D(X )

max
x∈X

S(g(x)‖gγ) = c̃ap(g) .

We show they are in fact the same.

Lemma 3.4. minM∈D(M) maxx∈X S(g(x)‖M) = cap(g) = c̃ap(g).

Proof. Consider,

cap(g) = max
µ∈D(X )

E
x←µ

[S(g(x)‖gµ)]

≤ min
M∈D(M)

max
µ∈D(X )

E
x←µ

[S(g(x)‖M)] (Fact 2.5)

= min
M∈D(M)

max
x∈X

S(g(x)‖M)

≤ c̃ap(g) .

Combined with Fact 3.3 shows the desired.

Chain-rules

Let g : X → D(M) be a channel where X = (X1 × . . . × Xk). For i ∈ [k] and µ ∈ D(X ), define
channel giµ : Xi → D(M) given by giµ(xi) = gµ(xi). Let A = D(X1)× . . .×D(Xk).

Following chain-rule for capacity was shown by Jain [15].

Fact 3.5 (A chain-rule for capacity. Theorem 2.1 [15]).

cap(g) ≥
k∑
i=1

min
µ∈D(X )

cap(giµ) .

1All the results in this section also hold for c-q channels, mapping classical inputs to quantum states.
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We show a stronger chain-rule.

Lemma 3.6 (A chain-rule for capacity).

cap(g) ≥ min
(θ,γ)∈A×A

k∑
i=1

max
xi

S
(
gθ(xi)

∥∥gθ−i,γi)
= min

θ∈A

k∑
i=1

cap(giθ) . (Lemma 3.4)

Proof. For all i ∈ [k], µ = (µ1, . . . , µk) ∈ A, define

ui(µ) = min
γi∈D(Xi)

E
xi←µi

[
S
(
gµ(xi)

∥∥gµ−i,γi)] .

For all µ, µ′i, µ
′′
i , p ∈ [0, 1],

ui(pµ
′
i + (1− p)µ′′i , µ−i)

= min
γi

E
xi←pµ′i+(1−p)µ′′i

[
S
(
gµ(xi)

∥∥gµ−i,γi)]
= min

γi

(
p E
xi←µ′i

[
S
(
gµ(xi)

∥∥gµ−i,γi)]+ (1− p) E
xi←µ′′i

[
S
(
gµ(xi)

∥∥gµ−i,γi)])
≥ p

(
min
γi

E
xi←µ′i

[
S
(
gµ(xi)

∥∥gµ−i,γi)])+ (1− p)
(

min
γi

E
xi←µ′′i

[
S
(
gµ(xi)

∥∥gµ−i,γi)])
= p · ui(µ′i, µ−i) + (1− p) · ui(µ′′i , µ−i) . (5)

From Eq. (5) and Fact 2.6 (by letting ∀i : (Ai, ui)← (D(Xi), ui)), we get θ = (θ1, . . . , θk) ∈ A such
that,

∀i : ui(θ) = max
µi∈D(Xi)

ui(µi, θ−i)

= max
µi

min
γi

E
xi←µi

[
S
(
gθ(xi)

∥∥gθ−i,γi)]
= min

γi
max
xi

S
(
gθ(xi)

∥∥gθ−i,γi) . (Fact 3.3)

Let X = (X1 . . . Xk) ∼ θ and ∀x ∈ X : (M | X = x) ∼ g(x). Consider,

k∑
i=1

min
γi

max
xi

S
(
gθ(xi)

∥∥gθ−i,γi) =
∑
i

ui(θ)

=
∑
i

min
γi

E
xi←θi

[
S
(
gθ(xi)

∥∥gθ−i,γi)]
≤
∑
i

E
xi←θi

[
S
(
gθ(xi)

∥∥gθ−i,θi)]
=
∑
i

I(Xi : M) (Fact 2.5)

≤ I(X : M) (Fact 2.2)

≤ cap(g) . (Definition 3.1)

This concludes the desired.
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We strengthen the chain rule to allow for conditioning on some events. Let

T = {(T, xT ) | T ⊆ [k], xT ∈ XT }.

Below whenever i ∈ T , define S(·‖·) def
= 0.

Lemma 3.7 (A chain-rule for capacity).

cap(g) ≥ max
α∈D(T )

min
(θ,γ)∈A×A

k∑
i=1

max
xi

E
(T,xT )←α

[
S
(
gθ(xi, xT )

∥∥gθ−i,γi(xT )
)]

.

Proof. Let α ∈ D(T ). For all i ∈ [k], µ = (µ1, . . . , µk) ∈ A, define,

ui(µ) = min
γi∈D(Xi)

E
(T,xT )←α,xi←µi

[
S
(
gµ(xi, xT )

∥∥gµ−i,γi(xT )
)]

.

For all µ, µ′i, µ
′′
i , p ∈ [0, 1],

ui(pµ
′
i + (1− p)µ′′i , µ−i) = min

γi
E

(T,xT )←α,xi←pµ′i+(1−p)µ′′i

[
S
(
gµ(xi, xT )

∥∥gµ−i,γi(xT )
)]

= min
γi

(
p E

(T,xT )←α,xi←µ′i

[
S
(
gµ(xi, xT )

∥∥gµ−i,γi(xT )
)]

+ (1− p) E
(T,xT )←α,xi←µ′′i

[
S
(
gµ(xi, xT )

∥∥gµ−i,γi(xT )
)])

≥ p
(

min
γi

E
(T,xT )←α,xi←µ′i

[
S
(
gµ(xi, xT )

∥∥gµ−i,γi(xT )
)])

+ (1− p)
(

min
γi

E
(T,xT )←α,xi←µ′′i

[
S
(
gµ(xi, xT )

∥∥gµ−i,γi(xT )
)])

= p · ui(µ′i, µ−i) + (1− p) · ui(µ′′i , µ−i) . (6)

From Eq. (6) and Fact 2.6 (by letting ∀i : (Ai, ui)← (D(Xi), ui)), we get θ = (θ1, . . . , θk) ∈ A such
that,

∀i : ui(θ) = max
µi∈D(Xi)

ui(µi, θ−i)

= max
µi

min
γi

E
(T,xT )←α,xi←µi

[
S
(
gθ(xi, xT )

∥∥gθ−i,γi(xT )
)]

= min
γi

max
xi

E
(T,xT )←α

[
S
(
gθ(xi, xT )

∥∥gθ−i,γi(xT )
)]

. (Fact 2.3 and Fact 2.6) (7)

Let X = (X1 . . . Xk) ∼ θ and ∀x ∈ X : (M | X = x) ∼ g(x). Consider,∑
i

ui(θ) =
∑
i

min
γi

E
(T,xT )←α,xi←θi

[
S
(
gθ(xi, xT )

∥∥gθ−i,γi(xT )
)]

≤
∑
i

E
(T,xT )←α,xi←θi

[
S
(
gθ(xi, xT )

∥∥gθ−i,θi(xT )
)]

=
∑
i

E
(T,xT )←α

[I(Xi : M |XT = xT )] (Fact 2.5)

≤ E
(T,xT )←α

[I(X : M |XT = xT )] (Fact 2.2)

≤ cap(g) . (Definition 3.1)

Combining this with Eq. (7) concludes the desired.
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Following is a strengthening of the above by changing the order of quantifiers.

Lemma 3.8 (A chain-rule for capacity).

cap(g) ≥ min
(θ,γ)∈A×A

max
T,xT

∑
i/∈T

max
xi

S
(
gθ(xi, xT )

∥∥gθ−i,γi(xT )
)
.

Proof. For tuples (β1, . . . , β`), (β
′
1, . . . , β

′
`) and p ∈ [0, 1], define the convex combination,

p · (β1, . . . , β`) + (1− p) · (β′1, . . . , β′`) = (pβ1 + (1− p)β′1, . . . , pβ` + (1− p)β′`) .

For all α ∈ D(T ), i ∈ [k], (θ, γ), (θ′, γ′), p ∈ [0, 1]:

max
xi

E
(T,xT )←α

[
S
(
gpθ+(1−p)θ′(xi, xT )

∥∥∥gpθ−i+(1−p)θ′−i,pγi+(1−p)γ′i(xT )
)]

≤ max
xi

(
p · E

(T,xT )←α

[
S
(
gθ(xi, xT )

∥∥gθ−i,γi(xT )
)]

+ (1− p) · E
(T,xT )←α

[
S
(
gθ′(xi, xT )

∥∥∥gθ′−i,γ′i(xT )
)])

(Fact 2.3)

≤ p
(

max
xi

E
(T,xT )←α

[
S
(
gθ(xi, xT )

∥∥gθ−i,γi(xT )
)])

+ (1− p) ·
(

max
xi

E
(T,xT )←α

[
S
(
gθ′(xi, xT )

∥∥∥gθ′−i,γ′i(xT )
)])

. (8)

Consider,

cap(g) ≥ max
α

min
θ,γ

∑
i

max
xi

E
(T,xT )←α

[
S
(
gθ(xi, xT )

∥∥gθ−i,γi(xT )
)]

(Lemma 3.7)

= min
θ,γ

max
T,xT

∑
i/∈T

max
xi

S
(
gθ(xi, xT )

∥∥gθ−i,γi(xT )
)
. (Fact 2.6, Eq. (8))

4 Direct-sum

We are now ready to prove the direct-sum result.

Theorem 4.1. Let f ⊆ X × Y × Z be a relation, ε, δ > 0 and k ≥ 1 be an integer. Then,

Rpub
ε (fk) · log(Rpub

ε (fk)/δ) ≥ Ω
(
δ2 · k · Rpub

ε+δ(f)
)
,

implying (using Fact 2.9),

Rpub
ε (fk) · log(Rpub

ε (fk)) ≥ Ω
(
k · Rpub

ε (f)
)
.

10



Proof. Let µ̃ ∈ D(X × Y) be a distribution (guaranteed by Fact 2.8) be such that, Rpub
ε+δ(f) =

Dµ̃
ε+δ(f). Assume there is a protocol P : X k × Yk → D(M) with CC(P) = kc and errP(fk) ≤ ε,

where M denote the set of transcripts of P.
Let XY ∼ µ̃. Let D be a random variable uniformly distributed in {0, 1}k. For d ∈ {0, 1}k, let

T di = Xi, Sdi = Yi if di = 0 and T di = Yi,Sdi = Xi if di = 1. Let T d = T d1 ×. . .×T dk , Sd = Sd1×. . .×Sdk .
Let µdi ∼ Y if di = 0 and µdi ∼ X if di = 1. Let µd = µd1 ⊗ . . . µdk. From Lemma 3.8 (by setting
[k]← [2k],X ← X k × Yk,M←M, g ← P) we get (θ, γ) such that (below θi = (θAi , θ

B
i ), similarly

γi = (γAi , γ
B
i ), contains two components, one belonging to Alice and Bob each),

kc = CC(P) ≥ cap(P) (Fact 2.5)

≥ E
d←D,s←µd

[
k∑
i=1

max
ti∈T di

S
(
Pθ(ti, s)

∥∥Pθ−i,γi(s))
]

(Lemma 3.8)

= k · E
i←[k],d←D,s←µd

[
max
ti∈T di

S
(
Pθ(ti, s)

∥∥Pθ−i,γi(s))
]

=
k

2
· E
i←[k],d−i←D−i,(s−i,yi)←(µd−i ,Y )

[
max
xi∈Xi

S
(
Pθ(xi, yi, s−i)

∥∥Pθ−i,γi(yi, s−i))]
+
k

2
· E
i←[k],d−i←D−i,(s−i,xi)←(µd−i ,X)

[
max
yi∈Yi

S
(
Pθ(xi, yi, s−i)

∥∥Pθ−i,γi(xi, s−i))]
≥ k

2
· E
i←[k],d−i←D−i,s−i←µd−i ,(xi,yi)←µ̃

[
S
(
Pθ(xi, yi, s−i)

∥∥Pθ−i,γi(yi, s−i))]
+
k

2
· E
i←[k],d−i←D−i,s−i←µd−i ,(xi,yi)←µ̃

[
S
(
Pθ(xi, yi, s−i)

∥∥Pθ−i,γi(xi, s−i))]
=
k

2
· E
i←[k],d−i←D−i,s−i←µd−i ,(xi,yi)←µ̃

[
S
(
Pθ(xi, yi, s−i)

∥∥Pθ−i,γi(s−i))] . (Fact 2.10)

Fix (i, d−i, s−i) such that2,

2c ≥ E
(xi,yi)←µ̃

[
S
(
Pθ(xi, yi, s−i)

∥∥Pθ−i,γi(s−i))] . (9)

Consider the following protocol Q for f .

1. Alice gets input x̃ ∈ X . Bob gets input ỹ ∈ Y.

2. They set (xi, yi) = (x̃, ỹ).

3. They set s−i in Sd−i .

4. They generate t−i ← θT d−i using private-coin and set in T d−i .

5. They run P.

2For Fact 2.10, using standard continuity arguments assume w.l.o.g γAi ⊗ γBi has full support in Xi × Yi.
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Note that CC(Q) = CC(P) and errQ(f) = errP(fk). We have,

2c ≥ E
(x̃,ỹ)←µ̃

[
S
(
Q(x̃, ỹ)

∥∥Pθ−i,γi(s−i))] (Eq. (9))

= S
(
XYQ

∥∥XY ⊗ Pθ−i,γi(s−i)) (Fact 2.4)

≥ I(XY : Q) . (Fact 2.5)

From Fact 2.12 and Definition 2.1, we get a protocol Q1 that δ-simulates Q such that

CC(Q1) = O
( c
δ2

log(kc/δ)
)

and errµ̃Q1
(f) ≤ ε+ δ ,

implying

Dµ̃
ε+δ(f) = O

( c
δ2

log(kc/δ)
)
,

which concludes the desired.

Open questions

1. Braverman and Rao [4] defined a correlated-pointer-jumping promise-problem CPJ(C, I) and
showed that it is in a sense complete for the direct-sum question. Our result shows

Rpub(CPJ(C, I)) = O(I logC) .

Can we get explicit protocols for CPJ(C, I) with similar communication?

2. Can our arguments be extended to show near optimal direct-product results for communica-
tion complexity?
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