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The Influence Lower Bound
Via Query Elimination
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Abstract: We give a simple proof, via query elimination, of a result due to O’Donnell,
Saks, Schramm, and Servedio, which shows a lower bound on the zero-error expected query
complexity of a function f in terms of the maximum influence of any variable of f . Our
lower bound also applies to the two-sided error expected query complexity of f , and it
allows an immediate extension which can be used to prove stronger lower bounds for some
functions.
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1 Introduction

Query complexity measures the hardness of computing a function f by the minimum number of input
variables one needs to read before knowing the function’s value. For ε ≥ 0 and a distribution λ on the
inputs, a k-expected query randomized algorithm has λ -distributional error ε , if its expected queries (over
the inputs drawn from λ and its random coins) is at most k, and its expected error (over the inputs drawn
from λ and its random coins) is at most ε . The ε-error λ -distributional expected query complexity of f ,
denoted Dλ

ε ( f ), is the minimum number k such that there exists a k-expected query randomized algorithm
which has λ -distributional error ε .
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The influence of a variable is another important quantity which measures the importance of the
variable to the function’s value (on average over other variables). Both query complexity and influence
are well-studied subjects; see [1] for a survey of the former (with many other complexity measures)
and [11, 4] for surveys of the latter (and Fourier analysis on Boolean functions).

Definition 1.1 (Influence). Let f : Xn→ Z be a function, and Xi’s and Yi’s (for i = 1, . . . ,n) be random
variables independently and identically distributed according to µ on X. Let X = X1 · · ·Xn, and for each
i ∈ [n], let X i represent the random variable X1 . . .Xi−1YiXi+1 . . .Xn. The influence of variable i on f with
respect to µ is defined as

infi( f ,µ) = Pr[ f (X) 6= f (X i)] .

The maximum influence of f with respect to µ is defined as

infmax( f ,µ) = max
i

infi( f ,µ) .

For Boolean functions, the influence as defined above is half of that in [12].
For any randomized algorithm P and any fixed input distribution (which is clear from the context), let

ε(P) denote the error probability (over random coins and inputs) of P, and δi(P) denote the probability
(over random coins and inputs) that P queries input variable i. In [12], O’Donnell, Saks, Schramm and
Servedio proved the following:

Theorem 1.2 ([12]). Let f : {−1,+1}n→ {−1,+1}. Let µ be a distribution on {−1,+1}, and X be
drawn from µ⊗n. Then for any zero-error randomized query algorithm P (querying X),

n

∑
i=1

δi(P)infi( f ,µ)≥ Var[ f ]
2

,

where Var[ f ] = E[ f 2]−E[ f ]2 is the variance of f (X). In particular, let P be a randomized algorithm
with no error and D

µ⊗n

0 ( f ) expected queries. Then,

D
µ⊗n

0 ( f ) =
n

∑
i=1

δi(P)≥
Var[ f ]

2 · infmax( f ,µ)
.

Recently Lee [9] gave another proof of this fact.
Together with another bound for monotone functions [13],

D
µ⊗n

p
0 ( f )≥

(
∑

i
infi( f ,µp)

)2
log2

1
p(1− p)

,

where µp is the distribution on {−1,+1} with −1 picked with probability p, Theorem 1.2 gives a lower
bound of Ω(n2/3) for the randomized query complexity of all nontrivial monotone Boolean functions
invariant under a transitive group of permutations (on the variables). For such functions we let p be the
“critical threshold,” namely the probability such that the function takes value 1 with probability exactly
half. Observe that all the variables have the same influence; thus, depending on whether the influence is
large or small, one of the two bounds can be applied to yield the Ω(n2/3) lower bound. This in particular
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reproduces the Ω(|V |4/3) lower bound for all monotone graph properties in [5], which is O(log1/3(|V |))
shy of the current record [2].

In this paper we give a new proof of Theorem 1.2, arguably shorter and simpler than both previous
ones [12, 9]. In fact, we prove a stronger statement that applies to the two-sided error case.

Theorem 1.3. Let f : Xn→ Z be a function, µ be a distribution on X, ε ≥ 0, and X be drawn from µ⊗n.
Then for any randomized query algorithm P (querying X),

n

∑
i=1

δi(P)infi( f ,µ)≥ 1− fmax− ε(P) , (1)

where fmax = maxz∈Z Pr[ f (X) = z]. In particular, let P be an algorithm with expected error ε and
expected queries Dµ⊗n

ε ( f ). Then,

D
µ⊗n

ε ( f ) =
n

∑
i=1

δi(P)≥
1− fmax− ε

infmax( f ,µ)
. (2)

It is easily seen that 1− fmax ≥Var[ f ]/4 for Boolean functions f , therefore the above theorem implies
Theorem 1.2 (up to a factor of 2) as a special case.

We present the proof of Theorem 1.3 in the next section. The original proof in [12] used a hybrid
argument on decision trees, and Lee in [9] gave a martingale-based proof. Our approach proceeds by
query elimination: we can save one query without increasing the error by more than maxi infi( f , p) and
eventually eliminate all queries to obtain a zero-query algorithm, which must have a large error probability
on a hard distribution. This bounds from below the number of queries of the original algorithm. The
analysis for the increase in error due to eliminating one query is quite simple and follows from the union
bound (applied just once) and the observation that X i is identically distributed to X .

We can improve the lower bound by considering a function g, which is close to f but could potentially
have smaller infmax, a method often referred to as smoothing. As is the case with the rectangle bound and
the discrepancy bound in communication complexity and query complexity, where the smoothed versions
can prove strong lower bounds [7, 14, 15, 10, 8, 6, 3], this smoothed influence lower bound also gives
stronger bounds than Equation (2) for some functions.

Let g : Xn→ Z be a function such that Pr[ f (X) 6= g(X)]≤ δ , where X is drawn from µ⊗n as above
and δ ≥ 0. It is easily noted that an algorithm for f with average error under µ⊗n at most ε also works as
an algorithm for g with average error under µ⊗n at most ε +δ . Therefore D

µ⊗n

ε ( f )≥ D
µ⊗n

ε+δ
(g) and we

have the following corollary.

Corollary 1.4. Let f : Xn→ Z be a function, µ be a distribution on X and ε,δ ≥ 0. Let X be drawn
from µ⊗n. Let g : Xn→ Z be a function such that Pr[ f (X) 6= g(X)]≤ δ . Then

D
µ⊗n

ε ( f )≥ D
µ⊗n

ε+δ
(g)≥ 1−maxz∈Z Pr[g(X) = z]− ε−δ

infmax(g,µ)
.
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Note that there are functions f with large infmax which are close to some other function g with
small infmax. For example, Tribes is the OR of s≈ n/ log2 n AND gates, each of t ≈ log2 n− log2 log2 n
variables. The parameters s, t are set to make approximately half the inputs take the value 1. It is well
known that for this function, all influences infi = Θ(logn/n), where the distribution is uniform on all
inputs. Let g be Tribes, and obtain f from g by picking a set S of inputs of density δ and defining

f (x) =

{
x1 if x ∈ S,
g(x) otherwise,

where x1 denotes the first bit of x. Then the first variable has influence at least Ω(δ ), so applying the
bound of Equation (2) yields only a constant lower bound for the distributional query complexity of f .
As g is δ -close to f and infmax(g) = Θ(logn/n), the above corollary yields the stronger lower bound of
Θ(n/ logn).

Remark 1.5.

1. Our proof does not need to assume that the distributions of the different variables are the same.
The proof goes through and the bound applies analogously as long as these distributions are
independent.

2. The paper [12] also extends Theorem 1.2 to the general metric case where the influence is defined
as

infd
i ( f ,µ) = E[d( f (X), f (X i))] .

Our proof also extends to this general case. To see this, it suffices to note that all we use is the
triangle inequality, which holds for any metric space.

2 Proof of main result

Proof of Theorem 1.3. Equation (2) is an easy corollary of Equation (1). For Equation (1), suppose that P
makes at most k queries for any input and any coins. We will prove the statement by induction on k. The
base case of k = 0 is trivial since an algorithm that does not make any query succeeds with probability at
most fmax. For the general k > 0, we will first show the statement when P is deterministic (assuming the
induction hypothesis on randomized query algorithms). Suppose Xi is the first query of P; without loss of
generality we can assume that P does not query Xi afterwards. We will show a randomized algorithm
P′ making at most k−1 queries with ε(P′) ≤ ε(P)+ infi( f ,µ). In P′ we do not make this query, but
assume the answer to this query to be Yi, where Yi is distributed according to µ and is independent of X .
From here on P′ proceeds identically to P.

By construction the maximum number of queries made by P′ (over coins and inputs) is at most
k−1. Let ans(P,X) represent the answer of algorithm P on input X . Recall the definition of X i from
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Definition 1.1. Since ans(P,X i) 6= f (X) implies either ans(P,X i) 6= f (X i) or f (X i) 6= f (X), we have,

ε(P′) = Pr[ans(P,X i) 6= f (X)]

≤ Pr[ans(P,X i) 6= f (X i)]+Pr[ f (X i) 6= f (X)] (from union bound)

= Pr[ans(P,X) 6= f (X)]+Pr[ f (X i) 6= f (X)] (since X is identically distributed to X i)

= ε(P)+ infi( f ,µ) . (3)

Therefore (below we abbreviate infi( f ,µ) = infi),

∑
i′

δi′(P)infi′ = 1 · infi +∑
i′ 6=i

δi′(P)

= infi +∑
i′ 6=i

δi′(P
′) (since X is identically distributed to X i)

= infi +
n

∑
i′=1

δi′(P
′) (since P′ does not query Xi)

≥ infi +1− fmax− ε(P′) (by the induction hypothesis)

≥ infi +1− fmax− ε(P)− infi (from Equation (3))

= 1− fmax− ε(P) .

Now let us show Equation (1) when P is a randomized algorithm. We can think of P as invoking
deterministic algorithm P j with probability p j, where each P j makes at most k queries on any input.
Then (assuming Equation (1) for all deterministic algorithms making at most k queries)

∑
i

δi(P)infi = ∑
i

∑
j

p jδi(P
j)infi = ∑

j
p j ∑

i
δi(P

j)infi

≥ 1− fmax−∑
j

p j · ε(P j) = 1− fmax− ε(P) .
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