	CS3230R Presentation Report: Local Search	Joe Chee
A0073448Y
Local Search
If one comes across an NP-hard problem, finding a polynomial time algorithm would mean that it is not NP-hard. (Or if the NP-hard problem is an NP-complete problem, then you would have solved P=NP)
Gradient Descent
The general idea of local search originates from the concept of gradient descent. Essentially, the problem that gradient descent solves is the problem of finding local minima in a graph:
gradDescent(f): 
while there is no change in value:
	oldvalue = value;
	newvalue = oldvalue – epsilon *  f(oldvalue); //f(oldvalue) is used to approximate f’(oldvalue)

Vertex Cover
Problem: Given a graph find the smallest subset of vertices    such that each edge of the graph is incident to at least one vertex in S. 
To solve the problem using local search, we define the neighbor relation as follows:
 iff S can be obtained from S’ by adding or deleting a single node. 
We can prove several results from this neighbor relation
 (
(12.1) Each vertex cover has at most n neighbouring solutions.
)

Proof.
1. Each neighbouring solution is obtained by adding a single node not currently in the vertex cover or deleting a node in the vertex cover. 
2. Since there are only n nodes in the graph, therefore, there are only n ways to add/delete a node from the current vertex cover.
Therefore, using the gradient descent algorithm we can come up with the following pseudocode:
while (S does not change):
	for each element S’ from the set of neighbours of S
		if ((S’ has a smaller number of vertices than S)
		&& (S' is a valid vertex cover))
			replace S with S
		endif
	endfor
endwhile



[image: ][image: ][image: ]However, this may not give us the global minima at times, for example, take the star graph, and it’s two valid termination points for the algorithm below:




 (
Figure 1: Original Star Graph
) (
Figure 3: Global Minima
) (
Figure 2: Local Minima
)

As can be seen, the algorithm can terminate at local minimas that are very far away from the global minima, and thus it is useful to think about the entire set of solutions as a landscape of solutions. Is there any result that we can prove about the set of local minima?
The Metropolis Algorithm and Simulated Annealing
Metropolis algorithm
The Metropolis Algorithm is an attempt to improve the simplified idea of gradient descent by simulating the behaviour of a physical system using principles of statistical mechanics. 
Essentially, the probability of finding a physical system in a state with energy E is proportional to the Gibbs-Boltzmann function:  , where T > 0 is the temperature and k > 0 is a constant. 
At all times, the simulation maintains a current state of the system and tries to produce a new state by applying a perturbation to this state. We’ll assume that we’re only interested in states of the system that are “reachable” from some fixed initial state by a sequence of small perturbations, and we’ll assume that there is only a finite set of these states. 
 (
(12.2) Let 
be the partition function. For a state S, let f
S
(t) denote the fraction of the first t steps in which the state of the simulation is in S. Then the limit of f+s+(t) as t approaches infinity is, with probability approaching 1, equal to  
.
)Let E(S) and E(S’) denote the energies of S and S’. If E(S’) <= E(S), then we update the current state to be S’




The proof is omitted as it will involve concepts in physics which will be a digression to the current topic.
The metropolis algorithm can now be introduced as follows: 
Start with an initial solution So, and constants k and T
	In one step:
	Let S be the current solution
	Let S’ be chosen uniformly at random from the neighbors of S
	If c(S’) <= c(S) then
		Update S <- S’
	Else
		With probability e-(c(s’)-c(s))/(l~T)
			Update S <- S’
		Otherwise
			Leave S unchanged
EndIf
Simulated Annealing
However, if T is large, the proability of accepting an uphill move is large, but if T is small, uphill moves are almost never accepted. Therefore, we try to cool the algorithm as it progresses such that it stabilises at a certain point. 

Hopfield Neural Networks
A Hopfield network can be viewed as an undirected graph G = (V, E), with an integer-valued weight we on each edge e; each weight may be positive or negative. A configuration S of the network is an assignment of the value -1 or +1 to each node u. 
If u is joined to v by an edge of negative weight, then u and v want to have the same state, while if u is joined to v by an edge of positive weight, then u and v want to have opposite states. The absolute value will indicate the strength of this requirement. 
We say that an edge e = (u,v) is good if the requirement it imposes is satisfied by the states of its two endpoints: either   and  or and . Otherwise we say e is bad. 
Alternatively, an edge is good if 
A node u is satisfied if the total absolute weight of all good edges incident to u is at least as large as the total absolute weight of all bad edges incident to u. We can write this as 

With this, we can now prove that if a Hopfield Network was defined as a directed graph instead of an undirected graph, a network need not have a stable configuration. 
 (
12.3 Every Hopfield network has a stable configuration, and such a configuration can be found in time polynomial in n and 
.
)


To prove 12.3, we will use the simple iterative procedure, called the State-Flipping Algorithm, to search for a stable configuration. 
While the current configuration is not stable
There must be an unsatisfied node
Choose an unsatisfied node U
Flip the state of u
Endwhile

Clearly, if the state-flipping algorithm always terminates, then we will always have stable configurations. 
So therefore we will attempt to prove that the state-flipping algorithm always terminates, and the key is to look for a measure of progress.
We define  to be the total absolute weight of all good edges in the network. That is, 

When u flips its state, all good edges incident to u become bad, all bad edges become good )all other edges remain the same) So, if we let  and  denote the total absolute weight on good and bad edges incident to u, respectively, then we have 

But since u was unsatisfied, from  1 we can conclude that , and since they are both integers, that means . Substituting this into equation 2 will give us 

Since from (2), we can see that the max value of  is W, therefore, there is a limit to the number of iterations within the State-Flipping algorithm and thus the the State-Flipping algorithm will eventually terminate and thus every Hopfield network has a stable configuration.



Maximum-Cut Approximation via local search
In the Maximum-Cut Problem, we are given an undirected graph G = (V,E) with a positive integer weight on each edge e. 
[image: ]
For a visual representation, essentially, a maximum-cut problem requires one to partition a graph into sets A and B such that the weights of edges with one vertex in set A and one vertex in set B is maximised (In the example above, these edges are denoted in red). 
 (
(12.5) Let (A,B) be a partition that is a local optimum for Maximum Cut under the single-flip neighbourhood. Let (A*, B*) be a globally optimal partition. Then,
.
)In this case we can define an objective function  and a single-flip neighbourhood – partitions (A,B) and (A’, B’) are neighbouring solutions if (A’,B’) can be obtained from (A,B) by moving a single node from one side of the paritition to the other. 



Proof. Let . For 2 nodes u and v, we use  to denote  when. 
For all, (since otherwise u should be moved over to the other side of the partition for the partition to be locally optimal)

By adding all of these inequalities for all  , we get:

Doing the same for set B gives us

Adding them together and division by 2 gives us 

Adding w(A,B) on both sides gives us

Noticing that the left hand side of the equation gives us W (since accounts for edges in set A,  accounts for edges in set B, w(A,B) accounts for edges that cross between the two sets), we can thus conclude

Since , we can thus conclude that 


Therefore, the claim in 12.5 is true. 

Let (A, B) be a partition with weight w(A,B). For a fixed , we define a single node flip to be a big improvement flip if it improves the cut value by at least where n = |V|
We will now consider a version of the Single-Flip Algorithm when we accept big-improvement flips and terminate once no such flip exists, even if the current partition is not a local optimum. 
 (
(12.6) Let (A,B) be a partition such that no big-improvement-flip is possible. Let (A*, B*) be a globally optimal partition. Then 
.
)


 (The proof for this is similar to that of 12.5, but we should add the term  to each inequality.  The first line  should be replaced with )






 (
(12.7) The version of the Single-Flip Algorithm that only accepts big-improvement-flips terminates after at most 
 flips, assuming the weights are integral, and 
)



Proof. 
1. Each flip improves objective function by at least a factor of (1 + ). 
2.   for all 
3. From 2, 
4. From 1 and 3, objective function increases by a factor of at least 2 every  flips.
5. Since weight cannot exceed W, weight can be doubled at most log W times, therefore the order of time must be proportional to 
Choosing a Neighbor Relation
The neighbourhood of a solution should be rich enough that we do not tend to get stuck in bad local optima, but if it is too large, then we have to iterate through too many sets of neighbours and thus this might make the local search inefficient. 


Best response dynamics and Nash equilibria
The problem: In a network like the Internet, one frequently encounters situations in which a number of nodes all want to establish a connection to a single source node s. For example, the source s may be generating some kind of data stream that all the given nodes want to receive, as in a style of one-to-many network communication known as a multicast. We will model this situation by representing the underlying network as a directed graph G = (V,E), with a cost  on each edge. 
Designated source node  and a collection of k distinct terminal nodes  Each agent  wants to construct a path from s to  using as little total cost as possible.
However, the key difference in this problem is that when more than 1 agent uses the same edge on the path, the agents can then share the cost of the edge. 
[image: ]
In the above example, let’s assume that all the agents t1 to t3 use the  path to get from s to ti. Each agent would then pay  for using that edge. However, in this example, t3 realises that it can minimize its own cost by using the 1/3 cost edge instead, and thus moves to that edge, and now agents t1 and t2 are paying  for the edge. The same reasoning can be applied for both agents t2 and t1 such that they switch to their respective edges. This then becomes a Nash equilibrium as agents have now minimised their cost.
This example then shows that even though the social optimum was for all the agents to share the  edge, as the agents only seek to minimize their own edges, this social optimum is never reached. 
Is there a Nash equilibrium in all instances?
From the above example, when one of the agents switched to the path with his own edge, it actually increased the total cost within the system by. Therefore, there must be some measure to offset this increased cost. 
A reasonable measure would be to define this additional measure as some sort of potential such that the potential will decrease by ce/(x+1)  when the first one stops using e, since for the agent to view the move as a move that minimizes its cost, cf < ce/(x+1). 
Therefore, a reasonable measure to use as the objective function can then be defined as the sum of the changes in potential when an agent starts using an edge.

Where the harmonic function H(xe) is defined as:
 (
12.14 Supposed that the current set of paths is 
, and agent t
j
 updates its path from P
j 
to P’
j
. Then the new potential  
 is strictly less than the old potential 
)



Proof.
When tj  was using path Pj, it paid for each edge in Pj. – (1)
After the switch, the cost only changes in the edges in   and . 
For each edge, it pays   as there is now  agents on edge f. – (2)
Therefore, from (1) and (2), and the fact that tj viewed the switch as an improvement shows that 

The potential change for  is 

The potential change for  is

Summing the equations (4) and (5) together gives us, which is less than 0, by (3)

The potential decreases at each step along the path, and that each path has a unique potential, thus paths are never revisited. 
 (
(12.15) Best-response dynamics always leads to a set of paths that forms a Nash equilibrium solution. 
)Since there are only finitely many ways to choose a path for each agent tj, and that best-response dynamics can never revisit a set of paths again, we have also shown the following. 


Bounding the price of stability
We can also bound the price of stability by defining to be the total cost to all agents when the selected paths are.
 (
12.16 For any set of paths P
1
,…,P
k
, we have
)



Define E+ to be the set of all edges that belong to at least one of the paths P1,...,Pk. Then by the definition of C, we have 
Since for all e, 

Also, 

Therefore, from (1) and (2), 

 (
(12.17) In every instance, there 
exists
 a Nash equilibrium solution for which the total cost to all agents exceeds that of the social optimum by at most a factor of H(k)
)


We can start by running best-response dynamics on the social optimum to get a Nash equilibrium. Let  define the paths for this Nash equilibrium and . For this Nash equilibrium, 

From (12.16), 

and


Putting (1),(2),and(3) together, 

Therefore 

And this Nash equilibrium has a cost that is within H(k) of the optimal solution, and we have thus successfully bounded the price of stability. 
This report is based on the results that were published in “Algorithm Design” by Jon Kleinberg and Eva Tardos

image4.png
SetA sets




image5.png




image1.png




image2.png




image3.png




