
Approximation Algorithms

Approximation Algorithms
or: How I Learned to Stop Worrying and Deal with NP-Completeness

Ong Jit Sheng, Jonathan (A0073924B)

March, 2012

Approximation Algorithms

Overview

Key Results (I)

General techniques:

Greedy algorithms

Pricing method (primal-dual)

Linear programming and rounding

Dynamic programming on rounded inputs

Approximation Algorithms

Overview

Key Results (II)

Approximation results:
3
2 -approx of Load Balancing

2-approx of Center Selection

H(d∗)-approx of Set Cover

2-approx of Vertex Cover

(2cm1/(c+1) + 1)-approx of Disjoint Paths

2-approx of Vertex Cover (with LP)

2-approx of Generalized Load Balancing

(1 + ε)-approx of Knapsack Problem

Approximation Algorithms

Load Balancing

Outline

1 Load Balancing

2 Center Selection

3 Set Cover: A General Greedy Heuristic

4 Vertex Cover: Pricing Method

5 (Maximum) Disjoint Paths: Maximization via Pricing Method

6 Vertex Cover (LP)

7 Generalized Load Balancing

8 Knapsack Problem: Arbitrarily Good Approximations

Approximation Algorithms

Load Balancing

Problem Formulation

Load Balancing: Problem Formulation

Problem

m machines M1, . . . ,Mm

n jobs; each job j has processing time tj

Goal

Assign each job to a machine

Balance loads across all machines

Approximation Algorithms

Load Balancing

Problem Formulation

Load Balancing: Problem Formulation

Concrete formulation

Let A(i) = set of jobs assigned to Mi

Total load on Mi: Ti =
∑
j∈A(i) tj

Want to minimize the makespan (the max load on any machine),
T = maxi Ti

Approximation Algorithms

Load Balancing

Algorithm

Load Balancing: Algorithm

1st Algo:

procedure Greedy-Balance
1 pass through jobs in any order.
Assign job j to to machine with current smallest load.

end procedure

However, this may not produce an optimal solution.

Approximation Algorithms

Load Balancing

Analysis of Algorithm

Load Balancing: Analysis of Algorithm

We want to show that resulting makespan T is not much larger than
optimum T ∗.

Theorem

(11.1) Optimal makespan is at least T ∗ ≥ 1
m

∑
j tj .

Proof.

One of the m machines must do at least 1
m of total work.

Theorem

(11.2) Optimal makespan is at least T ∗ ≥ maxj tj

Approximation Algorithms

Load Balancing

Analysis of Algorithm

Load Balancing: Analysis of Algorithm

Theorem

(11.3) Greedy-Balance produces an assignment with makespan
T ≤ 2T ∗.

Proof.

Let Ti be the total load of machine Mi.
When we assigned job j to Mi, Mi had the smallest load of all machines,
with load Ti − tj before adding the last job.
=⇒ Every machine had load at least Ti − tj
=⇒

∑
k Tk ≥ m(Ti − tj) =⇒ Ti − tj ≤ 1

m

∑
k Tk

∴ Ti − tj ≤ T ∗
From (11.2), tj ≤ T ∗ so Ti = (Ti − tj) + tj ≤ 2T ∗

∴ T = Ti ≤ 2T ∗

Approximation Algorithms

Load Balancing

Improved Approx Algo

Load Balancing: An Improved Approx Algo

procedure Sorted-Balance
Sort jobs in descending order of processing time (so

t1 ≥ t2 ≥ · · · ≥ tn)
for j = 1, . . . , n do

Let Mi = machine that achieves mink Tk
Assign job j to machine Mi

Set A(i)← A(i) ∪ {j}
Set Ti ← Ti + tj

end for
end procedure

Approximation Algorithms

Load Balancing

Analysis of Improved Algo

Load Balancing: Analysis of Improved Algo

Theorem

(11.4) If there are more than m jobs, then T ∗ ≥ 2tm+1

Proof.

Consider the first m+ 1 jobs in the sorted order.
Each takes at least tm+1 time.
There are m+ 1 jobs but m machines.
∴ there must be a machine that is assigned two of these jobs.
The machine will have processing time at least 2tm+1.

Approximation Algorithms

Load Balancing

Analysis of Improved Algo

Load Balancing: Analysis of Improved Algo

Theorem

(11.5) Sorted-Balance produces an assignment with makespan
T ≤ 3

2T
∗

Proof.

Consider machine Mi with the maximum load.
If Mi only holds a single job, we are done.
Otherwise, assume Mi has at least two jobs, and let ti = last job
assigned to Mi.
Note that j ≥ m+ 1, since first m jobs go to m distinct machines.
Thus, tj ≤ tm+1 ≤ 1

2T
∗ (from 11.4).

Similar to (11.3), but now:
Ti − tj ≤ T ∗ and tj ≤ 1

2T
∗, so Ti = (Ti − tj) + tj ≤ 3

2T
∗.

Approximation Algorithms

Center Selection

Outline

1 Load Balancing

2 Center Selection

3 Set Cover: A General Greedy Heuristic

4 Vertex Cover: Pricing Method

5 (Maximum) Disjoint Paths: Maximization via Pricing Method

6 Vertex Cover (LP)

7 Generalized Load Balancing

8 Knapsack Problem: Arbitrarily Good Approximations

Approximation Algorithms

Center Selection

Problem Formulation

Center Selection: Problem Formulation

Problem

Given a set S of n sites
Want to select k centers such that they are central

Formally:
We are given an integer k, a set S of n sites and a distance function.
Any point in the plane is an option for placing a center.
Distance function must satisfy:

dist(s, s) = 0 ∀s ∈ S
symmetry: dist(s, z) = dist(z, s) ∀s, z ∈ S
triangle inequality: dist(s, z) + dist(z, h) ≥ dist(s, h)

Approximation Algorithms

Center Selection

Problem Formulation

Center Selection: Problem Formulation

Let C be a set of centers.

Assume people in a given town will shop at the closest mall.

Define distance of site s from the centers as
dist(s, C) = minc∈C{dist(s, c)}
Then C forms an r-cover if each site is within distance at most r
from one of the centers, i.e. dist(s, C) ≤ r ∀s ∈ S.

The minimum r for which C is an r-cover is called the covering
radius of C, denoted r(C).

Goal

Select a set C of k centers that minimizes r(C).

Approximation Algorithms

Center Selection

Algorithm

Center Selection: Algorithm

Simplest greedy solution:

1 Find best location for a single center

2 Keep adding centers so as to reduce by as much as possible.

However, this leads to some bad solutions.

Approximation Algorithms

Center Selection

Algorithm

Center Selection: Algorithm

Suppose we know the optimum radius r.
Then we can find a set of k centers C such that r(C) is at most 2r.
Consider any site s ∈ S. There must be a center c∗ ∈ C∗ that covers s
with distance at most r from s.
Now take s as a center instead.
By expanding the radius from r to 2r, s covers all the sites c∗ covers.
(i.e. dist(s, t) ≤ dist(s, c∗) + dist(c∗, t) = 2r)

Approximation Algorithms

Center Selection

Algorithm

Center Selection: Algorithm

Assuming we know r:

procedure Center-Select-1
// S′ = sites still needing to be covered
Init S′ = S, C = ∅
while S′ 6= ∅ do

Select any s ∈ S′ and add s to C
Delete all t ∈ S′ where dist(t, s) ≤ 2r

end while
if |C| ≤ k then

Return C as the selected set of sites
else

Claim there is no set of k centers with covering radius at most r
end if

end procedure

Theorem

(11.6) Any set of centers C returned by the algo has covering radius
r(C) ≤ 2r.

Approximation Algorithms

Center Selection

Analysis

Center Selection: Analysis of Algorithm

Theorem

(11.7) Suppose the algo picks more than k centers. Then, for any set C∗

of size at most k, the covering radius is r(C∗) > r.

Proof.

Assume there is a set C∗ of at most k centers with r(C∗) ≤ r.
Each center c ∈ C selected by the algo is a site in S, so there must be a
center c∗ ∈ C∗ at most distance r from c. (Call such a c∗ close to c.)
Claim: no c∗ ∈ C∗ can be close to two different centers in C.

Each pair of centers c, c′ ∈ C is separated by a distance of more
than 2r, so if c∗ were within distance r from each, this would violate
the triangle inequality.

=⇒ each center c ∈ C has a close optimal center c∗ ∈ C∗, and each of
these close optimal centers is distinct
=⇒ |C∗| ≥ |C|, and since |C| > k, this is a contradiction.

Approximation Algorithms

Center Selection

Actual Algorithm

Center Selection: Actual algorithm

Eliminating the assumption of knowing the optimal radius

We simply select the site s that is furthest from all previously selected
sites.

procedure Center-Select
Assume k ≤ |S| (else define C = S)
Select any site s and let C = {s}
while |C| < k do

Select a site s ∈ S that maximizes dist(s, C)
Add s to C

end while
Return C as the selected set of sites

end procedure

Approximation Algorithms

Center Selection

Actual Algorithm

Center Selection: Analysis of Actual Algorithm

Theorem

(11.8) This algo returns a set C of k points such that r(C) ≤ 2r(C∗).

Proof.

Let r = r(C∗) denote the minimum radius of a set of k centers.
Assume we obtain a set C of k centers with r(C) > 2r for contradiction.
Let s be a site more than 2r from every center in C.
Consider an intermediate iteration (selected a set C ′ and adding c′ in this
iteration).
We have dist(c′, C ′) ≥ dist(s, C ′) ≥ dist(s, C) > 2r.
Thus, Center-Select is a correct implementation of the first k
iterations of the while loop of Center-Select-1.
But Center-Select-1 would have S′ 6= ∅ after selecting k centers, as
it would have s ∈ S′, and so it would select more than k centers and
conclude that k centers cannot have covering radius at most r.
This contradicts our choice of r, so we must have r(C) ≤ 2r.

Approximation Algorithms

Set Cover: A General Greedy Heuristic

Outline

1 Load Balancing

2 Center Selection

3 Set Cover: A General Greedy Heuristic

4 Vertex Cover: Pricing Method

5 (Maximum) Disjoint Paths: Maximization via Pricing Method

6 Vertex Cover (LP)

7 Generalized Load Balancing

8 Knapsack Problem: Arbitrarily Good Approximations

Approximation Algorithms

Set Cover: A General Greedy Heuristic

Problem Formulation

Set Cover: Problem Formulation

Problem

Given a set U of n elements and a list S1, . . . , Sm of subsets of U , a set
cover is a collection of these sets whose union is equal to U .
Each set Si has weight wi ≥ 0.

Goal

Find a set cover C minimizing the total weight
∑
Si∈C wi.

Approximation Algorithms

Set Cover: A General Greedy Heuristic

Algorithm

Set Cover: Algorithm

Designing the algo (greedy)

Build set cover one at a time

Choose next set by looking at wi

|Si| , “cost per element covered”.

Since we are only concerned with elements still left uncovered, we
maintain the set R of remaining uncovered elements and choose Si
that minimizes wi

|Si∩R| .

Approximation Algorithms

Set Cover: A General Greedy Heuristic

Algorithm

Set Cover: Algorithm

procedure Greedy-Set-Cover
Start with R = U and no sets selected
while R 6= ∅ do

Select set Si that minimizes wi

|Si∩R|
Delete set Si from R

end while
Return the selected sets

end procedure

Note: Greedy-Set-Cover can miss optimal solution.

Approximation Algorithms

Set Cover: A General Greedy Heuristic

Analysis

Set Cover: Analysis

To analyze the algo, we add the following line after selecting Si:
Define cs = wi

|Si∩R| ∀s ∈ Si ∩R
i.e. record the cost paid for each newly covered element

Theorem

(11.9) If C is the set cover obtained by Greedy-Set-Cover, then∑
Si∈C wi =

∑
s∈U cs

We will use the harmonic function H(n) =
∑n
i=1

1
i , bounded above by

1 + lnn and below by ln(n+ 1), so H(n) = Θ(lnn).

Approximation Algorithms

Set Cover: A General Greedy Heuristic

Analysis

Set Cover: Analysis

Theorem

(11.10) For every set Sk,
∑
s∈Sk

cs is at most H(|Sk|)wk.

Proof.

For simplicity, assume Sk contains the first d = |Sk| elements of U , i.e.
Sk = {s1, . . . , sd}. Also assume these elements are labelled in the order
in which they are assigned a cost csj by the algo.
Consider the iteration when sj is covered by the algo, for some j ≤ d
At the start of this iteration, sj , sj+1, . . . , sd ∈ R by our labelling.
So |Sk ∩R| ≥ d− j + 1, and so the average cost of Sk is at most
wk

|Sk∩R| ≤
wk

d−j+1

In this iteration, the algo selected a set Si of min average cost, so Si has
average cost at most that of Sk.
So csj = wi

|Si∩R| ≤
wk

|Sk∩R| ≤
wk

d−j+1 , giving us
∑
s∈Sk

cs =
∑d
j=1 csj ≤∑d

j=1
wk

d−j+1 = wk

d + wk

d−1 + · · ·+ wk

1 = H(d)wk

Approximation Algorithms

Set Cover: A General Greedy Heuristic

Analysis

Set Cover: Analysis

Let d∗ = maxi |Si| denote the max size of any set. Then

Theorem

(11.11) The set cover C selected by Greedy-Set-Cover has weight at
most H(d∗) times the optimal weight w∗.

Proof.

Let C∗ be the optimum set cover, so w∗ =
∑
Si∈C∗ wi.

For each of the sets in C∗, (11.10) implies wi ≥ 1
H(d∗)

∑
s∈Si

cs.

Since these sets form a set cover,
∑
Si∈C∗

∑
s∈Si

cs ≥
∑
s∈U cs.

Combining these with (11.9), we get

w∗ =
∑
Si∈C∗ wi ≥

∑
Si∈C∗

[
1

H(d∗)

∑
s∈Si

cs

]
≥ 1

H(d∗)

∑
s∈U cs =

1
H(d∗)wi.

Approximation Algorithms

Set Cover: A General Greedy Heuristic

Analysis

Set Cover: Analysis

The greedy algo finds a solution within O(log d∗) of optimal.
Since d∗ can be a constant fraction of n, this is a worst-case upper
bound of O(log n).
More complicated means show that no polynomial-time approximation
algo can achieve an approximation bound better than H(n) times
optimal, unless P=NP.

Approximation Algorithms

Vertex Cover: Pricing Method

Outline

1 Load Balancing

2 Center Selection

3 Set Cover: A General Greedy Heuristic

4 Vertex Cover: Pricing Method

5 (Maximum) Disjoint Paths: Maximization via Pricing Method

6 Vertex Cover (LP)

7 Generalized Load Balancing

8 Knapsack Problem: Arbitrarily Good Approximations

Approximation Algorithms

Vertex Cover: Pricing Method

Problem Formulation

Vertex Cover: Problem Formulation

Problem

A vertex cover in a graph G = (V,E) is a set S ⊆ V such that each edge
has at least one end in S. We give each vertex i ∈ V weight wi ≥ 0, and
weight of a set S of vertices w(S) =

∑
i∈S wi.

Goal

Find a vertex cover S that minimizes w(S).

Approximation Algorithms

Vertex Cover: Pricing Method

Approximations via Reduction

Vertex Cover: Approximations via Reduction

Note that Vertex Cover ≤p Set Cover

Theorem

(11.12) One can use the Set Cover approximation algo to give an
H(d)-approximation algo for weighted Vertex Cover, where d is the
maximum degree of the graph.

However, not all reductions work similarly.

Approximation Algorithms

Vertex Cover: Pricing Method

Pricing Method (aka Primal-Dual Method)

Vertex Cover: Pricing Method

Pricing Method (aka primal-dual method)

Think of weights on nodes as costs

Each edge pays for its “share” of cost of vertex cover

Determine prices pe ≥ 0 for each edge e ∈ E such that if each e
pays pe, this will approximately cover the cost of S

Fairness: selecting a vertex i covers all edges incident to i, so it is
“unfair” to charge incident edges in total more than the cost of i

Prices pe fair if
∑
e=(i,j) pe ≤ wi (don’t pay more than the cost of i)

Approximation Algorithms

Vertex Cover: Pricing Method

Pricing Method (aka Primal-Dual Method)

Vertex Cover: Algorithm

Theorem

(11.13) For any vertex cover S∗, and any non-negative and fair prices pe,
we have

∑
e∈E pe ≤ w(S∗).

Proof.

Consider vertex cover S∗.
By definition of fairness,

∑
e=(i,j) pe ≤ wi ∀i ∈ S∗.∑

i∈S∗

∑
e=(i,j)

pe ≤
∑
i∈S∗

wi = w(S∗)

Since S∗ is a vertex cover, each edge e contributes to at least one term
pe to the LHS.
Prices are non-negative, so LHS is at least as large as the sum of all
prices, i.e.∑
e∈E pe ≤

∑
i∈S∗

∑
e=(i,j) pe ≤ w(S∗).

Approximation Algorithms

Vertex Cover: Pricing Method

Algorithm

Vertex Cover: Algorithm

We say a node i is tight (or “paid for”) if
∑
e=(i,j) pe = wi.

procedure Vertex-Cover-Approx(G,w)
Set pe = 0 for all e ∈ E
while ∃ edge e = (i, j) such that neither i nor j is tight do

Select e
Increase pe without violating fairness

end while
Let S = set of all tight nodes
Return S.

end procedure

Approximation Algorithms

Vertex Cover: Pricing Method

Analysis

Vertex Cover: Analysis

Theorem

(11.14) The set S and prices p returned by Vertex-Cover-Approx
satisfy w(S) ≤ 2

∑
e∈E pe.

Proof.

All nodes in S are tight, so
∑
e=(i,j) pe = wi ∀i ∈ S.

Adding over all nodes: w(S) =
∑
i∈S wi =

∑
i∈S
∑
e=(i,j) pe.

An edge e = (i, j) can be included in the sum in the RHS at most twice,
so

w(S) =
∑
i∈S

∑
e=(i,j)

pe ≤ 2
∑
e∈E

pe

Approximation Algorithms

Vertex Cover: Pricing Method

Analysis

Vertex Cover: Analysis

Theorem

(11.15) The set S returned by Vertex-Cover-Approx is a vertex
cover, and its cost is at most twice the min cost of any vertex cover.

Proof.

Claim 1: S is a vertex cover.
Suppose it does not cover edge e = (i, j). Then neither i nor j is
tight, contradicting the fact that the while loop terminated.

Claim 2: Approximate bound.
Let p = prices set by the algo, and S∗ be an optimum vertex cover.
By (11.14), 2

∑
e∈E pe ≥ w(S), and by (11.13)

∑
e∈E pe ≤ w(S∗),

so
w(S) ≤ 2

∑
e∈E

pe ≤ 2w(S∗)

Approximation Algorithms

(Maximum) Disjoint Paths: Maximization via Pricing Method

Outline

1 Load Balancing

2 Center Selection

3 Set Cover: A General Greedy Heuristic

4 Vertex Cover: Pricing Method

5 (Maximum) Disjoint Paths: Maximization via Pricing Method

6 Vertex Cover (LP)

7 Generalized Load Balancing

8 Knapsack Problem: Arbitrarily Good Approximations

Approximation Algorithms

(Maximum) Disjoint Paths: Maximization via Pricing Method

Problem Formulation

Disjoint Paths: Problem Formulation

Problem

Given:

a directed graph G
k pairs of nodes (s1, t1), (s2, t2), . . . , (sk, tk)
an integer capacity C

Each pair (si, ti) is a routing request for a path from si to ti

Each edge is used by at most c paths

A solution consists of a subset of the requests to satisfy, I ⊆ {1, . . . , k},
together with paths that satisfy them while not overloading any one edge.

Goal

Find a solution with |I| as large as possible.

Approximation Algorithms

(Maximum) Disjoint Paths: Maximization via Pricing Method

First Algorithm

Disjoint Paths: First Algorithm

A Greedy Approach (when c = 1)

procedure Greedy-Disjoint-Paths
Set I = ∅
until no new path can be found

Let Pi be the shortest path (if one exists) that is edge-disjoint
from previously selected paths, and connects some unconnected (si, ti)
pair

Add i to I and select path Pi to connect si to ti
end until

end procedure

Approximation Algorithms

(Maximum) Disjoint Paths: Maximization via Pricing Method

Analysis of First Algorithm

Disjoint Paths: Analysis of First Algo

Theorem

(11.16) Greedy-Disjoint-Paths is a (2
√
m+ 1)-approximation algo

for Max Disjoint Paths (where m = |E| = number of edges).

Proof.

Let I∗ = set of pairs connected in an optimal solution, and P ∗i for i ∈ I∗
be the selected paths.
Let I = the set of pairs selected by the algo, and Pi for i ∈ I be the
corresponding paths.
Call a path long if it has at least

√
m edges, and short otherwise.

Let I∗s be indices in I∗ with short P ∗i , and similarly define Is for I.
G has m edges, and long paths use at least

√
m edges, so there can be

at most
√
m long paths in I∗.

Now consider short paths I∗. In order for I∗ to be much larger than I,
there must be many connected pairs that are in I∗ but not in I.

Approximation Algorithms

(Maximum) Disjoint Paths: Maximization via Pricing Method

Analysis of First Algorithm

Proof.

Consider pairs connected by the optimum by a short path, but not
connected by our algo.
Since P ∗i connecting si and ti in I∗ is short, the greedy algo would have
picked it before picking long paths if it was available.
Since the algo did not pick it, one of the edges e along P ∗i must occur in
a path Pj selected earlier by the algo.
We say edge e blocks path P ∗i .
Lengths of paths selected by the algo are monotone increasing.
Pj was selected before P ∗i , and so must be shorter: |Pj | ≤ |P ∗i | ≤

√
m,

so Pj is short.
Paths are edge-disjoint, so each edge in a path Pj can block at most one
path P ∗i .
So each short path Pj blocks at most

√
m paths in the optimal solution,

and so
|I∗s − I| ≤

∑
j∈Is

|Pj | ≤ |Is|
√
m (*)

Approximation Algorithms

(Maximum) Disjoint Paths: Maximization via Pricing Method

Analysis of First Algorithm

Proof.

I∗ consists of three kinds of paths:

long paths, of which there are at most
√
m;

paths that are also in I; and

short paths that are not in I, fewer than |Is|
√
m by (*).

Note that |I| ≥ 1 whenever at least one pair can be connected.
So |I∗| ≤

√
m+ |I|+ |I∗s − I| ≤

√
m+ |I|+

√
m|Is| ≤√

m|I|+ |I|+
√
m|I| = (2

√
m+ 1)|I|.

Approximation Algorithms

(Maximum) Disjoint Paths: Maximization via Pricing Method

Second Algorithm

Disjoint Paths: Second Algorithm

Pricing Method (for c > 1)

Consider a pricing scheme where edges are viewed as more expensive
if they have been used.

This encourages “spreading out” paths.

Define cost of an edge e as its length `e, and length of a path to be
`(p) =

∑
e∈P `e.

Use a multiplicative parameter β to increase the length of an edge
each time it is used.

Approximation Algorithms

(Maximum) Disjoint Paths: Maximization via Pricing Method

Second Algorithm

Disjoint Paths: Second Algorithm

procedure Greedy-Paths-With-Capacity
Set I = ∅
Set edge length `e = 1 for all e ∈ E
until no new path can be found

Let Pi be the shortest path (if one exists) such that adding Pi
to the selected set of paths does not use any edge more than c times,
and Pi connects some unconnected (si, ti) pair

Add i to I and select Pi to connect si to ti
Multiply the length of all edges along Pi by β

end until
end procedure

Approximation Algorithms

(Maximum) Disjoint Paths: Maximization via Pricing Method

Analysis of Second Algo

Disjoint Paths: Analysis of Second Algo

For simplicity, focus on case c = 2. Set β = m
1
3 .

Consider a path Pi selected by the algo to be short if its length is less
than β2.
Let Is denote the set of short paths selected by the algo.
Let I∗ be an optimal solution, and P ∗i the paths it uses.
Let ¯̀ be the length function at the first point at which there are no short
paths left to choose.
Consider a path P ∗i in I∗ short if ¯̀(P ∗i) < β2, and long otherwise.
Let I∗s denote the set of short paths in I∗.

Approximation Algorithms

(Maximum) Disjoint Paths: Maximization via Pricing Method

Analysis of Second Algo

Disjoint Paths: Analysis of Second Algo

Theorem

(11.17) Consider a source-sink pair i ∈ I∗ that is not connected by the
approx algo; i.e. i 6∈ I. Then ¯̀(P ∗i) ≥ β2.

Proof.

As long as short paths are being selected, any edge e considered for
selection by a third path would already have length `e = β2 and hence be
long.
Consider the state of the algo with length ¯̀. We can imagine the algo
running up to this point without caring about the limit of c.
Since si, ti of P ∗i are not connected by the algo, and since there are no
short paths left when the length function reaches ¯̀, it must be that path
P ∗i has length of at least β2 as measured by ¯̀.

Approximation Algorithms

(Maximum) Disjoint Paths: Maximization via Pricing Method

Analysis of Second Algo

Disjoint Paths: Analysis of Second Algo

Finding the total length in the graph
∑
e

¯̀
e∑

e
¯̀
e starts out at m (length 1 for each edge). Adding a short path to

the solution Is can increase the length by at most β3, as the selected
path has length at most β2 (for c = 2), and the lengths of the edges are
increased by a factor of β along the path. Thus,

Theorem

(11.18) The set Is of short paths selected by the approx algo, and the
lengths ¯̀, satisfy the relation

∑
e

¯̀
e ≤ β3|Is|+m.

Approximation Algorithms

(Maximum) Disjoint Paths: Maximization via Pricing Method

Analysis of Second Algo

Disjoint Paths: Analysis of Second Algo

Theorem

(11.19) Greedy-Paths-With-Capacity, using β = m
1
3 , is a

(4m
1
3 + 1)-approx algo for capacity c = 2.

Proof.

By (11.17), we have ¯̀(P ∗i) ≥ β2 ∀i ∈ I∗ − I.
Summing over all paths in I∗ − I,

∑
i∈I∗−I

¯̀(P ∗i) ≥ β2|I∗ − I|.
On the other hand, each edge is used by at most two paths in I∗, so∑
i∈I∗−I

¯̀(P ∗i) ≤
∑
e∈E 2 ¯̀

e.
Combining these with (11.18): β2|I∗| ≤ β2|I∗ − I|+ β2|I| ≤∑
i∈I∗−I

¯̀(P ∗i) + β2|I| ≤
∑
e∈E 2 ¯̀

e + β2|I| ≤ 2(β2|I|+m) + β2|I|.
Dividing throughout by β2, using |I| ≥ 1 and setting β = m

1
3 ,

|I∗| ≤ (4m
1
3 + 1)|I|.

Approximation Algorithms

(Maximum) Disjoint Paths: Maximization via Pricing Method

Analysis of Second Algo

Disjoint Paths: Analysis of Second Algo

The same algo works for any capacity c > 0. To extend the analysis,

choose β = m
1

c+1 and consider paths to be short if their length is at
most βc.

Theorem

(11.20) Greedy-Paths-With-Capacity, using β = m
1

c+1 , is a

(2cm
1

c+1 + 1)-approx algo when the edge capacities are c.

Approximation Algorithms

Vertex Cover (LP)

Outline

1 Load Balancing

2 Center Selection

3 Set Cover: A General Greedy Heuristic

4 Vertex Cover: Pricing Method

5 (Maximum) Disjoint Paths: Maximization via Pricing Method

6 Vertex Cover (LP)

7 Generalized Load Balancing

8 Knapsack Problem: Arbitrarily Good Approximations

Approximation Algorithms

Vertex Cover (LP)

Problem Formulation

Vertex Cover: Problem Formulation

Linear programming (LP)

Given an m× n matrix A, and vectors b ∈ Rm and c ∈ Rn, find a vector
x ∈ Rn to solve the following optimization problem:

min(ctx s.t. x ≥ 0;Ax ≥ b)

The most widely-used algo is the simplex method.

Approximation Algorithms

Vertex Cover (LP)

Problem Formulation

Vertex Cover: Integer Programming

Vertex Cover as an Integer Program

Consider a graph G = (V,E) with weight wi ≥ 0 for each node i ∈ V .
Have a decision variable xi for each node i:

xi =

{
0 if i not in vertex cover
1 otherwise

Create a single n-dimensional vector x where the i-th coordinate
corresponds to xi.
Use linear inequalities to encode the requirement that selected nodes
form a vertex cover, and an objective function to encode the goal of
minimizing weight.

(VC.IP) Min
∑
i∈V wixi

s.t. xi + xj ≥ 1 (i, j) ∈ E
xi ∈ {0, 1} i ∈ V

Approximation Algorithms

Vertex Cover (LP)

Problem Formulation

Theorem

(11.21) S is a vertex cover in G iff vector x satisfies the constraints in
(VC.IP). Further, w(S) = wtx.

In matrix form, define matrix A whose columns correspond to nodes in V
and whose rows correspond to edges in E:

A[e, i] =

{
1 if node i is an end of edge e
0 otherwise

Then we can write Ax ≥ ~1,~1 ≥ x ≥ ~0.
So our problem is:

min(wtx subject to ~1 ≥ x ≥ ~0, Ax ≥ ~1, x has integer coords) (†)

Theorem

(11.22) Vertex Cover ≤p Integer Programming

Approximation Algorithms

Vertex Cover (LP)

Algorithm

Vertex Cover: Linear Programming

Using Linear Programming for Vertex Cover

Drop the requirement that xi ∈ {0, 1} and let xi ∈ [0, 1] to get an
instance of LP, (VC.LP), which we can solve in polynomial time.
Call such a vector x∗ and let wLP = wtx∗ be the value of the objective
function.

Theorem

(11.23) Let S∗ denote a vertex cover of minimum weight. Then
wLP ≤ w(S∗).

Proof.

Vertex covers of G correspond to integer solutions of (VC.IP), so the
minimum of (†) over all integer x vectors is exactly the minimum-weight
vertex cover.
In (VC.LP), we minimize over more choices of x, so the minimum of
(VC.LP) is no larger than that of (VC.IP).

Approximation Algorithms

Vertex Cover (LP)

Algorithm

Vertex Cover: Linear Programming

Rounding

Given a fractional solution {x∗i }, define S = {i ∈ V : x∗i ≥ 1
2}.

Theorem

(11.24) The set S defined this way is a vertex cover, and w(S) ≤ 2wLP .

Proof.

Claim 1: S is a vertex cover.
Consider an edge e = (i, j). Claim: at least one of i or j is in S.
Recall that one inequality is xi + xj ≥ 1. So any solution x∗ satisfies
this: either x∗i ≥ 1

2 or x∗j ≥ 1
2 .

∴ at least one of them will be rounded up, and i or j will be in S.

Approximation Algorithms

Vertex Cover (LP)

Algorithm

Vertex Cover: Linear Programming

Proof.

Claim 2: w(S) ≤ 2wLP .
Consider w(S). S only has vertices with x∗i ≥ 1

2 .
Thus, the linear program “paid” at least 1

2wi for node i, and we
only pay wi at most twice as much, i.e.
wLP = wtx∗ =

∑
i wix

∗
i ≥

∑
i∈S wix

∗
i ≥ 1

2

∑
i∈S wi = 1

2w(S).

Theorem

(11.25) The algo produces a vertex cover S of at most twice the
minimum possible weight:

w(S)
(11.24)

≤ 2wLP
(11.23)

≤ 2w(S∗)

Approximation Algorithms

Generalized Load Balancing

Outline

1 Load Balancing

2 Center Selection

3 Set Cover: A General Greedy Heuristic

4 Vertex Cover: Pricing Method

5 (Maximum) Disjoint Paths: Maximization via Pricing Method

6 Vertex Cover (LP)

7 Generalized Load Balancing

8 Knapsack Problem: Arbitrarily Good Approximations

Approximation Algorithms

Generalized Load Balancing

Problem Formulation

Generalized Load Balancing: Problem Formulation

Problem

Generalization of the Load Balancing Problem.

Given a set J of n jobs, and a set M of m machines.

Additional requirement: for each job, there is just a subset of
machines to which it can be assigned, i.e. each job j has a fixed
given size tj ≥ 0 and a set of machines Mj ⊆M that it may be
assigned to.

An assignment of jobs is feasible if each job j is assigned to a
machine i ∈Mj .

Goal

Minimize load on any machine: Using Ji ⊆ J as the jobs assigned to a
machine i ∈M in a feasible assignment, and Li =

∑
j∈Ji tj to denote

the resulting load, we seek to minimize maxi Li.

Approximation Algorithms

Generalized Load Balancing

Algorithm

Generalized Load Balancing: Algorithm

Designing and Analyzing the Algorithm

(GL.IP) Min L∑
i xij = tj ∀j ∈ J∑
j xij ≤ L ∀i ∈M

xij ∈ {0, tj} ∀j ∈ J, i ∈Mj

xij = 0 ∀j ∈ J, i 6∈Mj

Theorem

(11.26) An assignment of jobs to machines has load at most L iff the
vector x, defined by setting xij = tj whenever job j is assigned to
machine i, and xij = 0 otherwise, satisfies the constraints in (GL.IP),
with L set to the maximum load of the assignment.

Approximation Algorithms

Generalized Load Balancing

Algorithm

Generalized Load Balancing: Algorithm

Consider the corresponding linear program (GL.LP) obtained by replacing
the requirement that each xij ∈ {0, tj} by xij ≥ 0 ∀j ∈ J and i ∈Mj .

Theorem

(11.27) If the optimum value of (GL.LP) is L, then the optimal load is at
least L∗ ≥ L.

We can use LP to obtain such a solution (x, L) in polynomial time.

Theorem

(11.28) The optimal load is at least L∗ ≥ maxj tj . (see 11.2)

Approximation Algorithms

Generalized Load Balancing

Algorithm

Generalized Load Balancing: Algorithm

Rounding the solution when there are no cycles

Problem: the LP solution may assign small fractions of job j to each of
the m machines.
Analysis: Some jobs may be spread over many machines, but this cannot
happen to too many jobs.
Consider the bipartite graph G(x) = (V (x), E(x)): nodes are
V (x) = M ∪ J , and there is an edge (i, j) ∈ E(x) iff xij > 0.

Approximation Algorithms

Generalized Load Balancing

Algorithm

Theorem

(11.29) Given a solution (x, L) of (GL.LP) s.t. G(x) has no cycles, we
can use this solution x to obtain a feasible assignment with load at most
L+ L∗ in O(mn) time.

Proof.

G(x) has no cycles =⇒ each connected component is a tree.
Pick one component (it is a tree with jobs and machines as nodes).
1. Root the tree at an arbitrary node.
2. Consider a job j. If its node is a leaf of the tree, let machine node i
be its parent.
2a. Since j has degree 1 (leaf node), machine i is the only machine that
has been assigned any part of job j. ∴ xij = tj . So this will assign such
a job j to its only neighbour i.
2b. For a job j whose node is not a leaf, we assign j to an arbitrary child
of its node in the rooted tree.
This method can be implemented in O(mn) time. It is feasible, as
(GL.LP) required xij = 0 whenever i 6∈Mj .

Approximation Algorithms

Generalized Load Balancing

Algorithm

Proof.

Claim: load is at most L+ L∗.
Let i be any machine, and Ji be its set of jobs.
The jobs assigned to i form a subset of the neighbours of i in G(x): Ji
contains those children of node i that are leaves, plus possibly the parent
p(i) of node i.
Consider each p(i) separately. For all other jobs j 6= p(i) assigned to i,
we have xij = tj .
∴
∑
j∈Ji,j 6=p(i) tj ≤

∑
j∈J xij ≤ L

For the parent j = p(i), we use tj ≤ L∗ (11.28).
Adding the inequalities, we get

∑
j∈Ji xij ≤ L+ L∗.

By (11.27), L ≤ L∗, so L+ L∗ ≤ 2L∗ (twice of optimum), so we get:

Theorem

(11.30) Restatement of (11.29), but with load at most twice the
optimum.

Approximation Algorithms

Generalized Load Balancing

Algorithm

Generalized Load Balancing: Algorithm

Eliminating cycles from the LP solution

We need to convert an arbitrary solution of (GL.LP) into a solution x
with no cycles in G(x).
Given a fixed load value L, we use a flow computation to decide if
(GL.LP) has a solution with value at most L.
Consider the directed flow graph G = (V,E), with V = M ∪ J ∪ {v},
where v is a new node.

Approximation Algorithms

Generalized Load Balancing

Algorithm

Generalized Load Balancing: Algorithm

Theorem

(11.31) The solutions of this flow problem with capacity L are in
one-to-one correspondence with solutions of (GL.LP) with value L, where
xij is the flow value along edge (i, j), and the flow value on edge (i, v) is
the load

∑
j xij on machine i.

Thus, we can solve (GL.LP) using flow computations and a binary search
for optimal L.
From the flow graph, G(x) is an undirected graph obtained by ignoring
directions, deleting v and all adjacent edges, and deleting all edges from
J to M that do not carry flow.

Approximation Algorithms

Generalized Load Balancing

Algorithm

Generalized Load Balancing: Algorithm

Theorem

(11.32) Let (x, L) be any solution to (GL.LP) and C be a cycle in G(x).
In time linear in the length of the cycle, we can modify x to eliminate at
least one edge from G(x) without increasing the load or introducing any
new edges.

Proof.

Consider the cycle C in G(x).
G(x) corresponds to the set of edges that carry flow in the solution x.
We augment the flow along cycle C. This will keep the balance between
incoming and outgoing flow at any node, and will eliminate one backward
edge from G(x).

Approximation Algorithms

Generalized Load Balancing

Algorithm

Generalized Load Balancing: Algorithm

Proof.

Assume the nodes along the cycle are i1, j1, i2, j2, . . . , ik, jk, where il is a
machine node and jl is a job node.
We decrease the flow along all edges (jl, il) and increase the flow on the
edges (jl, il+1) for all l = 1, . . . , k (where k + 1 is used to denote 1), by
the same amount δ.
This does not affect flow conservation constraints.
By setting δ = minkl=1 xiljl , we ensure that the flow remains feasible and
the edge obtaining the minimum is deleted from G(x).

Approximation Algorithms

Generalized Load Balancing

Algorithm

Generalized Load Balancing: Algorithm

Theorem

(11.33) Given an instance of the Generalized Load Balancing Problem,
we can find, in polynomial time, a feasible assignment with load at most
twice the minimum possible.

Approximation Algorithms

Knapsack Problem: Arbitrarily Good Approximations

Outline

1 Load Balancing

2 Center Selection

3 Set Cover: A General Greedy Heuristic

4 Vertex Cover: Pricing Method

5 (Maximum) Disjoint Paths: Maximization via Pricing Method

6 Vertex Cover (LP)

7 Generalized Load Balancing

8 Knapsack Problem: Arbitrarily Good Approximations

Approximation Algorithms

Knapsack Problem: Arbitrarily Good Approximations

Problem Formulation

Knapsack Problem: Problem Formulation

Problem

n items to pack in a knapsack with capacity W .
Each item i = 1, . . . , n has two integer parameters: weight wi and value
vi.

Goal

Find a subset S of items of maximum value s.t. total weight ≤W ,
i.e. maximize

∑
i∈S vi subject to the condition

∑
i∈S wi ≤W .

In addition, we take a parameter ε, the desired precision.

Our algo will find a subset S satisfying the conditions above, and
with

∑
i∈S vi at most a (1 + ε) factor below the maximum possible.

The algo will run in polynomial time for any fixed choice of ε > 0.

We call this a polynomial-time approximation scheme.

Approximation Algorithms

Knapsack Problem: Arbitrarily Good Approximations

Algorithm

Knapsack Problem: Algorithm

Designing the Algorithm

We use a DP algo (given later) with running time O(n2v∗)
(pseudopolynomial) where v∗ = maxi vi.
If values are large, we use a rounding parameter b and consider the values
rounded to an integer multiple of b.
For each item i, let its rounded value be v̄i = d vib eb. The rounded and
original values are close to each other.

Theorem

(11.34) For each item i, vi ≤ v̄i ≤ vi + b.

Approximation Algorithms

Knapsack Problem: Arbitrarily Good Approximations

Algorithm

Knapsack Problem: Algorithm

Instead of solving with the rounded values, we can divide all values by b
and get an equivalent problem.
Let v̂i = v̄i

b = d vib eb for i = 1, . . . , n.

Theorem

(11.35) The Knapsack Problem with values v̄i and the scaled problem
with values v̂i have the same set of optimum solutions, the optimum
values differ exactly by a factor of b, and the scaled values are integral.

Approximation Algorithms

Knapsack Problem: Arbitrarily Good Approximations

Algorithm

Knapsack Problem: Algorithm

Assume all items have weight at most W . Also assume for simplicity that
ε−1 is an integer.

procedure Knapsack-Approx(ε)
Set b = ε

2n maxi vi
Solve Knapsack Problem with values v̂i (equivalently v̄i)
Return the set S of items found

end procedure

Theorem

(11.36) The set of items S returned by Knapsack-Approx has total
weight

∑
i∈S wi ≤W .

Approximation Algorithms

Knapsack Problem: Arbitrarily Good Approximations

Analysis

Knapsack Problem: Analysis

Theorem

(11.37) Knapsack-Approx runs in polynomial time for any fixed ε > 0.

Proof.

Setting b and rounding item values can be done in polynomial time.
The DP algo we use has running time O(n2v∗) (v∗ = maxi vi) for
integer values.
In this instance, each item i has weight wi and value v̂i.
The item j with max value vj = maxi vi also has maximum value in the
rounded problem, so maxi v̂i = v̂j = d vjb e = 2nε−1.
Hence, the overall running time is O(n3ε−1).

Note: This is polynomial for any fixed ε > 0, but dependence on ε is not
polynomial.

Approximation Algorithms

Knapsack Problem: Arbitrarily Good Approximations

Analysis

Theorem

(11.38) If S is the solution found by Knapsack-Approx, and S∗ is any
other solution, then (1 + ε)

∑
i∈S vi ≥

∑
i∈S∗ vi.

Proof.

Let S∗ be any set satisfying
∑
i∈S∗ wi ≤W .

Our algo finds the optimal solution with values v̄i, so we have∑
i∈S∗ v̄i ≤

∑
i∈S v̄i. Thus,

∑
i∈S∗

vi
(11.34)

≤
∑
i∈S∗

v̄i ≤
∑
i∈S

v̄i
(11.34)

≤
∑
i∈S

(vi + b) ≤ nb+
∑
i∈S

vi (‡)

Let j be the item with the largest value; by our choice of b, vj = 2ε−1nb
and vj = v̄j .
By our assumption wi ≤W ∀i, we have

∑
i∈S v̄i ≥ v̄j = 2ε−1nb.

From (‡),
∑
i∈S vi ≥

∑
i∈S v̄i − nb, and thus

∑
i∈S vi ≥ (2ε−1 − 1)nb.

Hence nb ≤ ε
∑
i∈S vi for ε ≤ 1, so∑

i∈S∗ vi ≤
∑
i∈S vi + nb ≤ (1 + ε)

∑
i∈S vi.

Approximation Algorithms

Knapsack Problem: Arbitrarily Good Approximations

The Dynamic Programming Algo

Knapsack Problem: DP Algo

The Dynamic Programming Algo

Our subproblems are defined by i and a target value V , and OPT(i, V) is
the smallest knapsack weight W so that one can obtain a solution using
a subset of items {1, . . . , i} with value at least V .
We will have a subproblem for all i = 0, . . . , n and values
V = 0, . . . ,

∑i
j=1 vj .

If v∗ denotes maxi vi, then the largest V can get is
∑n
j=1 vj ≤ nv∗.

Thus, assuming values are integral, there are at most O(n2v∗)
subproblems.
We are looking for the largest value V s.t. OPT(n, V) ≤W .

Approximation Algorithms

Knapsack Problem: Arbitrarily Good Approximations

The Dynamic Programming Algo

Knapsack Problem: DP Algo

Recurrence relation:

Consider whether last item n is included in the optimal solution O.

If n 6∈ O, then OPT(n, V) = OPT(n− 1, V).

If n ∈ O, then OPT(n, V) = wn + OPT(n− 1,max(0, V − vn)).

Theorem

(11.39) If V >
∑n−1
i=1 vi, then OPT(n, V) = wn + OPT(n− 1, V − vn).

Otherwise,
OPT(n, V) = min(OPT(n− 1, V), wn + OPT(n− 1,max(0, V − vn))).

Theorem

(11.40) Knapsack(n) takes O(n2v∗) time and correctly computes the
optimal values of the subproblems.

Approximation Algorithms

Knapsack Problem: Arbitrarily Good Approximations

The Dynamic Programming Algo

Knapsack Problem: DP Algo

procedure Knapsack(n)
Array M [0 . . . n, 0 . . . V]
for i = 0, . . . , n do

M [i, 0] = 0
end for
for i = 1, 2, . . . , n do

for V = 1, . . . ,
∑i
j=1 vj do

if V >
∑i−1
j=1 vj then

M [i, V] = wi +M [i− 1, V]
else

M [i, V] = min(M [i− 1, V],
wi +M [i− 1,max(0, V − vi)])

end if
end for

end for
Return the maximum value V s.t. M [n, V] ≤W

end procedure

Approximation Algorithms

Conclusion

Conclusion

Many important problems are NP-complete. Even if we may not be able
to find an efficient algorithm to solve these problems, we would still like
to be able to approximate solutions efficiently. We have looked at some
techniques for proving bounds on the results of some simple algorithms,
and techniques for devising algorithms to obtain approximate solutions.

LP rounding algorithms for Generalized Load Balancing and Weighted
Vertex Cover illustrate a widely used method for designing approximation
algorithms:

Set up an integer programming formulation for the problem

Transform it to a related linear programming problem

Round the solution

Approximation Algorithms

Conclusion

Conclusion

One topic not covered is inapproximability.
Just as one can prove that a given NP-hard problem can be
approximated to within a certain factor in polynomial time, one can
sometimes establish lower bounds, showing that if the problem can be
approximated better than some factor c in polynomial time, then it could
be solved optimally, thereby proving P=NP.

Approximation Algorithms

Conclusion

The End

The End
�

	Load Balancing
	Center Selection
	Set Cover: A General Greedy Heuristic
	Vertex Cover: Pricing Method
	(Maximum) Disjoint Paths: Maximization via Pricing Method
	Vertex Cover (LP)
	Generalized Load Balancing
	Knapsack Problem: Arbitrarily Good Approximations

