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Abstract

We show an Ω(
√
n/T 3) lower bound for the space required by any unidirectional constant-

error randomized T -pass streaming algorithm that recognizes whether an expression over two
types of parenthesis is well-parenthesized. This proves a conjecture due to Magniez, Mathieu,
and Nayak (2009) and rigorously establishes the peculiar power of bi-directional streams over
unidirectional ones observed in the algorithms they present.
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1 Introduction

The language Dyck(2) consists of all well-parenthesized expressions over two types of parenthesis,
denoted below by a, a and b, b.

Definition 1.1 Dyck(2) is the language over alphabet Σ =
{
a, a, b, b

}
defined recursively by:

Dyck(2) = ε+
(
a ·Dyck(2) · a+ b ·Dyck(2) · b

)
·Dyck(2).

This deceptively simple language is complete for the class of context-free languages [4], and is im-
plicit in a myriad of information processing tasks. It has been studied extensively, most recently in
setting of streaming algorithms [11]. Streaming algorithms are designed with the idea of process-
ing massive data, which cannot fit entirely in computer memory. Consequently, random access to
the input is extremely expensive, and furthermore, the algorithms are required to use space that
is much smaller than the length of the input. Formally, streaming algorithms access the input
sequentially, one symbol at a time, a small number of times (called passes), while attempting to
solve some information processing task using as little space as possible. (See the text [12] for an
introduction to this topic.)

Magniez, Mathieu, and Nayak [11] present two randomized streaming algorithms for Dyck(2). The
first makes one pass over the input, recognizes well-parenthesized expressions with space O(

√
n log n )

bits, and has polynomially small probability of error. They show that the space requirement shrinks
drastically when the algorithm is allowed another pass over the input. The second algorithm makes
two passes over the input, uses only O(log2 n) space, and has polynomially small probability of
error. A startling property of the second algorithm is that it makes the second pass in reverse
order, and this seems essential for its performance. This phenomenon is partially explained by the
authors, by way of a space lower bound for one-pass algorithms. They prove that any one-pass
algorithm that makes error at most 1/n log n uses space Ω(

√
n log n), and conjecture that a similar

bound hold for multi-pass streaming algorithms if all passes are made in the same direction.

Logarithmic space is sufficient to recognize Dyck(2), if we are allowed random access to the input:
we may run through all possible heights, and check parentheses at the same height. This scheme
translates to streaming algorithms with a linear number of passes, but does not rule out the
possibility of algorithms with fewer (but more than one) passes, that use sub-polynomial space.
We show an Ω(

√
n/T 3) lower bound for the space required by any unidirectional randomized T -pass

streaming algorithm that recognizes Dyck(2) with a constant probability of error. This proves the
conjecture from [11] and establishes the peculiar power of bi-directional streams.

A relatively straightforward generalization of the one-pass algorithm in [11] gives us a unidirectional
randomized T -pass streaming algorithm that uses space O

(√
(n log n)/T

)
and has polynomially

small probablity of error. The lower bound we derive thus comes within a factor
√

log n/T 5/2 of
optimal. We believe the dependence on T may be improved with a more nuanced analysis. We also
note that the bound for one pass algorithms is a factor of

√
log n better than the one in [11], for

constant error probability, but falls short of optimal (by the same factor) for polynomially small
error.

We derive the above lower bound by following the same high level route as taken by the previous
set of authors. They map a streaming algorithm with space s for Dyck(2) to a multi-party
communication protocol in which the messages are each of the same length s, and then bound s
from below through a communication complexity bound. The communication bound is derived
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using the information cost approach (see, for example, [3, 14, 2, 8, 6]), which reduces the task to
bounding from below the information cost of a variant of the Index problem. It is here that we
depart from the earlier route. First, we formulate a bound for protocols resulting from one-pass
algorithms entirely in information-theoretic terms. Second, we develop a round reduction type
of argument to extend this technique to multi-pass protocols. A notion of information cost for
Index has been studied previously by Jain, Radhakrishnan, and Sen [7] in the context of privacy
in communication. This notion, defined in terms of the hard distribution for the problem, however
seems not to be directly relevant to our situation, where we deal with an easy distribution (on
which the function value is a constant).

2 Lower bounds for unidirectional streams

In this section we present the main result of this article, a bound on the space required by streaming
algorithms for Dyck(2). The lower bound is derived by invoking methods from communication
complexity. We use the reduction between a streaming algorithm for Dyck(2) and two-party
communication protocols for a variant of Index given by Magniez, Mathieu, and Nayak [11]. While
their connection is described for one-pass algorithms, it holds mutatis mutandis for (unidirectional)
multi-pass streaming algorithms. We state this connection in Section 2.2, and then develop our
lower bounds in Sections 2.3 and 2.4. We summarize the notational conventions we follow and the
background from information theory that we assume in Section 2.1.

2.1 Information theory basics

We reserve small case letters like x, k,m1 for bit-strings or integers, and capital letters like X,K,M1

for random variables over the corresponding sample spaces. We use the same symbol for a random
variable and its distribution. Given joint random variables AB over a product sample space, A
represents the marginal distribution over the first component. We often use A|b as shorthand
for the conditional distribution A|(B = b) when the second random variable B is clear from the
context. For random variable X ∈ {0, 1}n, and number k ∈ [n], we let X[1, k] = X1 · · ·Xk. We use
integer subscripts in the standard way to denote elements of a sequence. We denote the `1-distance
between two random variables A,B over the same sample space by ‖A−B‖. If they are jointly
distributed with another random variable C, we denote the `1-distance between the conditional
distributions A|(C = c) and B|(C = c) by ‖(A−B)|(C = c)‖, or simply by ‖(A−B)|c‖, if C is
clear from the context. When a sample z is drawn from distribution Z, we denote it as z ← Z.

We rely on a number of standard facts from information theory in this work. For a comprehensive
introduction to information theory, we refer the reader to a text such as [5]. We start with the
chain rule for mutual information. Let I(X : Y ) denote the mutual information between two random
variables.

Fact 2.1 (Chain rule) Let ABC be jointly distributed random variables. Then

I(AB : C) = I(A : C) + I(B : C|A) .

The expectation value of a bounded random variable is continuous as a function of the probability
distribution.
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Fact 2.2 Let Z,Z ′ be two random variables on the same sample space S. Let g be a real-valued
function on S such that sups∈S |g(s)| ≤ G. Then

|Ez←Z g(z)− Ez←Z′ g(z)| ≤
∥∥Z − Z ′∥∥G .

The following fact bounds the (Shannon) entropy H of a biased Boolean random variable.

Fact 2.3 Let A be a binary random variable such that Pr[A = 0] = 1
2 +δ, for some δ ∈ [−1/2, 1/2].

Then 1−H(A) ≥ 2
ln 2δ

2.

The Average encoding theorem [9] is a quantitative version of the fact that two random variables
that are only weakly correlated are nearly independent. Stated differently, the conditional distri-
bution of one given the other is close to its marginal distribution, if their mutual information is
sufficiently small.

Fact 2.4 Let KM be joint random variables. Then,

Ek←K ‖M |k −M‖ ≤
√
κ I(K : M) ,

where κ is the constant 2 ln 2.

2.2 The two-party communication problem

We refer the reader to the text [10] for an introduction to the model of two-party communication
protocols.

We consider randomized two-party communication protocols arising from streaming algorithms for
Dyck languages. In these protocols, one party, Alice, has an n-bit string x, and the other party,
Bob, has an integer k ∈ [n], the prefix x[1, k− 1] of x, and a bit b ∈ {0, 1}. The goal is to compute
the function fn(x, (k, x[1, k−1], b)) = xk⊕ b, i.e., to determine whether b = xk or not. This variant
of the index function problem is called the “Mountain problem” in [11], and was previously studied
in the setting of one-way communication as “serial encoding” [1, 13].

The protocols for fn on which we focus satisfy further properties that arise from considerations in
the streaming model:

1. The protocol consists of an even number 2T of messages, beginning with Alice, for some
positive integer T . The number T is the number of passes of the streaming algorithm in a
single direction; we also call it the number of passes of the communication protocol.

2. Alice’s messages are deterministic, i.e., determined entirely by the protocol transcript and her
input. Bob has access to private randomness, and his messages may be randomized.

3. Each message from Alice to Bob, or back is of length at most ` ≥ 0.

4. The protocol has no memory of messages prior to the one received most recently. Consequently,
message mi sent by a party is computed from the preceding message mi−1 (if any), her/his
input, and in the case of Bob, also using private randomness.1

1Our results do not rely on this property of the protocol, but we believe that it may lead to a tighter bounds.
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5. Let (X,K) be independent random variables distributed uniformly in {0, 1}n × [n]. Let M0
i

be the ith message, when Alice’s input is X and Bob’s input is (K,X[1,K−1], XK), i.e., their
inputs are chosen uniformly from the set of 0s of f . Then,

I(K : M0
2M

0
4 · · ·M0

2T |X) ≤ c T ,

for some c ≥ 0.

6. The distributional error of the protocol under the uniform distribution over inputs x, k, b is at
most ε < 1

2 .

We call protocols as described above (T, `, c, ε) streaming protocols for the function fn.

The relationship between streaming algorithms and protocols for fn is captured by the following
reduction.

Theorem 2.5 (Magniez, Mathieu, and Nayak [11]) Any randomized streaming algorithm for
Dyck(2) with T passes in the same direction that uses space s for instances of length 4n2, and has
worst case two-sided error δ implies a (T, s, 2s/n, 2δ) streaming protocol for fn.

For completeness, we sketch a proof of this theorem in Appendix A, highlighting the sole difference
from the one-pass case.

2.3 The lower bound for one-pass protocols

We explain our method up by showing that one-pass streaming protocols for fn require messages
of length linear in n.

Theorem 2.6 Any (1, `, c, ε) streaming protocol for fn satisfies
√
c+

√
`/n ≥ 1−2ε

2
√

2 ln 2
.

Proof: Consider a (1, `, c, ε) streaming protocol P for fn, in which Alice’s input X is uniformly
distributed over {0, 1}n, and Bob’s input is (K,X[1,K−1], B), whereK,B are uniformly distributed
over [n] and {0, 1}, respectively. In addition, X,K,B are all independent.

We show that the random variables with Alice after the second message, conditioned upon the
function value being 0 (i.e, when B = XK) are close in `1 distance to the same variables when the
function value is 1 (i.e, when B = X̄K). Let the input and message random variables in the two
cases be denoted by

XKM0
1M

0
2 = XKM1(X)M2(X[1,K − 1], Xk,M1(X)), and

XKM1
1M

1
2 = XKM1(X)M2(X[1,K − 1], X̄k,M1(X)) ,

respectively. We use superscripts 0, 1 on M1 for consistency, eventhough M0
1 (x) = M1

1 (x) for
every x, irrespective of the function value. The random variables available to Alice at the end of
the protocol are X,M1,M2. We show below that:

Lemma 2.7
∥∥XM0

1M
0
2 −XM1

1M
1
2

∥∥ ≤
∥∥XKM0

1M
0
2 −XKM1

1M
1
2

∥∥ ≤ 4
√
κ(
√
c+
√
`/n ),

where κ = 2 ln 2.
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Since the protocol P identifies the two distributions, XM0
1M

0
2 and XM1

1M
1
2 , with average error ε,

we have
∥∥XM0

1M
0
2 −XM1

1M
1
2

∥∥ ≥ 2(1− 2ε). The theorem follows.

This immediately gives us a space lower bound for one-pass streaming algorithms for Dyck(2).

Corollary 2.8 Any randomized one-pass streaming algorithm for Dyck(2) that has worst case
two-sided error δ ≤ 1

4 uses space at least

(1− 4δ)2

16(
√

2 + 1)2 ln 2
×
√
n .

on instances of length n.

Proof of Lemma 2.7: The first inequality follows from the monotonicity of `1 norm with respect
to taking marginals. For the second inequality, we note that since the random variable M0

2 carries
little information about K, they are nearly independent. Define a random variable M̃2 implicitly
by the equation KXM̃2 = K ⊗ (XM0

2 ), where the latter is the product of the two distributions K
and the marginal XM0

2 . Then,

Lemma 2.9
∥∥∥XKM̃2 −XKM0

2

∥∥∥ ≤
√
κ I(K : M0

2 |X), where κ = 2 ln 2.

We defer the proof of this lemma to later in the section.

As a corollary of Lemma 2.9, we get that for most (x, k), M2 does not distinguish between Bob’s
input being (x1, . . . , xk) or (x1, . . . , xk−1). We defer the proof to later in this section.

Corollary 2.10 For all x, define M2(x[1, k − 2], xk−1,M1(x)) as M̃2(x) when k = 1. Then

E(x,k)←(X,K) ‖M2(x[1, k − 2], xk−1,M1(x))−M2(x[1, k − 1], xk,M1(x))‖ ≤ 2
√
κc.

We introduce a random variable Y correlated with XKM0
1 . When XKM0

1 = (x, k,m1), this
random variable is uniformly distributed over the set

{y ∈ {0, 1}n : y[1, k − 1] = x[1, k − 1], yk = x̄k, M1(y) = m1} ,

if the set is non-empty, and is 0n otherwise.

We claim that the distributions of Y KM0
1 and XKM0

1 are quite close. The idea is that if M0
1

is smaller than n in length (if d = `/n < n), it does not carry much information about many
coordinates of X. Therefore, “flipping” the bit of X in a random such coordinate (conditioned on
M0

1 ) does not perturb the overall distribution much. We formalize this later in this section.

Lemma 2.11 ‖Y K −XK‖ ≤
∥∥Y KM0

1 −XKM0
1

∥∥ ≤ 2
√
κd , where d = `/n.

We now have all the ingredients for the proof of the theorem. Note that the random variable M1
2

for inputs XK is the same as M0
2 for inputs Y K, as YK = X̄K . Since XK and Y K are close to

each other in distribution, we expect the two random variables M0
2 ,M

1
2 to also be close to each

other. The complication here is that we would like this to be the case for a random triple (x, k, y)
in the support of XKY . It is here that we make essential use of the property that M0

2 is nearly
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independent of k, and therefore nearly the same for k and k−1. Since x and y have the same prefix
up to the (k − 1)th coordinate, we conclude that M0

2 for the two are nearly the same. Formally,∥∥XKM0
1M

0
2 −XKM1

1M
1
2

∥∥ =
∥∥XKM0

2 −XKM1
2

∥∥
= E(x,k)←(X,K) ‖M2(x[1, k − 1], xk,M1(x))−M2(x[1, k − 1], x̄k,M1(x))‖
≤ E(x,k)←(X,K) ‖M2(x[1, k − 1], xk,M1(x))−M2(x[1, k − 2], xk−1,M1(x))‖

+ E(x,k)←(X,K) ‖M2(x[1, k − 1], x̄k,M1(x))−M2(x[1, k − 2], xk−1,M1(x))‖ ,

by the triangle inequality;

≤ 2
√
κc+ E(x,k)←(X,K) ‖M2(x[1, k − 1], x̄k,M1(x))−M2(x[1, k − 2], xk−1,M1(x))‖ ,

by Corollary 2.10;

= 2
√
κc+ E(x,k,y)←(X,K,Y ) ‖M2(y[1, k − 1], yk,M1(y))−M2(y[1, k − 2], yk−1,M1(y))‖ ,

by the definition of Y as a function of X,K;

= 2
√
κc+ E(y,k)←(Y,K) ‖M2(y[1, k − 1], yk,M1(y))−M2(y[1, k − 2], yk−1,M1(y))‖ ,

as the expression whose expectation we are taking is a function of Y,K;

≤ 2
√
κc+ 2 ‖XK − Y K‖

+ E(x,k)←(X,K) ‖M2(x[1, k − 1], xk,M1(x))−M2(x[1, k − 2], xk−1,M1(x))‖ ,

by Fact 2.2;

≤ 2
√
κc+ 4

√
κd+ 2

√
κc = 4

√
κ(
√
c+
√
d) ,

by Lemma 2.11 and Corollary 2.10,

which concludes the proof.

We return to the deferred proofs.

Proof of Lemma 2.9: From the average encoding theorem, Fact 2.4, we have that for every x ∈
{0, 1}n,

Ek←K
∥∥∥M2(x[1, k − 1], xk,M1(x))− M̃2(x)

∥∥∥ ≤
[
κ I(K : M0

2 |X = x)
]1/2

.

By the Jensen inequality,

E(x,k)←(X,K)

∥∥∥M2(x[1, k − 1], xk,M1(x))− M̃2(x)
∥∥∥ ≤

[
κ I(K : M0

2 |X)
]1/2

.

The LHS of the above equation is the same as that in the statement of the lemma.
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Proof of Corollary 2.10: By the triangle inequality,

E(x,k)←(X,K) ‖M2(x[1, k − 2], xk−1,M1(x))−M2(x[1, k − 1], xk,M1(x))‖

≤ E(x,k)←(X,K)

∥∥∥M2(x[1, k − 2], xk−1,M1(x))− M̃2(x)
∥∥∥

+ E(x,k)←(X,K)

∥∥∥M̃2(x)−M2(x[1, k − 1], xk,M1(x))
∥∥∥

≤ 2
√
κ I(K : M0

2 |X) ≤ 2
√
κc ,

by the hypothesis in Theorem 2.6 that I(K : M0
2 |X) ≤ c.

Proof of Lemma 2.11: For all k ∈ [n] and values (x[1, k − 1],m1) taken by the random vari-
ables X[1,K − 1],M1, let

δ
(
Xk|(x[1, k − 1],m1)

)
= Pr[Xk = 0|(x[1, k − 1],m1)]− 1

2
,

where conditioning on (x[1, k−1],m1) is shorthand for conditioning on the event (X[1, k−1],M1) =
(x[1, k − 1],m1). We have:

Lemma 2.12 For all k and (x[1, k − 1],m1),

‖(Y −X)|(x[1, k − 1],m1)‖ = 4
∣∣δ(Xk|(x[1, k − 1],m1)

)∣∣ .
Proof: Fix k and (x[1, k − 1],m1). Let δ = δ

(
Xk|(x[1, k − 1],m1)

)
,

Q0 = X|(x[1, k − 1],m1, Xk = 0), and
Q1 = X|(x[1, k − 1],m1, Xk = 1) .

Observe that

X|(x[1, k − 1],m1) =
(

1
2

+ δ

)
Q0 +

(
1
2
− δ
)
Q1, and

Y |(x[1, k − 1],m1) =
(

1
2

+ δ

)
Q1 +

(
1
2
− δ
)
Q0 .

Therefore

‖(Y |(x[1, k − 1],m1)−X|(x[1, k − 1],m1)‖ = 2 |δ| · ‖Q0 −Q1‖ = 4|δ| ,

where equality holds because Q0 and Q1 have disjoint support.

Since |M0
1 | ≤ `, by repeated application of the chain rule for mutual information, Fact 2.1,

` ≥ I(X : M0
1 ) = n · Ek←KI(Xk : M0

1 |X[1, k − 1]) . (2.1)
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Moreover,

Ek←KI(Xk : M0
1 |X[1, k − 1])

= E(k,m1)←(KM0
1 )

(
1−H(Xk|X[1, k − 1],m1)

)
= E(k,m1,x[1,k−1])←(KM0

1X[1,k−1])

(
1−H(Xk|x[1, k − 1],m1)

)
≥ 2

ln 2
E(k,m1,x[1,k−1])←(KM0

1X[1,k−1]) δ
(
Xk|(x[1, k − 1],m1)

)2
,

by Fact 2.3;

≥ 2
ln 2

(
E(k,m1,x[1,k−1])←(KM0

1X[1,k−1])

∣∣δ(Xk|(x[1, k − 1],m1)
)∣∣)2

,

by the Jensen inequality;

=
2

ln 2

(
1
4
· E(k,m1,x[1,k−1])←(KM0

1X[1,k−1]) ‖(Y |(x[1, k − 1],m1)−X|(x[1, k − 1],m1)‖
)2

,

by Lemma 2.12;

=
1

8 ln 2

∥∥Y KM0
1 −XKM0

1

∥∥2
.

Along with Eq. (2.1), this establishes the second inequality in the statement of the lemma; the first
inequality follows from monotonicity of the `1 norm with respect to taking marginals.

2.4 The lower bound for T -pass protocols

Using the technique developed for one-pass protocols, we now derive a bound for multi-pass stream-
ing protocols for fn.

Theorem 2.13 Any (T, `, c, ε) streaming protocol for fn satisfies

2
√
c+

√
`

n
≥ (1− 2ε)√

2κ T 3/2
,

where κ = 2 ln 2.

Proof: Consider a (T, `, c, ε) streaming protocol P for fn, in which Alice’s input X is uniformly
distributed over {0, 1}n, and Bob’s input is (K,X[1,K−1], B), whereK,B are uniformly distributed
over [n] and {0, 1}, respectively. In addition, X,K,B are all independent.

We compare the random variables in Alice’s possession at the end of T rounds, when the function
value is 0 and when it is 1. As before, we use superscripts 0 and 1 to mark messages that are sent
by the two parties when B = XK or when B = X̄K , respectively. In particular, for every t ∈ [T ],
XKM0

1M
0
2 · · ·M0

2t denote the jointly distributed random variables corresponding to the the inputs
and the first 2t messages in the protocol P , when B = XK . Similarly, XKM1

1M
1
2 · · ·M1

2t denote
the analogous random variables when B = X̄K .

Consider the random variables XM2t−1M2t available to Alice at the end of t passes, t ∈ [T ]. We
prove that Alice’s ability to distinguish between the two values of fn from these random variables
does not increase by much in any pass. In fact, we prove something stronger:
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Lemma 2.14 For every t ∈ [T ],∥∥XKM0
1 · · ·M0

2t −XKM1
1 · · ·M1

2t

∥∥
≤

∥∥XKM0
1 · · ·M0

2t−2 −XKM1
1 · · ·M1

2t−2

∥∥+ 2
√

2κT
(√

d+ 2
√
c
)
,

where d = `/n, and κ = 2 ln 2.

The proof of this lemma is presented later in this section.

Repeatedly applying Lemma 2.14, we conclude that Alice’s ability to distinguish between the
function values 0 and 1 from the random variables in her possession is limited:∥∥XM0

2T−1M
0
2T −XM1

2T−1M
1
2T

∥∥
≤

∥∥XKM0
1 · · ·M0

2T −XKM1
1 · · ·M1

2T

∥∥
≤ 2

√
2κ(2
√
c+
√
d )T 3/2 . (2.2)

Since the protocol P computes fn with average error ε, Alice can identify the two distributions
XM0

2T−1M
0
2T and XM1

2T−1M
1
2T with average error ε. Hence, we have∥∥XM0

1M
0
2 · · ·M0

2T −XM1
1M

1
2 · · ·M1

2T

∥∥ ≥ 2(1− 2ε) . (2.3)

The theorem follows by combining Eq. (2.2) and (2.3).

Along with Theorem 2.5, this gives us a space lower bound for T -pass streaming algorithms for
Dyck(2).

Corollary 2.15 Any randomized unidirectional T -pass streaming algorithm for Dyck(2) that has
worst case two-sided error δ ≤ 1

4 uses space at least

(1− 4δ)2

8(2
√

2 + 1)2 ln 2
×
√
n

T 3
.

on instances of length n.

We build up to the proof of Lemma 2.14, starting with analogues of Lemma 2.9 and Corollary 2.10.
Define the random variables M̃i, for i ∈ [2T ] implicitly by the equation

KXM̃1M̃2 · · · M̃2T = K ⊗ (XM0
1 · · ·M0

2T ).

Fix t ∈ [T ]. The first lemma states that we may think of K and M0
1 · · ·M0

2t−1 as being independent,
conditioned on X, at a small cost.

Lemma 2.16 For all t ∈ [T ],∥∥∥KXM0
1 · · ·M0

2t−1 −KXM̃1 · · · M̃2t−1

∥∥∥ ≤
[
κ I(M0

2M
0
4 · · ·M0

2t−2 : K|X)
]1/2

.

The essence of the second lemma is that on average, given all previous messages, the message M2t

does not distinguish heavily between K and K − 1.

9



Lemma 2.17 For all t ∈ [T ],

E(x,k,m1,...,m2t−1)←XKM0
1 ···M0

2t−1
‖M2t(x[1, k − 1], xk,m2t−1)−M2t(x[1, k − 2], xk−1,m2t−1)‖

≤ 2
[
κ I(M0

2T : K|XM0
2M

0
4 · · ·M0

2t−2)
]1/2

,

where we interpret M2t(x[1, k − 2], xk−1,m2t−1) as M̃2t(x,m2t−1) when k = 1.

The proofs of the two lemmas rely on the fact that Alice’s messages (i.e., Mi for odd i) are
deterministic. They are much the same as the proofs for one-pass protocols, and are omitted.

For every t ∈ [T ], define a random variable Yt correlated with XKM0
1 · · ·M0

2t−1 as follows. For any
fixed value (x, k,m1, . . . ,m2t−1) of these random variables, let Yt be uniformly distributed in the
set{

y ∈ {0, 1}n : y[1, k − 1] = x[1, k − 1], yk = x̄k, and
M1(y) = m1,M2j−1(y,m2j−2) = m2j−1 for 2 ≤ j ≤ t

}
,

if the set is non-empty, and Yt = 0n otherwise. For all k ∈ [n] and values (x[1, k−1],m1, . . . ,m2t−1)
for X[1, k − 1],M0

1M
0
2 · · ·M0

2t−1, define

δ
(
Xk|(x[1, k − 1],m1, . . . ,m2t−1)

)
= Pr

[
Xk = 0 | (x[1, k − 1],m1, . . . ,m2t−1))

]
− 1

2
.

As before,

Lemma 2.18 For all t ∈ [T ], k ∈ [n], and values (x[1, k − 1],m1, . . . ,m2t−1) for the random
variables (X[1, k − 1],M0

1M
0
2 · · ·M0

2t−1),

‖(Yt −X)|(x[1, k − 1],m1, . . . ,m2t−1)‖ = 4
∣∣δ(Xk|(x[1, k − 1],m1, . . . ,m2t−1)

)∣∣ .
The proof is similar to that of Lemma 2.12, and is omitted.

If the messages from Alice are short, and Bob’s messages do not contain information about the
index k, the protocol is unable to distinguish between X and Y within the first 2t− 1 messages. A
crucial step in showing this is the use of M̃1M̃2 · · · M̃2t−1 to masquerade as the actual sequence of
messages. This may be viewed as a kind of round elimination. At a technical level, it is required
to make the messages independent of the index k, which allows us to use the chain rule for mutual
information.

Lemma 2.19 For all t ∈ [T ],∥∥XKM0
1 · · ·M0

2t−1 − YtKM0
1 · · ·M0

2t−1

∥∥ ≤ 2
√

2κtd+ 2
[
κ I(M0

2M
0
4 · · ·M0

2t−2 : K|X)
]1/2

,

where d = `/n.
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Proof: We have∥∥XKM0
1 · · ·M0

2t−1 − Y KM0
1 · · ·M0

2t−1

∥∥
= E(k,x[1,k−1],m1,...,m2t−1)←(KX[1,K−1]M0

1 ···M0
2t−1) ‖(X − Y )|(k, x[1, k − 1],m1, . . . ,m2t−1)‖

= 4 E(k,x[1,k−1],m1,...,m2t−1)←(KX[1,K−1]M0
1 ···M0

2t−1)

∣∣δ(Xk|(x[1, k − 1],m1, . . . ,m2t−1)
)∣∣

By Lemma 2.18;

≤ 4 · E(k,x[1,k−1],m1,...,m2t−1)←(KX[1,K−1]M̃1···M̃2t−1)

∣∣δ(Xk|(x[1, k − 1],m1, . . . ,m2t−1)
)∣∣

+ 2
∥∥∥KX[1,K − 1]M0

1 · · ·M0
2t−1 −KX[1,K − 1]M̃1 · · · M̃2t−1

∥∥∥ ,
by Fact 2.2;

≤ 4 E(k,x[1,k−1],m1,...,m2t−1)←(KX[1,K−1]M̃1···M̃2t−1)

∣∣δ(Xk|(x[1, k − 1],m1, . . . ,m2t−1)
)∣∣

+ 2
[
κ I(M0

2M
0
4 · · ·M0

2t−2 : K|X)
]1/2

,

by Lemma 2.16;

≤ 2 · E(k,x[1,k−1],m1,...,m2t−1)←(KX[1,K−1]M̃1···M̃2t−1)

[
κ
(
1−H(Xk|(x[1, k − 1],m1, . . . ,m2t−1))

)]1/2
+ 2

[
κ I(M0

2M
0
4 · · ·M0

2t−2 : K|X)
]1/2

,

by Fact 2.3;

≤ 2
[
κ E(k,x[1,k−1],m1,...,m2t−1)←(KX[1,K−1]M̃1···M̃2t−1)

(
1−H(Xk|(x[1, k − 1],m1, . . . ,m2t−1))

)]1/2
+ 2

[
κ I(M0

2M
0
4 · · ·M0

2t−2 : K|X)
]1/2

,

by the Jensen inequality;

= 2
[
κ Ek←KI(Xk : M̃1 · · · M̃2t−1|X[1, k − 1])

]1/2
+ 2

[
κ I(M0

2M
0
4 · · ·M0

2t−2 : K|X)
]1/2

= 2
[
(κ/n) I(X : M̃1 · · · M̃2t−1)

]1/2
+ 2

[
κ I(M0

2M
0
4 · · ·M0

2t−2 : K|X)
]1/2

by the chain rule, Fact 2.1;

≤ 2
√

2κt`/n+ 2
[
κ I(M0

2M
0
4 · · ·M0

2t−2 : K|X)
]1/2

,

since for every i, |M̃i| ≤ `.

Finally, we turn to the main lemma. For this, consider “mixed” runs of the protocol P in which B
is set to XK in the first t− 1 passes, and to X̄K in the t’th pass. The associated message random
variables in these runs are written as XKM0

1M
0
2 · · ·M0

2t−1M
1
2t.

Proof of Lemma 2.14: Let

α =
∥∥XKM1

1 · · ·M1
2t−1 −XKM0

1 · · ·M0
2t−1

∥∥ ,
11



which is also equal to
∥∥XKM1

1 · · ·M1
2t−2 −XKM0

1 · · ·M0
2t−2

∥∥. The first two inequalities below
follow from the triangle inequality. The rest are explained as we derive them.∥∥XKM0

1 · · ·M0
2t −XKM1

1 · · ·M1
2t

∥∥
≤
∥∥XKM1

1 · · ·M1
2t −XKM0

1 · · ·M0
2t−1M

1
2t

∥∥+
∥∥XKM0

1 · · ·M0
2t −XKM0

1 · · ·M0
2t−1M

1
2t

∥∥
=
∥∥XKM1

1 · · ·M1
2t−1 −XKM0

1 · · ·M0
2t−1

∥∥
+ E(x,k,m1,...,m2t−1)←XKM0

1 ···M0
2t−1
‖M2t(x[1, k − 1], xk,m2t−1)−M2t(x[1, k − 1], x̄k,m2t−1)‖

≤ α+ E(x,k,m1,...,m2t−1)←XKM0
1 ···M0

2t−1
‖M2t(x[1, k − 1], xk,m2t−1)−M2t(x[1, k − 2], xk−1,m2t−1)‖

+ E(x,k,m1,...,m2t−1)←XKM0
1 ···M0

2t−1
‖M2t(x[1, k − 2], xk−1,m2t−1)−M2t(x[1, k − 1], x̄k,m2t−1)‖

≤ α+ 2
[
κ I(M0

2t : K|XM0
2M

0
4 · · ·M0

2t−2)
]1/2

+ E(x,k,m1,...,m2t−1)←XKM0
1 ···M0

2t−1
‖M2t(x[1, k − 2], xk−1,m2t−1)−M2t(x[1, k − 1], x̄k,m2t−1)‖ ,

by Lemma 2.17;

= α+ 2
[
κ I(M0

2t : K|XM0
2M

0
4 · · ·M0

2t−2)
]1/2

+ E(y,x,k,m1,...,m2t−1)←Y XKM0
1 ···M0

2t−1
‖M2t(y[1, k − 2], yk−1,m2t−1)−M2t(y[1, k − 1], yk,m2t−1)‖

by definition of Y ;

= α+ 2
[
κ I(M0

2t : K|XM0
2M

0
4 · · ·M0

2t−2)
]1/2

+ E(y,k,m1,...,m2t−1)←Y KM0
1 ···M0

2t−1
‖M2t(y[1, k − 2], yk−1,m2t−1)−M2t(y[1, k − 1], yk,m2t−1)‖

≤ α+ 2
[
κ I(M0

2t : K|XM0
2M

0
4 · · ·M0

2t−2)
]1/2

+ E(x,k,m1,...,m2t−1)←XKM0
1 ···M0

2t−1
‖M2t(x[1, k − 2], xk−1,m2t−1)−M2t(x[1, k − 1], xk,m2t−1)‖

+
∥∥XKM0

1 · · ·M0
2t−1 − Y KM0

1 · · ·M0
2t−1

∥∥
by Fact 2.2;

≤ α+ 4
[
κ I(M0

2t : K|XM0
2 · · ·M0

2t−2)
]1/2 +

∥∥XKM0
1 · · ·M0

2t−1 − Y KM0
1 · · ·M0

2t−1

∥∥
by Lemma 2.17;

≤ α+ 4
[
κ I(M0

2t : K|XM0
2M

0
4 · · ·M0

2t−2)
]1/2

+ 2
√

2κtd+ 2
[
κ I(M0

2M
0
4 · · ·M0

2t−2 : K|X)
]1/2

by Lemma 2.19;

≤ α+ 2
√

2κtd+ 4
√

2κ
[
I(M0

2t : K|XM0
2M

0
4 · · ·M0

2t−2) + I(M0
2M

0
4 · · ·M0

2t−2 : K|X)
]1/2

,
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by the Jensen inequality. Applying the chain rule, Fact 2.1, we get∥∥XKM0
1 · · ·M0

2t −XKM1
1 · · ·M1

2t

∥∥
≤ α+ 2

√
2κtd+ 4

√
2κ
[
I(M0

2M
0
4 · · ·M0

2t : K|X)
]1/2

≤ α+ 2
√

2κtd+ 4
√

2κTc

since by hypothesis, I(M0
2M

0
4 · · ·M0

2t : K|X) ≤ Tc. This gives us the claimed bound.
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A From streaming algorithms to communication protocols

Here we sketch a proof of Theorem 2.5, highlighting the sole modification we need, namely in the
definition of information cost. We refer the reader to [11] for the details.

We rely on the same set of hard instances of Dyck(2), which correspond to strings of length
between 2n2 and 4n2. Each such hard instance corresponds to an instance of a 2n-player com-
munication protocol for Ascension(n), which is the logical OR of n independent instances of the
two-player problem fn defined in Section 2.2. The players are denoted by Ai, Bi, i ∈ [n]. A T -pass
unidirectional streaming algorithm for Dyck(2) that uses space s results in a communication pro-
tocol P for Ascension(n) with T sequential iterations of messages in the same order as for the
one-pass case described in [11, Section 4]. Each message in this protocol is of length at most s, and
the protocol makes the same worst case error δ as the streaming algorithm.

Let MBn,j , j ∈ [T ], denote the messages sent by Bn to An in the T iterations. The protocol P
for Ascension(n) gives rise to a protocol for a single instance of fn through a direct sum property of
its “information cost”. Let µ0 be the uniform distribution over the subset of

(
{0, 1}n×[n]×{0, 1}

)
on

which the function fn is 0. Let (XXX,kkk,ccc) =
(
Xi, ki, ci

)n
i=1

be n instances of fn, distributed according
to µn0 . Let R denote the public random bits in the protocol P arising from the randomness used
by the streaming algorithm. The information cost of P is defined as:

ICµn
0
(P ) = I(kkk,ccc : MBn,1 · · ·MBn,T |XXX,R),

This is the natural and straightforward extension of the measure used in the one-pass case, which
concentrates on MBn,1, the single message sent by Bn. Note that ICµn

0
(P ) ≤ Ts, as each mes-

sage MBn,j is of length at most s.

The protocol P may be adapted to n different protocols P ′i , i ∈ [n], for fn, by precisely the
same method of embedding an instance of fn into one of Ascension(n), as described in [11, Sec-
tion 4.3]. The 2n players in P are simulated by two players, Alice and Bob, as before: Alice
simulates A1, B1, A2, B2, . . . , Ai, sends a message to Bob, who simulates Bi, Ai+1, Bi+1, . . . , An, Bn,
sends a message to Alice, who simulates An, An−1, . . . , A1, and they repeat this in the same order
a total of T times. There are 2T messages in this protocol starting with Alice, she uses only public
randomness, whereas Bob may use private randomness, and the protocol makes the same distri-
butional error (at most δ) on the uniform distribution over its inputs as P does. The information
cost of P ′i is measured as

ICµ0(P ′i ) = I(ki, ci : MBn,1 · · ·MBn,T |Xi, Ri),

14



where Ri is the public randomness in P ′i . This is the mutual information of all the messages
sent by Bob with his input, given Alice’s input, under the uniform distribution over the 0s of the
function fn.

The superadditivity of mutual information gives us the direct sum result

ICµn
0
(P ) =

n∑
i=1

ICµ0(P ′i ),

as in [11, Lemma 3]. Therefore at least one protocol for fn from (P ′i ), call it P ′, has information
cost at most Ts/n. Finally, as in [11, Lemma 1], we may make Alice deterministic in P ′, at the cost
of increasing the distributional error (under the uniform distribution over inputs) to at most 2δ,
and the information cost to 2Ts/n.
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