Better Lower Bounds for Locally Decodable Codes

Amit Deshpande* Rahul Jainf T Kavitha' Satyanarayana V. Lokam?

Jaikumar Radhakrishnan'

November 12, 2001

Abstract

An error-correcting code is said to be locally decodable if a randomized algorithm can recover
any single bit of a message by reading only a small number of symbols of a possibly corrupted
encoding of the message.

Katz and Trevisan [KT] showed that any such code C' : {0,1} — X™ with a decoding
algorithm that makes at most ¢ probes must satisfy m = Q((n/log|%[)9/(¢=1)). They assumed
that the decoding algorithm is non-adaptive, and left open the question of proving similar bounds
for adaptive decoders.

We improve the results of [KT] in two ways. First, we give a simpler proof of their result.

Second, and this is our main result, we prove that m = Q((n/ log |E|)q/ (q_l)) even if the decoding

algorithm is adaptive. An important byproduct of our proofs is a randomized method for
smoothening the adaptive decoding algorithm.

1 Introduction

1.1 Definition of the problem and background:

Let C : {0,1}" — ™. We say that C is a (g, , €)-locally decodable code if there is a randomized
algorithm that can recover, with probability at least % + ¢, any bit of a message x by reading a
small number of symbols from code word C(z), even if dm entries of C(z) are corrupted. Locally
decodable codes arise in several contexts in computational complexity and cryptography: self-
correcting computations [GLRSW, GS], probabilistically checkable proofs [BFLS], conversion of
worst-case hardness to average-case hardness in the construction of pseudo-random generators
[BFNW], and private information retrieval [CGKS, BI, Ma]. These codes could also have potential
applications in fault-tolerant data storage [KT] .

An important question about a locally decodable code concerns the trade-off between the length
of a codeword m and the number of queries ¢q. In the construction of traditional error-correcting
codes, an important goal is to have a linear time decoding algorithm while achieving m = O(n) and
tolerating upto a constant fraction § of errors in the received word (possibly corrupted encoding).
It is amazing that there are error-correcting codes fulfilling all these requirements. Note that in this

*Chennai Mathematical Institute, Chennai, India. E-Mail: amit@cmi.ac.in

fTheoretical Computer Science Group, Tata Institute of Fundamental Research (TIFR), Mumbai, India. E-Mail:
{rahulj,kavita, jaikumar}@tcs.tifr.res.in

¥ Corresponding Author. E-Mail: satyalv@eecs.umich.edu, Address: Department of Electrical Engineering and
Computer Science, University of Michigan, 1301 Beal Avenue — EECS, Ann Arbor, MI 48109-2122. Part of the work
done while visiting TIFR. Supported in part by NSF grant CCR-9988359

standard setting, we typically recover the entire message from the received word. Thus a linear time
decoding procedure has a constant amortized time per message bit recovered. A natural question,
then, is to ask if similar performance bounds can be achieved for a locally decodable code. Ideally,
one would like to construct a locally decodable code with m = O(n) that allows the recovery of any
single bit of a message in randomized constant time from a corrupted encoding with up to a constant
fraction of errors. Known constructions of locally decodable codes are far from achieving this goal.
In the context of probabilistically checkable proofs, [BFLS] construct a locally decodable code with
m = n'*t€ and ¢ = (logn)°(/9). Based on results on private information retrieval [Am, G, BI], it
is possible to construct a locally decodable code with m = 20" "Y) gor constant q.

This paper is concerned with proving lower bounds for locally decodable codes. The first lower
bound on the size of locally decodable codes was proved by Katz and Trevisan [KT], who showed
for a special class of decodable codes,

) q—Ll 2(g+1) n qz_l
m_9(<q—2> ¢ (1og\2|>) (1)

Thus, for such codes it is impossible to achieve m = O(n) and ¢ = O(1) simultaneously if log || «

n% This bound, however, holds only for codes where the decoding algorithm is non-adaptive
(that is, it decides on which locations to probe based just on its random string). In support of this
restriction on decoders, Katz and Trevisan [KT] observe that all known constructions for locally
decodable codes use non-adaptive decoders. They, however, state the following:

One open questions concerns lower bounds for locally decodable/smooth codes when
the decoding procedure is allowed to make adaptive queries (for the case ¢ > 2). We
see no fundamental reason why the lower bounds given above should not hold, but the
given proof fails in the consideration of the adaptive case.

In this paper we address this question, and prove lower bounds for locally decodable code without
assuming that the decoder is non-adaptive, that is, we allow it to use what it reads in one probe
to decide where to make the next probe. Katz and Trevisan observe that a general (g, d, €)-locally

decodable code is also a (%%11, 8, ¢)-locally decodable code and a (g, 6, ¢/|3|771)-locally decodable
code with non-adaptive decoders, and non-trivial lower bounds for general codes can be derived
from (1). The bounds derived via such reductions deteriorate rapidly with |X|; in particular,
they are not superlinear when |¥| is n (i.e. word size is a logn). In some applications, such as
private information retrieval, locally decodable codes with large alphabets are preferred. Hence, it

is desirable to have a lower bound that deteriorates slowly as |X| increases.

1.2 OQur contributions

We will abuse terminology a little and use adaptive codes to refer to locally decodable codes with
adaptive decoders, and non-adaptive codes to refer to locally decodable codes with non-adaptive
decoders.

As an intermediate step in their proof of (1), Katz and Trevisan considered codes with decoding
algorithms that probe the codeword almost uniformly: say no location is probed with probability
more than ¢/m. Using information theoretic arguments they then showed that for such codes

1 q
1\7=1 2@+D n 7—1
=0 - -1 ; 2
" <(qc) < (IOgIEI)))

We prove the following.

Theorem 1 If the decoder probes no location with probability more that ¢/m, then

n=a((2) (o)™

This improves (2) in three ways: the bound is slightly better, the proof is simpler, and above all,
it works for adaptive codes.

As stated above, the lower bounds for general non-adaptive codes follow from lower bounds for
smooth codes. Although there does not appear to be any such reduction from general adaptive
codes to general smooth codes, we obtain similar improvements for general non-adaptive codes.
(See below for an overview of our technique.)

Theorem 2 For any (q, 9, €)-locally decodable code C : {0,1}" — X,

+1 /1 s b =

q g—1 n qg—1
m=Q [e-T (—) da-1 () .
< q log [X]

In particular, this generalizes (1), for it shows that it is impossible to achieve m = O(n), ¢ = O(1)

and log |2| < ne simultaneously, even with adaptive decoders.

We conclude that constant-time recovery of a single message bit is impossible for a linear length
locally decodable code, whether or not the decoder is adaptive. In fact, from Theorem 2, we see
that any such decoder must examine at least 2(logn/loglogn) bits of the codeword.

1.3 Techniques

The proof in Katz and Trevisan [KT]| was based on an information theoretic idea (used earlier by
Mann [Ma] to prove lower bounds for private information retrieval):

a locally decodable code must repeat information about each bit in different parts of
the codeword, so it must be possible to recover the string x by reading a small fraction
(tending to 0 as n tends to infinity) of C(x). To recover x one must read Q(n) bits, so
even this vanishingly small fraction must contain Q(n/log|X|) symbols, hence |C(z)| =
w(n/ log|).

Our proofs also uses this idea, which we formalize as follows.

Lemma 1.1 Let C: {0,1}" = ™ and A : [n]xX*x 2™ — {0,1}. Suppose S is a random variable
taking values as subsets of [m] such that Vi € [n] Vz € {0,1}" Pr[A(i,C(2)[S],S) = z;] > %, where
C(z)[S] is the substring of C(x) corresponding to indices in S. Then, E[|S|]-logy |X| > n(l—H(%))

(The proof is in the appendix.) To use this lemma, we need to design A, which can recover x
from a small sample of symbols of C(x). All our proofs use the following generic method: pick a
sample of locations S, by picking each a € [m] independently with probability p; then, to recover z;
use the g-probe decoder that comes with the locally decodable code, run it on all random strings,
discard runs that need to probe locations outside S, and return the answer given by the majority
of the remaining runs.

Smooth/non-adaptive codes: Most of the work is in proving that the generic method guesses
x; correctly with probability at least % It is relatively straightforward to prove that the runs of the
decoder that successfully terminate within S give, on an average, significantly more correct answers
than wrong answers. The problem is in showing that they give more correct answers than wrong
answers with high probability. This is not hard to prove if the code has a smooth decoder, which
does not probe any location with probability more than ¢/m. In fact, the random variable ‘number
of correct answers minus the number of wrong answers’ can be expressed as a sum of {+1,—1}
random variables. Now, it is well known that in such situations, if the pair-wise dependency among
the variables is small, then the variance of their sum is small. The smoothness condition translated
to our setting tells us precisely this—the random variables corresponding to different runs of the
decoder have few pair-wise dependencies.

Katz and Trevisan [KT] also used a decoding method based on sampling. However, instead
of estimating the variance of the associated random variable, they identified a set of good runs
of the decoder and, using the assumption that the decoder is non-adaptive and smooth, forced
independence among them. Since we don’t try to force independence, we are able to work even
when the decoder is adaptive. Also, their method succeeded with probability only % + 5 instead of
%. (This difference gets further amplified when one tries to derive lower bounds for adaptive codes
from the lower bounds for non-adaptive codes.)

To prove lower bounds for (not necessarily smooth) non-adaptive codes Katz and Trevisan [KT]
showed that a (g, 6, €)-locally decodable code can always be made smooth, with ¢ = ¢/d. Using this
reduction, we can take ¢ = ¢/d in Theorem 1, and slightly improve the previous best bound (2) for
non-adaptive codes.

Adaptive Codes: Theorem 1 gives lower bounds for smooth adaptive codes. As stated above, the
smoothness condition was inspired by its connection to general non-adaptive codes. Unfortunately,
there does not appear to be such a simple connection when the decoder is adaptive. To describe
this difficulty, we need to recall how non-adaptive codes are converted into smooth codes. When
the decoder is non-adaptive, we know the pattern of probes it is going to make, even without
looking at the codeword. In particular, we can identify the set of locations, Z, that are proved
with probability more than ¢/(dm). Since the decoder reads at most ¢ entries in each invocation,
the number of such locations is less than §m. Modify the decoding algorithm so that instead of
probing a locations in Z explicitly, it assumes that the symbol 0 is stored there. The decoder is
now “smoothened”, and Since |Z| < dm, the new decoder continues to give the correct answer with
probability at least % + €.

This argument fails for adaptive decoder, for now one cannot, without reading the codeword,
determine which locations are heavily probed. In fact, different locations might be heavily probed
for different codewords. There is another more subtle difficulty. Even if we are given the set of
locations that are probed heavily, we cannot just go ahead and assume that they contain a 0,
because this might change the pattern of accesses to C'(z), and some other locations may become
heavily probed! It is, thus, not clear how a smoothener can be fixed in advance. We get around these
difficulties using two main ideas: (i) we observe that to bound the variance in our sampling method
it is enough that a weaker requirement than the smoothness condition above holds, and define a
notion of A-smoothness to capture this; (ii) we show how a A-smoothener can be constructed by
randomly sampling the codeword.

For want of space, we will not present the construction of A-smoothener in this abstract (the
details are in the appendix). So, we will now informally describe here the main ideas surrounding
a A-smoothener and its randomized construction.

Fix i € [n] and think of the randomized algorithm that predicts z; as a probability distribution
on decision trees. Each decision tree has depth at most ¢ and every internal node is labelled by
an address that the algorithm is supposed to probe when the control reaches that node. Each leaf
contains the answer given by the decoder when it follows the corresponding path by probing the
codeword. Fixing the codeword, we get a set of paths from the trees corresponding to different
random choices of the decoder. We would like to determine locations that are probed very often
in these paths, and smoothen the decoder by assuming that they contain a 0. Unfortunately, one
cannot identify these locations precisely by reading just a few bits of the input. So, we make
do with an approximation. There are two interesting features in our approximation. First, the
notion of ‘highly probed location’ is now more nuanced—we impose different thresholds for different
probes. For example, for the first probe we require that no location is probed more than A times,
whereas for the second probe we tolerate locations that are probed about A/p times. Second,
our method for constructing the A-smoothener is itself randomized—we ‘learn’ a smoothener by
probing the codeword. The use of randomness, inevitably, comes with the risk of making errors. It
is possible that there are some highly probed locations that are missed out by our A-smoothener.
To compensate for this, we will allow a small number of trees to set aside, so that with respect to
the rest all our thresholds are respected. The final product is is a set of positions Z C [m] of the
codeword such that, excluding a small set Bad of paths, all positions outside Z are probed with
not too high a probability.

We construct a A-smoothener iteratively picking a set Zj in step k, for 1 < k < ¢, where Z; is
supposed to smoothen the kth probe. Since the first probe is non-adaptive, Z; can be determined
without reading the codeword. In general, having determined 71, Z, ..., Zx_1, we determine Z
by picking a small random sample of locations from C(z) and using them to detect the set of highly
probed locations, Zj, for the kth probe. The set Z := Uzzl Zy, will be our A-smoothener. The
technical part of our proof (presented in the appendix) shows that if we assume that all locations
in Z contain a 0, we set aside a small number of random choices of the decoder, the resulting
algorithm will, with high probability, be A-smooth. Also, |Z| < dm.

With such a A-smoothener Z at hand, we can use the sampling method to predict any z; with
high probability. Note, however, that in applying Lemma 1.1, the set S now includes not only the
random bits picked to guess z;, but also those used to generate the A-smoothener Z.

Organization of the paper: In Section 2, we consider smooth codes and prove Theorem 1.
In Section 3, we define A-smootheners, and assuming that they can be constructed efficiently,
complete the proof of Theorem 2. In the appendix, we give the proof of the information theoretic
Lemma, 1.1 described above, and show that A-smotheners can be constructed efficiently.

2 Smooth Codes

Notation: We assume that the randomized decoding algorithm uses a random string r, which is
uniformly distributed in the set [t] = {1,2,...,t}. We will assume that ¢ > 10m. (We can always
ensure this by making k copies of each decision tree, for some large enough k.)

Definition 2.1 Fiz z € {0,1}" and i € [n] and consider the decoding algorithm that predicts z; by
making probes to C(x). For r € [t], let

o e (z,i) be the set of locations in [m] that the decoding algorithm probes for predicting x; when
the random string is r;

e ans,(z,i) € {0,1} be the answer returned by the decoding algorithm, when the random string
s
~ |+ ifansy(z,i) = z;
o adv,(2,1) = { -1 ifansy(z,i) #x;

When = and @ are clear from the context, we drop them from our notation, and write e,, ans,, and
adv, respcetively.

Smoothness assumption: The decoding algorithm reads no entry of the codeword with prob-
ability more than ¢/m. That is, for each j € [m)],

. def . . C
degj = {r:j €elz,i)} < (E) t. (3)
We will use Lemma 1.1 to show a lower bound for smooth codes.

Sampling: Let S be a random subset of [m] obtained by picking each j € [m] independently with
probability p (to be fixed later).

Prediction Algorithm A: Fix z and i. For r € [t], let x, be the 0-1 random variable defined
by
0 ife, Z S

P —1|18=498]= -
e =115=5] {p‘”%' ife. C 8

(The additional random choices required in the case ‘e, C S’ are made independently for different
r.) Note that Pr[x, = 1] = p? for all r € [t]. Now, let

A(i,C(z)[S], S) def majority ans,(z,1).
TE[t]: xr=1

Analysis: For z € {0,1}", 7 € [n] and S C [m], let adv(S,z,1) ef Z adv,(z,1). We will
reftl:xr=1
choose p, so that for all z € {0,1}" and 7 € [n],

%r[adU(S,x,i) <0] < (4)

[SCRNE

Here, the probability is over the sets S produced by our sampling algorithm above. Fix z € {0,1}"
and ¢ € [n], and write adv(S) instead of adv (S, z,1). Then, adv(S) = 3, ¢ adv, Xy, and since the
decoding algorithm gives the correct answer with probability at least 3 + €, we have];][adv(S)] =

Z advy E[xr] > 2¢t - p?. Thus, the average advantage is bounded away from 0. But (4) says that
réEft]
the advantage is positive with high probability. For this, we will bound the variance of adv(S):

var[adv(S)] = E[adv(S)?] — E[adv(S))?
= Z Eladv, xradvy x| — Eladv, X,] Eladv, x,]
T, €[t]
- Z adv, adv, (Elxrx] — Blx:] E[x])-
ryr! €[t]

If r # 7' and e, Ney = (), then X, and x,» are independent, and E[x,x~] — E[x] E[x»] = 0.
Furthermore, since E[x; x| and E[x,] E[x,] lie in the range [0, p?], we always have

advradv, (E[xrxr] — ElX:] E[x]) < p7.

Thus, var[adv(S)] < p?- > 1 < plq (i) £2,
m
r,r' €[t]:erNer 7D
where the last inequality follows from (3): [(r,r') ey Nep # 0] < 3 jcpm] deg?j < (max; degj) -
(32 degj) < (ct/m) - (qt).
Using Chebyshev’s inequality, we have

Pr{adu(8) < 0] < var[adv(S)] < qc

~ E[adv(9))?

4e2pim’

< %, as required in (4).

INT,

1
Now, let p def (%) /q. Since t > 10m, Pr[adv(S) < 0] <

Proof of Theorem 1: By Lemma 1.1, we get pmlog, [S| > n(1 — H(%)), that is

1/(g—1
() [a=HG)
- \4¢ log, |X|

q/(g—1)

3 General Codes

Recall that our overall goal is to show that after picking a small number of bits of the codeword
C(z), there is a method for predicting z; with high probability for any i € [n]. The locations to be
read from C(z) are randomly chosen, according to a distribution independent of i. In the previous
section, these bits were used only in the sampling procedure for predicting z;. Now, however, we
will use these bits for two purposes: first, we will read (expected) (¢ — 1)pm bits to construct the
A-smoothener Z; then, we will read (expected) pm bits to predict the bits of z. Thus, we read a
total of gpm bits on the average and predict each bit correctly (in the sense of Lemma 1.1) with
probability at least %

The decoding algorithm: Before we proceed further, we need to look more closely at the
decoding algorithm, and introduce some notation. Fix ¢ € [n]. We can model the decoding
algorithm d as a collection of decision trees. Each such tree probes the code word C(z) (adaptively)
at most ¢ times and returns a guess for z;. We will make two assumptions about the decoding
algorithm.

A1: There are t (> 10m) decision trees: {I';},¢[;)- The randomized decoding algorithm picks one
of them at random (uniformly, each with probability %), and guesses ; to be the answer
returned by that tree.

A2: No location of the table is probed twice along any path of a decision tree.

It will be convenient to extend the usual definition of a decision tree a little: some of the nodes of
the tree will be designated as virtual nodes. When the algorithm reaches a virtual node, it assumes
that the entry of the codeword in the location probed by that node is 0, and does not explicitly
read any bit of C(z). We then say that algorithm has made a virtual probe. When the node reached

is not virtual, the algorithm probes C(z) as usual, and we say that it has made a real probe. We
require that the total number of nodes (real plus virtual) on any path of the tree be at most ¢. For
a decision tree I', of d, the path now taken in the tree gives rise to a sequence e, = (a1, as,...,a),
(k < q), of indices in [m], some of which might correspond to virtual probes. We use e, [4] to denote
the jth element of e,. For a € [m], let

deg;(a) = [{r € [t] : the jth probe of e, is a real probe and e,[j] = a}|. (5)
Let deg(a) = Y_9_; deg;(a). We will also use an extension of this notation. For R C [t], let
deg;(a | R) = |{r € R : the jth probe of e, is a real probe and e,[j] = a}l;

let deg(a | R) = >7_, deg;(a | R).

Remark: Note that these definitions depend on the decoding algorithm and the code word being
processed. For the rest of this section, fix an input z € {0,1}" and a decoding algorithm d that
guesses z; by probing the codeword C(z) at most g times.

Definition 3.1 (A-smooth decoder) We say that the decoding algorithm d is A-smooth (w.r.t. the
codeword C(x)) if there is a set Good C [t] such that

Good| > (1—§>t, and (6)

o\ k-1
Va € [m]Vk € [q] degy(a | Good) < (10°q) A
ep

Our motivation for considering A-smooth decoders comes from the the following sampling procedure
and the lemma, that follows it. Let

1
Al 2 (@)i RN
om € ’

om

Sampling: Let S be the random subset of [m] obtained by picking each a € [m] with probability
p independently.

For the given locally decodable code, fix an adaptive (g, d, €)-decoder d. From the sample S and
this decoder d, we define the prediction algorithm 4, to be used in Lemma, 1.1:

Prediction Algorithm A,;: For r € [t], let x, be the 0-1 random variable (dependent on S)
defined by

_ P I ife, z S
Prbe =115 =5]= { prlel ife, C S
Let
Aq(i, C(z)[S], S) def majority ans;.
reft]: xr=1
Note:

1. By ‘e, C S’ we mean that all real probes of e, are in S , and by |e;| we mean the number of
real probes into C(z) made by the rth decision tree.

2. The additional random choices required in the case ‘e, C S’ are made independently for

different r.
3. Our definition implies that Pr[x, = 1] = p?, for all r € [t].

Lemma 3.1 If d is A-smooth and d guesses x; correctly with probability at least % + €, then

. 9
Pr{Aa(i, C(@)[S), 5) = =i] > .

Proof: Fix z € {0,1}" and ¢ € [n]. Recall (cf. Definition 2.1) that ans, € {0,1} denotes the
answer returned by d by probing C(z) when its random string is r and that adv, = +1 if ans, = z;

and adv, = —1 if ans, # ;. Let

adv(S) def Z advy - X
rE(t]
1
Our goal, then, is to show that %r[adv(S) <0] < 0 Let advg(S) def Z adv, - xr. Then,
r€Good

1
adv(S) = advg(S) + Z adv, - xr > advg(S) — Z ladvy| - xr > advg(S) — iepqt.
rZGood rZGood

So, it suffices to show that

1 1
P < Zeplt] < —.
rladvg(S) < 2ep t] < 10

For this, we will use Chebyshev’s inequality. We have

1
E[advg(S)] = E[adv(S)]— > adv,-Elx,] > 2eplt — ~eplt = §epqt;
rZGood 2 2
var[advg(S)] = E[advg(S)?] — Eladvg(S)]?
= Z Eladv,xradvyx,] — Eladv, xr| E[adv, x,]
r,r’'€Good

= Z adv,advy (ElxrXr] — ElXr] Elxr])-
r,r’ €Good

If r = 7/, then E[x,Xxr] — E[xr] E[x»] = p? — p* < p?. If r # ', and e, and e, have no real probe
in common, then x, and x, are independent, and E[x, x| —E[x:] E[x»] = 0. If r # 7', and e, and
e, do have a real probe in common, let probe k be the first real probe of e, that appears as a (real)
probe of e, Then, since |e; Uey| > g+k—1, | E[xrxr] —Elx:] E[xr]| < p?th=t—p% < path=t,
Note that the case of k¥ = 1 includes the case r = r’. By considering the terms corresponding to

the different k separately, we obtain

q
varfadvg(S)] < Z Z degy (a | Good) deg(a | Good)p?HF 1

k=1a€[m]

a 100¢? kot

< Apf

< Ap Z (; 2 deg(a | Good)
k=1 a€[m]
<. (100g2\ "™

< qu2< 9 qt
k=1 \ ¢

2\ 9-1
< 2Agpt (100q) t.
€

(To justify (8), we used the assumption that d is A-smooth.) By Chebyshev’s inequality,

1 var[adv(S)] var[adv(S)] 2Aq 100¢> g-1
Pr[advg(S) < §€pqt] < (BEladvg(S)] — %epqt)Q < (epqt)2 = <€2pqt> (¢) '

et , 1
Recall that A = 52—7’;, t > 10m and p = (@) ? (%)q. Thus, Prladvg(S) < %epqt] < %, as

required in (7).]

Definition 3.2 (A-smoothener) Let Z C [m]. Then, the smoothening of d by Z, denoted by
d* 7, is the decoding algorithm obtained from d by designating all nodes where a probe is made to a
location in Z as virtual nodes. (Nodes that were already virtual in d continue to be virtual in dx Z.)
We say that Z C [m] is a A-smoothener for d (w.r.t. the codeword C(z)) if d x Z is A-smooth.

Lemma .2 There is a randomized procedure that probes the codeword C(z) at (¢ — 1)pm bits on
the average (according to a distribution independent of i) and using contents of those locations and
the decoding algorithm d, returns a set Z (|Z| < ém), such that with probability at least %, dxZ7 is
A-smooth.

Proof of Theorem 2: First pick a sample of bits of C(z) at random as in Lemma .2. Then,
given %, construct the A-smoothener Z for the decoding algorithm d that predicts z; by probing
C(z) at most ¢ times. Then, pick the sample of S of pm bits for the sampling procedure described
at the beginning of this section. Now, let Ay, (i, C(z)[S], S) be the guess for z;. Since |Z| < dm,
the query algorithm d * Z guesses z; correctly with probability at least % + €. By Lemma .2 with
probability %, d * Z is A-smooth. Then, by Lemma, 3.1,

Pr[Az (i, C(@)[S], S) = a; | d* Z is A-smooth] > %

Thus, with probability at least (%) (%) > %, this method predicts z; correctly, after reading gpm
bits on the average. By Lemma 1.1, gpmlog, |S| > n(1 — H(%)), that is,

S
— \100 q log, |X| '

|
References
[Am] Amabainis, A.: Upper Bounds on the Communication Complexity of Private Informa-
tion Retrieval, In Proc. ICALP, pp. 401 — 407, 1997.
[KT] Katz, J., and Trevisan, L.: On the Efficiency of Local Decoding Procedures for Error-
Correcting Codes. In Proc. 32nd ACM Symposium on Theory of Computing (STOC),

2000.

[BFLS] Babai, L., Fortnow, L., Levin, L., and Szegedy, M.: Checking Computations in Poly-
logartithmic Time. In Proc. 23rd ACM Symposium on Theory of Computing (STOC),
pp. 21 - 31, 1991.

10

[BENW]

[BI]

[CGKS]

[GLRSW]

[GS]

[G]
[Ma]

[STV]

Babai, L., Fortnow, L., Nisan, N., and Wigderson, A.: BPP has Subexponential
Time Simulations unless EXP-TIME has publishable proofs. Computational Complez-
ity, 3(4):307-318, 1993.

Beimel, A. and Ishai, Y. : Information-Theoretic Private Information Retrieval: A
Unified Construction, ECCC TR01-015, 2001.

Chor, B., Goldreich, O., Kushilevitz, E., and Sudan, M.: Private Information Retrieval,
JACM, 45(6), 1998.

Gemmel, P., Lipton, R., Rubinfeld, R., Sudan, M., and Wigderson, A.: Self-
Testing/Correcting for Polynomials and for Approximate Functions. In Proc. 23rd
STOC, pp. 32 — 42, 1991.

Gemmel, P. and Sudan, M. : Highly Resilient Correctors for Polynomials. Information
Processing Letters, 43(4):169-174, 1992.

Goldreich, O. : Personal Communication cited in [K'T], 1999.

Mann, E. : Private Access to Distributed Information. Master’s Thesis, Technion,
1998.

Sudan, M, Trevisan, L., and Vadhan, S. : Pseudo-random Generators without the XOR
Lemma. in Proc. 81st STOC, pp. 537 — 546, 1999

A Proof of Lemma 1.1

Pick X uniformly at random from {0,1}" (independent of S). Then,

HIX | C@)[8], 8] < f;H[X,-|C(m)[S],S] < nH (;)

On the other hand,

HIX [C(X)[5],5] =2 H[X | S] - H[C(X)[S]|S] = n—E[S[]log, 3.

B Constructing the A-smoothener

B.1 Case ¢q=2

A natural first attempt at obtaining a A-smoothener is to identify all locations in [m] that are probed
heavily by d. Now, the first probe is non-adaptive, so identifying locations a, with deg;(a) > A is
not a problem. Let Z; def {a : deg;(a) > A}. (Here deg;(a) is with respect to d.) We can try to
do the same thing for the second probe, but, then, we run into two problems.

1. The second probe depends on what the algorithms reads in its first probe. Hence, for different
inputs, different locations can be probed heavily in the second probe.

2. Even if we identify the set of these locations, say Z2, we cannot guarantee that the algorithm
d * (Z1 U Z3) probes no location heavily. For, setting locations in Zs to 0 influences the first
probe as well. As a result, the algorithm can now start probing some other locations heavily.

11

We will now show how one can get around these difficulties. Consider the algorithm d* Z;. We will
use sampling to identify the locations that are probed heavily by this algorithm in its second probe.
Let T be a random subset obtained by picking each element of [m] independently with probability
p. For r € [t], let x, be a random variable (dependent on T'), defined by

1 if ey[1] is a real probe and e,[1] € T
Prjx, =1|T=T] = < p ife.[l]is a virtual probe
0 otherwise

Now, let

dego(a) ' [{r € [f]: e[2] = a and x, = 1}
and Z, ¥ {a € [m)] : deg(a) > (120) A}.

Finally, let Z def Z1 U Zy. We will show that Z is a A-smoothener for d.

Let us verify that |Z| < dm: |Z1] < % < JT’”; similarly, since degy(a) > (@) A for all a € Zy,
and Y-, degy(a) < ¢, we have |Z| < ¢ 0 5~ <

Let us, first, deal with the second culty mentloned above. How many sequences e, could
have ‘changed direction’ (that is, e,[2] is not the same in d x Z; and d * (Z; U Z5)) because their
first probe fell inside Zs? If the first probe of e, falls in Z; (or if e, did not make any probes at all),
then designating probes to locations in Zs as virtual has no effect on e,. So, e, ‘changes direction’
only if e,[1] € Zy — Z;. Let

Bad; {r € [t] : e, is different in d * Z; and d % (Z1 U Z2) }.

Since deg (a) < A for all a ¢ Z;, we have, |Bad;| < A - |Z;| < (155) t- Thus, the number random
strings that contribute to the second problem is small, and we can afford to omit them from the
set Good (in Definition 3.1).

Now, let us return to the first problem. We have used a randomized method to identify locations
that are read heavily in the second probe (by d * Z;). We say that the method errs on a if

deg,(a) > (%) A (w.rt. dx Zy), but a € Z, that is, a is a heavily probed location, but our
sample fails to detect this. Let

Bady & {r : the method errs on e,[2]}.

We will show that Bads is small, so we can afford to discard it when we define Good.

Claim 1 For all a, Pr[the method errs on a] < 155-

Before we prove this claim, let us complete the argument for showing that Z is a A-smoothener.

Let Good & [t] — Bad; — Bada. We need to show that Good is large with high probability. By the

above claim,

€
E[|Bady|] < Zdegz) Pr[the method errs on a] < (10()) t.

By Markov’s inequality, Pr[|Bads| > fgg] < 1 . Thus, with probability at least 49, |Good| > (1—-$)t.

To satisfy Definition 3.1, we also need to show that degy(a | Good) < (4%) A for all a € [m] (w.r.t.
the algorithm dx Z; UZs). We have already included in Bad; all r in for which e, changes directions.

12

So, if degs(a | Good) > 400 A, then it must be that the sampling method errs on a. But then,
€2

all 7’s for which a is the second probe in d % (Z; U Z3) are omitted from Good (either via Bads or
via Bad;) and degy(a | Good) = 0—a contradiction.

It remains only to prove the claim. Fix a such that deg,(a) > (4%) A (w.r.t. d* Z1). Then,

E[degQ(a)] > <4LO>A

and var[degQ(a)] = Z(E[X’I’]E[X’r’] — EXrXxr])

r,r!

< ZE[XT + Z (Elxrxr] — Elxr] Elx])-
r#r!

(In these formulas, 7 and 7’ range over random strings for which the algorithm d x Z; makes its
second probe at a.) Now, if the first probe of e, and the first probe of e, are different, or if their
first probe is virtual, then x, and x,s are independent and E[x, X, | — E[xr] E[x.#] = 0. Otherwise,

E[x:xr] — E[x:]| E[xr] < E[xrxr] < E[xr]. Thus,

var[deg(a)] < ZE [xr] + Z — 1) E[x,] < AE[deg(a)].

By Chebyshev’s inequality,

) 100 A E[deg(a)]
Pr[deg(a)<(7> Al < (E[deg(a)] — (100/€)A)?
A E[deg(a)]
(3/4)? E[deg(a))?
4\?% ¢
= (3) 400

< —
- 100

B.2 Caseqg>2

Fix ¢ € [n] and let d = {['+},¢[g be the decoding algorithm that predicts x; by probing C(z) a
most ¢ times. Our set Z will be the union of sets Zy (k € [g]). These sets will be generated by
probing the code word C(z) randomly. We wish to include in Z; all locations probed heavily in
the kth probe. As we shall see, we will succeed in this only approximately. To determine Zj, we
use the algorithm d (Uf:_l1 Z;).

Vertices of Z; can be determined without probing C(z). For each other i, Z; is determined by
choosing a random set T; of [m] and running the algorithm d * (UZ ' Z;) on this random set and
include in Z; all locations a that are probed highly in the ith probe Let us assume that we have
determined Z,...,7Z; 1 and we wish to determine Z;.

We will set aside a small number of random strings 7 from [t], so that for the remaining random
strings the algorithm d * Z does not probe any location heavily. We wanted to include in Zj

k—1
all locations a € [m] such that degy(a) > (%) A w.r.t. the algorithm d * Ufz_ll Z;. In
our randomized approximation of this ideal Z;, we cannot guarantee that all such locations are
picked. So, to compensate for this, we will have to set aside a set Ny of random strings that cause

dx* U],z,;ll Zj to make their kth probe into locations that Zy errs on. The following pseudocode below

13

describes how the sets Ny are defined in order that degy(a | [t] — Uk, Np) (wor.t. d* UN_; Zp)
is small for all a. However, what we really need is that deg,(a | Good) is small w.r.t. d * Z. The
problem is that when we add Zj1, Zjy9,...,%44 to Z, some additional locations are assumed to
contain a 0. This influences even earlier probes of sequences that probe these locations, and can
cause these sequences to change the locations where they make their kth probe. So, ensuring
that degy(a | [t] — UN—; Np) (w.r.t. dxUF_; Zy) is small does not automatically guarantee that
degy(a | [t] — UL _; Ni) (w.rt. d* Z) is small. To get around this, we will have to set aside some
more random strings, P.

Recall that for r € [t], e, is the sequence of locations probed by the algorithm d. We will also
need initial segments of these sequences: let ef (k € [g]) be the subsequence of ef consisting of the
first k£ probes.

14

e Initially, Good = [t].

e Fork=1,...,q
Fora=1,...,m

At this point, {Z;, N;, P;}*=! have already been determmed Good = [t] —
UF=1(N; U P). Consider the algorithm d * U¥=! Z;. With respect to this
algorlthm, the following invariant holds:

1
1 2
I: Va € [m)Vi<k deg;(a| Good) < (00q) A.
€p

Constructing Zj: Let T} be the random set obtained by including each a € [m] in
it independently with probability p. For r € [t], k € [g], let x* be the 0-1 random
variable (dependent on T}), defined by

r k—1 7
- o def 0 ife~* T
Prix; =1|T, =T] = { pE1-le T gp 62—1 cT’
1 C

Here, by ‘e¥~1 C 1", we mean that all real probes of €51 are in T; by |ef1|, we
mean the number of real probes of ef~1. Also, the random choices required when
k=1 C T are made independently for different r. Let

k-1
Dy(a) o {r e Good:elk]l=aNa¢ U Zi};
i=1
~ def
degp(a) = Y x5
r€Dg(a)

k-1
~ 1 (1004°
7z, {a € [m] : deg(a) > R (0(€)q > A}

k-1
Constructing Ny, P;: We say that Zj, errs on a € [m] if |[Dg(a) > (€p2) A and
a & Zy.

N = {r € Good: Z errs on e, [k]};
P, = {r € Good: e[k'] € Z, for some k' < k};
Good = Good — N — Py;

Lemma B. 1 -
(a) I 1D(@)] > (12)" " A, then Prldege(a) < § (129)" Al < 4.
1

q
k-1 ~ k-1 _
(b) If | Dy(a)| 10 (13,) A, then Pr[deg(a) > % (100q) Al < MIID’}(@I-

Proof: We will use Chebyshev’s inequality.

Bdis (@) = Do)
var[deg,(a)] = Z EXan E[XZ]E[Xg]
a,pEN

15

If « = B, then E[xX xﬁ] — E[x%] E[X,B] < E[xk] = p*1. If a # B and e£! and eg_l have no real

probe in common, then x* and Xﬂ are independent, and E[XaXﬁ] — E[xk|E [Xg] =0. If o # 3, and

k—1

o - and e/j ~1 do have a real probe in common, then let probe &' be the first real probe of ekl

(&

that appears as a real probe of e[k;_l. Then,

E[XExE] — EXE] B[xE] < ph-D+¢ -1,

We know from the invariant I of the algorithm that

100¢2 * 1
Vj € [m] VK <k — 1 degkka(a»s(p‘-’) A
€

Using this inequality and by considering the terms corresponding to a« = 8 and « # [separately,
we have

var[degi(a)] =) p’“ L4 Z Z pEDFF =1 degy (a | Dy(a)) deg(a | Dy(a))
a€Dg(a k'=1a€[m

k-1 o (1002

< E[deg(a)] + Y p 1’() A)" deg(a | Di(a))
k=1 p aclm)

100¢2\ 7 ot

< Eldegy(a)] + Z A > p* ' deg(a | Di(a))

k'=1 a€[m]

1004
€

k—2
_ E[d;gk(a)]+z() AqEldeg,(a)

< 3q< o) A Eldeg, (a)]

To prove (a), by Chebyshev’s inequality,

- 1 (10042)" var[degy (a)]
Pr{deg, (a) < = () Al < . _
€8k 5 € (E[degk(a)] . % (10(6)(]2)]6 1 A)Q
Var[dégk()]

(%) E[deg,C
3q (100")’“ AE[deg(a)]
(2)" Bldogy (a)?

€
20-q

To justify the second and the last inequalities, we used (9).
To prove (b), using Chebyshev’s inequality again,

_ 2\ k—2 -
100g?)’“ ' Al < 3¢ (12€)" A B[degy ()

€ (110(100q)k—1A>2

Pr[deg,(a) > = E <

16

k—1 1
A

€p
L B.2 Z|l <20
emma E[|Zk]] < (100(]2)

Proof: Define the subsets Hy and Ly of [m] as follows:

k—1
H, {ae[m]=Dk<a)zi(10°q2> A}.

k-1
1 (100g>
Ly, = {a€[m]:Dgla) < —(q > A}
It is easily seen that

| Hy|

We know from part (b) of Lemma B.1 that for a € Ly,

300gp* 1| Dy, (a)|

Pria € Z) <

10042 \ ¥
() A
Hence,
300gp* 1t
a€Ly (%) A
< (%) () &
- q 10042 A
Thus,
E[|Zy]] < |Hg|+ E[|Lk N Zy]
<

10(p)k_li+<§)(p)'Hi
10042 A q 10042 A
k—1
€p 2
< 2 —
- 0(100q2) A

Lemma B.3 For the set Z C [m] produced by the randomized procedure above:

17

(a) |Z| < dm; and

(b) Z is a A-smoothener for d with probability > %.

Proof:
. k-1
(a) If j € Zy, then degy(j) > & (102’12) . So we have
t t om
Zy| < < < —
12l < 1 (1002 \F71 T 2KTIA T 2k
5 ()

since A = 62_7% Thus, |Z| < 3L, 1Z;| < dm.

(b) It is now straightforward to verify that for all a € [m], deg(a | Good) < (%)'H A w.r.t.
dx Z. Let Bad = [t] — Good. It remains to show that |Bad| is small with high probability. Let
Ni(a) = {r € Ny : e,;[k] = a (wr.t. d* Ul Zp)}. By Lemma B.1 (applied with N = Ni(4)),
Pr[Zj errs on a] < 55.. Thus, E[|Ng[] < (ﬁ) t and E[|Uj—; Ni|] < (55) t. Next, we bound
Py. The vertices of Zj do not belong to Zy (k' < k), so for a € Zj, when Zj, is constructed

Thus,

€p

10042 k-1
{r € E:enk] = a}| < < 00g) A,

E[| P|]

Hence, E[|Ui_; Pel] < (
Pr(|Bad| > (5)] < 3.

€

20

IA

IN

IN

)t

k—1 2\ k'—1
100q
> (*0) ama
klzl p
k=1 1100g2 " ep \F1t
A-20 _
P €p 100¢q A

(7) ()
(ﬁ) t. (assuming p < 1/4)

Thus, E[[Bad|]] < (55)t, and by Markov’s inequality

18

