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Abstract. In this paper we provide new bounds on classical and quantum distributional
communication complexity in the two-party, one-way model of communication.

In the classical one-way model, our bound extends the well known upper bound of Kremer,
Nisan and Ron [KNR95] to include non-product distributions. Let ε ∈ (0, 1/2) be a constant.
We show that for a boolean function f : X ×Y → {0, 1} and a non-product distribution µ on
X × Y,

D1,µ
ε (f) = O((I(X : Y ) + 1) · VC(f)),

where D1,µ
ε (f) represents the one-way distributional communication complexity of f with error

at most ε under µ; VC(f) represents the Vapnik-Chervonenkis dimension of f and I(X : Y )
represents the mutual information, under µ, between the random inputs of the two parties.
For a non-boolean function f : X ×Y → {1, . . . , k} (k ≥ 2 an integer), we show a similar upper

bound on D1,µ
ε (f) in terms of k, I(X : Y ) and the pseudo-dimension of f ′ def

= f
k
, a generalization

of the VC-dimension for non-boolean functions.

In the quantum one-way model we provide a lower bound on the distributional communication
complexity, under product distributions, of a function f , in terms of the well studied complexity
measure of f referred to as the rectangle bound or the corruption bound of f . We show for a
non-boolean total function f : X × Y → Z and a product distribution µ on X × Y,

Q1,µ

ε3/8
(f) = Ω(rec1,µ

ε (f)),

where Q1,µ

ε3/8
(f) represents the quantum one-way distributional communication complexity of

f with error at most ε3/8 under µ and rec1,µ
ε (f) represents the one-way rectangle bound of f

with error at most ε under µ. Similarly for a non-boolean partial function f : X ×Y → Z∪{∗}
and a product distribution µ on X × Y, we show,

Q1,µ

ε6/(2·154)
(f) = Ω(rec1,µ

ε (f)).
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1 Introduction

Communication complexity studies the minimum amount of communication that two or more parties
need to compute a given function or a relation of their inputs. Since its inception in the seminal paper
by Yao [Yao79], communication complexity has been an important and widely studied research area.
This is the case both because of the interesting and intriguing mathematics involved in its study, and
also because of the fundamental connections it bears with many other areas in theoretical computer
science, such as data structures, streaming algorithms, circuit lower bounds, decision tree complexity,
VLSI designs, etc.

Different models of communication have been proposed and studied. In the basic and standard
two-party interactive model, two parties Alice and Bob, each receive an input say x ∈ X and y ∈ Y,
respectively. They interact with each other possibly communicating several messages in order to
jointly compute, say a given function f(x, y) of their inputs. If only one message is allowed, say from
Alice to Bob, and Bob outputs f(x, y) without any further interaction with Alice, then the model is
called one-way. Though seemingly simple, this model has numerous nontrivial questions as well as
applications to other areas such as lower bounds for streaming algorithms, see for example [Mut05].
Other models like the Simultaneous message passing (SMP) model, and multi-party models are also
studied. We refer readers to the textbook [KN97] for a comprehensive introduction to the field
of classical communication complexity. In 1993, Yao [Yao93] introduced quantum communication
complexity and since then it has also become a very active and vibrant area of research. In the
quantum communication models, the parties are allowed to use quantum computers to process their
inputs and to use quantum channels to send messages.

In this paper we are primarily concerned with the one-way model and we assume that the single
message is always, say from Alice to Bob. Let us first briefly discuss a few classical models. In the
deterministic one-way model, the parties act in a deterministic fashion, and compute f correctly
on all input pairs (x, y). The minimum communication required for accomplishing this is called
the deterministic complexity of f and is denoted by D1(f). Allowing the parties to use randomness
and to err on their inputs with a small non-zero probability, often results in considerable savings
in communication. The communication of the best public-coin one-way protocol that has error at
most ε on all inputs, is referred to as the one-way public-coin randomized communication complexity
of f and is denoted by R1,pub

ε (f). Similarly we can define the one-way private-coin randomized
communication complexity of f , denoted by R1

ε(f) and in the quantum model, the one-way quantum
communication complexity of f , denoted by Q1

ε(f). Please refer to Sec. 2.2 for explicit definitions.
When the subscript is omitted, ε is assumed to be 1/3.

Sometimes the requirement on communication protocols is less stringent and it is only required
that the average error, under a given distribution µ on the inputs, is small. The communication of the
best one-way classical protocol that has average error at most ε under µ, is referred to as the one-way
distributional communication complexity of f and is denoted by D1,µ

ε (f). We can define the one-way
distributional quantum communication complexity Q1,µ

ε (f) in a similar way. A useful connection
between the public-coin randomized and distributional communication complexities via the Yao’s
Principle [Yao77] states that for a given ε ∈ (0, 1/2), R1,pub

ε (f) = maxµ D1,µ
ε (f). A distribution µ,

that achieves the maximum in Yao’s Principle, that is for which R1,pub
ε (f) = D1,µ

ε (f), is referred to
as a hard distribution for f . This principle also holds in many other models and allows for a good
handle on the public-coin randomized complexity in scenarios where the distributional complexity
is much easier to understand. Often, the distributional complexity when the inputs of Alice and Bob
are drawn independently from a product distribution, is easier to understand. Nonetheless, often as
is the case with several important functions like Set Disjointness (DISJ) and Inner Product (IP), the
maximum in Yao’s Principle, in the one-way model, occurs for a product distribution, and hence it
paves the way for understanding the public-coin randomized complexity.

A fundamental question about one-way quantum communication complexity is its relation to the
corresponding randomized version for a total function. To be more specific, what is the largest gap
between R1,pub(f) and Q1,pub(f) for a total function f? Though some researchers conjecture that they
are actually equal to each other up to a multiplicative constant, no subexponential upper bound of
R1,pub(f) is known in terms of Q1,pub(f). To decrease the gap, one may need to prove strong quantum



lower bounds and strong classical upper bounds. For instance, if we can find a bound B(f) such
that Q1,pub(f) = 1/poly(B(f)) and R1,pub(f) = poly(B(f)), then we get R1,pub(f) = poly(Q1,pub(f)).
In this paper, we try to prove both classical upper bounds and quantum lower bounds. Detailed
discussions of our results with comparison to previous ones follows.

Let us now discuss our first main result which is in the classical one-way model. We ask the
reader to refer to Sec. 2 for the definitions of various quantities involved in the discussion below.

1.1 Classical upper bound

For a boolean function f : X × Y → {0, 1}, its Vapnik-Chervonenkis (VC) dimension, denoted by
VC(f), is an important complexity measure, widely studied specially in the context of computational
learning theory. Kremer, Nisan and Ron [KNR95, Thm. 3.2] found a beautiful connection between
the distributional complexity of f under product distributions on X × Y, and VC(f), as follows.

Theorem 1 ([KNR95]). Let f : X × Y → {0, 1} be a boolean function and let ε ∈ (0, 1/2) be a
constant. Let µ be a product distribution on X × Y. There is a universal constant κ such that,

D1,µ
ε (f) ≤ κ · 1

ε
log

1
ε
· VC(f). (1)

Note that such a relation cannot hold for non-product distributions µ since otherwise it would
translate, via the Yao’s Principle, into R1,pub

ε (f) = O(VC(f)), for all boolean f . This is not true as
is exhibited by several functions for example the Greater Than (GTn) function, in which Alice and
Bob need to determine which of their n-bit inputs is bigger. For this function, R1,pub

ε (GTn) = Θ(n)
but VC(GTn) = 1. Nonetheless for these functions, any hard distribution µ, is highly correlated
between X and Y. Therefore it is conceivable that such a relationship, as in Eq. 1, could still hold,
possibly after taking into account the amount of correlation in a given non-product distribution.
This question, although probably never explicitly asked in any previous work, appears to be quite
fundamental. We answer it in the positive by the following.

Theorem 2. Let f : X × Y → {0, 1} be a boolean function and let ε ∈ (0, 1/2) be a constant. Let
µ be a distribution (possibly non-product) on X × Y. Let XY be joint random variables distributed
according to µ. There is a universal constant κ such that,

D1,µ
ε (f) ≤ κ · 1

ε
log

1
ε
·
(

1
ε
· I(X : Y ) + 1

)
· VC(f)

In particular, for constant ε,

D1,µ
ε (f) = O ((I(X : Y ) + 1) · VC(f))

Above I(X : Y ) represents the mutual information between correlated random variables X and Y ,
distributed according to µ.

Let us discuss below a few aspects of this result and its relationship with what is previously known.
Note that in combination with Yao’s Principle, Thm. 2 gives us the following (where the mutual
information is now considered under a hard distribution for f).

R1,pub(f) = O ((I(X : Y ) + 1) · VC(f)) . (2)

1. It is easily observed using Sauer’s Lemma (Lem. 2, Sec. 2.) that the deterministic complexity of
f has

D1(f) = O(VC(f) · log |Y|). (3)

This is because Alice can simply send the name of fx in O(VC(f)·log |Y|) bits since |F| ≤ |Y|VC(f).
Now our result (2) is on one hand stronger than (3) in the sense I(X : Y ) ≤ log |Y| always, and
I(X : Y ) could be much smaller than log |Y| depending on µ. An example of such a case is the
Inner Product (IPn) function in which Alice and Bob need to determine the inner product (mod



2) of their n-bit input strings. For IPn, a hard distribution is the uniform distribution which
is product, and hence I(X : Y ) = 0, whereas log |Y| = n. However on the other hand (2) is
also weaker than (3) in the sense it only upper bounds the public-coin randomized complexity,
whereas (2) upper bounds the deterministic complexity of f .

2. Aaronson [Aar07] shows that for a total or partial boolean function f ,

R1(f) = O(Q1(f) · log |Y|). (4)

Again (2) is stronger than (4) in the sense that I(X : Y ) could be much smaller than log |Y|
depending on µ. Also it is known that, Q1(f) = Ω(VC(f)) always, following from Nayak [Nay99],
and Q1(f) could be much larger than VC(f). An example is the Greater Than (GTn) function
for which Q1(GTn) = Ω(n), whereas VC(GTn) = O(1). On the other hand (2) only holds for
total boolean functions whereas (4) also holds for partial boolean functions.

3. As mentioned before, for all total boolean functions f , R1,pub(f) = Ω(VC(f)), and R1,pub(f)
could be much larger than VC(f) (as in function GTn). Now Eq. (2) says that in the latter case,
the mutual information I(X : Y ) under any hard distribution µ must be large. That is, a hard
distribution µ must be highly correlated.

4. It is known that for total boolean functions f , for which a hard distribution is product, there is
no separation between the one-way public-coin randomized and quantum communication com-
plexities. Now our theorem gives a smooth extension of this fact to the functions whose hard
distributions are not product ones. Note that for most, if not all, specific functions of interest
such as EQ, IP, DISJ, etc., the mutual information of a hard distribution is very easy to calculate.

A generalization of the VC-dimension for non-boolean functions, is referred to as the pseudo-
dimension (Def. 2, Sec. 2). For a non-boolean function f : X ×Y → {1, . . . , k} (k ≥ 2 an integer), we
show a similar upper bound on D1,µ

ε (f) in terms of k, I(X : Y ) and the pseudo-dimension of f ′
def= f

k .

Theorem 3. Let k ≥ 2 be an integer. Let f : X ×Y → {1, . . . , k} and ε ∈ (0, 1/6) be a constant. Let
f ′ : X × Y → [0, 1] be such that f ′(x, y) = f(x, y)/k. Let µ be a distribution (possibly non-product)
on X × Y, and XY be joint random variables distributed according to µ. Then there is a universal
constant κ such that,

D1,µ
3ε (f) ≤ κ · k

4

ε5
·
(

log
1
ε

+ d log2 dk

ε

)
· (I(X : Y ) + log k)

where d
def= P ε2

576k2
(f ′) is the ε2

576k2 -pseudo-dimension of f ′.

Let us now discuss our other main result which we show in the quantum one-way model.

1.2 Quantum lower bound

For a function f : X ×Y → Z, a measure of its complexity that is often very useful in understanding
its classical randomized communication complexity, is the rectangle bound (denoted by rec(f)), also
often known as the corruption bound. The rectangle bound rec(f) is actually defined first via a
distributional version recµ(f). It is a well studied measure and recµ(f) is well known to form a
lower bound on Dµ(f) both in the one-way and two-way models. In fact, in a celebrated result,
Razborov [Raz92] provided optimal lower bound on the randomized communication complexity of
the Set Disjointness function, by arguing a lower bound on its rectangle bound.

It is natural to ask if this measure also forms a lower bound on the quantum communication
complexity. We answer this question in the positive for this question in the one-way model. We show
that, for a total or partial function, the quantum distributional one-way communication complexity
under a given product distribution µ is lower bounded by the corresponding one-way rectangle
bound. Our precise result is as follows.



Theorem 4. Let f : X × Y → Z be a total function and let ε ∈ (0, 1/2) be a constant. Let µ be a
product distribution on X × Y and let rec1,µ

ε (f) > 2 · log(1/ε). Then,

Q1,µ
ε3/8(f) ≥ 1

2
· (1− 2ε) · (S(ε/2)− S(ε/4)) · (brec1,µ

ε (f)c − 1) = Ω(rec1,µ
ε (f)), (5)

where for p ∈ (0, 1), S(p) is the binary entropy function S(p) def= −p log p− (1− p) log(1− p).
If f : X × Y → Z ∪ {∗} is a partial function then,

Q1,µ
ε6/(2·154)(f) ≥ 1

2
· (1− 2ε) · ε2

300
· (brec1,µ

ε (f)c − 1) = Ω(rec1,µ
ε (f)).

Let us make a few important remarks here related to this result.
1. Recently, Jain, Klauck and Nayak [JKN08] showed that for any relation f ⊆ X × Y × Z, the

rectangle bound of f tightly characterizes the randomized one-way classical communication
complexity of f .

Theorem 5 ([JKN08]). Let f ⊆ X × Y × Z be a relation and let ε ∈ (0, 1/2). Then,

R1,pub
ε (f) = Θ(rec1

ε(f)).

While showing Thm. 5, Jain, Klauck and Nayak [JKN08] have shown that for all relations
f : X × Y → Z and for all distributions µ (product and non-product) on X × Y; D1,µ

ε (f) =
Ω(rec1,µ

4ε (f)). However in the quantum setting we are making a similar statement only for (total
or partial) functions f and only for product distributions µ on X ×Y. In fact it does NOT hold
if we let µ to be non-product. It can be shown that there is a total function f and a non-product
distribution µ such that Q1,µ

ε (f) is exponentially smaller than rec1,µ
ε (f). This fact is implicit

in the work of Gavinsky et al. [GKK+07]. We make an explicit statement of this in Sec. A. in
Appendix and skip its proof for brevity.

2. Let ε ∈ (0, 1/4). Jain, Klauck and Nayak [JKN08] have shown that for all relations g ⊆ X×Y×Z,

R
1,[]
2ε (g) = O(rec1,[]

ε (g)).

Here the superscript [] represents maximization over all product distributions. From Thm. 4 for
a (total or partial) function f we get,

Q
1,[]
ε6/(2·154)(f) = Ω(rec1,[]

ε (f)).

Since R
1,[]
ε (f) ≥ Q

1,[]
ε (f), combining everything we get,

Theorem 6. Let ε ∈ (0, 1/4). Let f : X × Y → Z ∪ {∗} be a (possibly partial and non-boolean)
function. Then

R
1,[]
ε6/(2·154)(f) ≥ Q

1,[]
ε6/(2·154)(f) = Ω(R1,[]

2ε (f)).

It was known earlier that for total boolean functions, Q1,[](f) is tightly bounded by R1,[](f). We
extend such a relationship here to apply for non-boolean (partial) functions as well. We remark
that the earlier proofs for total boolean functions used the VC-dimension result, Thm. 1, of
Kremer, Nisan and Ron [KNR95]. We get the same result here without requiring it.

We finally present an application of our result Thm. 4 in the context of studying security of extrac-
tors against quantum adversaries. An extractor is a function that is used to extract almost uniform
randomness from a source of imperfect randomness. Extractors are well studied objects and have
found several uses in many cryptographic applications and also in complexity theory. Recently, secu-
rity of various extractors has been increasingly studied in the presence of quantum adversaries; since
such secure extractors are then useful in several applications such as privacy amplification in quan-
tum key distribution and key-expansion in quantum bounded storage models [KMR05,KR05,KT08].
In particular, König and Terhal [KT08] have shown that any boolean extractor that can extract



a uniform bit from sources of min-entropy k is also secure against quantum adversaries with their
memory bounded by a function of k.

We get a similar statement for boolean extractors, as a corollary of our result Thm. 4. We obtain
this corollary by observing a key connection between the minimum min-entropy that an extractor
function f needs to extract a uniform bit and its rectangle bound. The precise statement of our
result, its relationship with the result of [KT08], and a detailed discussion is deferred to Sec. 5.

1.3 Organization

In the following Sec. 2 we discuss various information theoretic preliminaries and the model of one-
way communication. In Sec. 3 we present the upper bounds in the classical setting and in Sec. 4 we
present the lower bounds in the quantum setting. The application concerning extractors is discussed
in Sec. 5. We finally conclude with some open questions in Sec. 6.

2 Preliminaries

2.1 Information theory

In this section we present some information theoretic notation, definitions and facts that we use in
the rest of the paper. For an introduction to classical and quantum information theory, we refer the
reader to the texts by Cover and Thomas [CT91] and Nielsen and Chuang [NC00] respectively. Most
of the facts stated in this section without proofs may be found in these books.

All logarithms in this paper are taken with base 2, unless otherwise specified. For an integer
t ≥ 1, [t] represents the set {1, . . . , t}. For square matrices P,Q, by Q ≥ P we mean that Q− P is
positive semi-definite. For a matrix A, ‖A‖1

def= Tr(
√

A†A) denotes its `1 norm. For p ∈ (0, 1), let

S(p) def= −p log p− (1− p) log(1− p), denote the binary entropy function. We have the following fact.

Fact 1 For δ ∈ [0, 1/2], S( 1
2 + δ) ≤ 1− 2δ2 and S(δ) ≤ 2

√
δ.

A quantum state, usually represented by letters ρ, σ etc., is a positive semi-definite trace one
operator in a given Hilbert space. Specializing from the quantum case, we view a discrete probability
distribution P as a positive semi-definite trace one diagonal matrix indexed by its (finite) sample
space. For a distribution P with support on set X , and x ∈ X , P (x) denotes the (x, x) diagonal
entry of P , and P (E) def=

∑
x∈E P (x) denotes the probability of the event E ⊆ X . A distribution P

on X ×Y is said to be product across X and Y, if it can be written as P = PX ⊗ PY , where PX , PY
are distributions on X ,Y respectively and ⊗ is the tensor operation. Often for product distributions
we do not mention the sets across which it is product if it is clear from the context.

Let X be a classical random variable (or simply random variable) taking values in X . For a
random variable X, we also let X represent its probability distribution. The entropy of X denoted
S(X) is defined to be S(X) def= −TrX log X. Since X is classical an equivalent definition would be
S(X) def= −

∑
x∈X Pr[X = x] log Pr[X = x] . Let X, Y be a correlated random variables taking values

in X ,Y respectively. XY are said to be independent if their joint distribution is product. The mutual
information between them, denoted I(X : Y ) is defined to be I(X : Y ) def= S(X) + S(Y ) − S(XY )
and conditional entropy denoted S(X|Y ) is defined to be S(X|Y ) def= S(XY )−S(Y ). It is easily seen
that S(X|Y ) = Ey←Y [S(X|(Y = y)].

We have the following facts.

Fact 2 For all random variables X, Y ; I(X : Y ) ≥ 0; in other words S(X) + S(Y ) ≥ S(XY ). If
X, Y are independent then we have I(X : Y ) = 0; in other words S(XY ) = S(X) + S(Y ).

The definitions and facts stated in the above paragraph for classical random variables also hold
mutatis mutandis for quantum states as well. For example for a quantum state ρ, its entropy is defined
as S(ρ) def= −Trρ log ρ. For brevity, we avoid making all the corresponding statements explicitly. As is
the case with classical random variables, for a quantum system say Q, we also often let Q represent
its quantum state. We have the following fact.



Fact 3 Any quantum state ρ in m-qubits has S(ρ) ≤ m. Also let XQ be a joint classical-quantum
system with X being a classical random variable, then I(X : Q) ≤ min{S(X), S(Q)}.

For a system XY M , let us define I(X : M |Y ) def= S(X|Y ) + S(M |Y ) − S(XM |Y ). If Y is a
classical system then it is easily seen that I(X : M |Y ) = Ey←Y [I(X : M |(Y = y))].

For random variables X1, . . . , Xn and a correlated (possibly quantum) system M , we have the
following chain rule of mutual information, which will be crucially used in our proofs.

I(X1 . . . Xn : M) =
n∑

i=1

I(Xi : M |X1 . . . Xi−1) (6)

By convention, conditioning on X1 . . . Xi−1 for i = 1 means conditioning on the true event.
The following is an important information theoretic fact known as Fano’s inequality, which relates

the probability of disagreement for correlated random variables to their mutual information.

Lemma 1 (Fano’s inequality). Let X be a random variable taking values in X . Let Y be a
correlated random variable and let Pe

def= Pr(X 6= Y ). Then,

S(Pe) + Pe log(|X | − 1) ≥ S(X|Y ).

The VC-dimension of a boolean function f is an important combinatorial concept and has close
connections with the one-way communication complexity of f .

Definition 1 (Vapnik-Chervonenkis (VC) dimension). A set S ⊆ Y is said to be shattered by
a set G of boolean functions from Y to {0, 1}, if ∀R ⊆ S,∃gR ∈ G such that ∀s ∈ S, (s ∈ R) ⇔
(gR(s) = 1). The largest value d for which there is a set S of size d that is shattered by G is the
Vapnik-Chervonenkis dimension of G and is denoted by VC(G).

Let f : X × Y → {0, 1} be a boolean function. For all x ∈ X let fx : Y → {0, 1} be defined as
fx(y) def= f(x, y),∀y ∈ Y. Let F def= {fx : x ∈ X}. Then the Vapnik-Chervonenkis dimension of f ,
denoted by VC(f), is defined to be VC(F).

Let f and F be as defined in the above definition. We call a function f trivial iff |F| = 1, in
other words iff the value of the function, for all x, is determined only by y. We call f non-trivial iff
it is not trivial. Note that a boolean f is non-trivial if and only if VC(f) ≥ 1. Throughout this paper
we assume all our functions to be non-trivial.

Following is a useful fact, with several applications, relating the VC-dimension of f to the size of
F . It is usually attributed to Sauer [Sau72], however it has been independently discovered by several
different people as well.

Lemma 2 (Sauer’s Lemma [Sau72]). Let f : X × Y → {0, 1} be a boolean function. Let d
def=

VC(f). Let m
def= |Y|, then

|F| ≤
d∑

i=0

(
m

i

)
≤ md.

The following result from Blumer, Ehrenfeucht, Haussler, and Warmuth [BEHW89] is one of the
most fundamental results from computational learning theory and in fact an important application
of Sauer’s Lemma.

Lemma 3. Let H be class of boolean functions over a finite domain Y with VC-dimension d, let π
be an arbitrary probability distribution over Y, and let 0 < ε, δ < 1. Let L be any algorithm that takes
as input a set S ∈ Ym of m examples labeled according to an unknown function h ∈ H, and outputs
a hypothesis function h′ ∈ H that is consistent with h on the sample S. If L receives a random
sample of size m ≥ m0(d, ε, δ) distributed according to πm, where

m0(d, ε, δ) = c0

(
1
ε

log
1
δ

+
d

ε
log

1
ε

)
for some constant c0 > 0, then with probability at least 1− δ over the random samples, Prπ[h′(y) 6=
h(y)] ≤ ε.



A similar learning result also holds for non-boolean functions. For this let us first define the
following generalization of the VC-dimension, known as the pseudo-dimension.

Definition 2 (pseudo-dimension). A set S ⊆ Y is said to be γ-shattered by a set G of functions
from Y to Z ⊆ R, if there exists a vector w = (w1, . . . , wk) ∈ Zk of dimension k = |S| for which
the following holds. For all R ⊆ S,∃gR ∈ G such that ∀s ∈ S, (s ∈ R) ⇒ (gR(s) > wi + γ) and
(s /∈ R) ⇒ (gR(s) < wi − γ). The largest value d for which there is a set S of size d that is
γ-shattered by G is the γ-pseudo-dimension of G and is denoted by Pγ(G).

Let f : X×Y → Z be a function. For all x ∈ X let fx : Y → Z be defined as fx(y) def= f(x, y),∀y ∈
Y. Let F def= {fx : x ∈ X}. Then the γ-pseudo-dimension of f , denoted by Pγ(f), is defined to be
Pγ(F).

The following result of Bartlett, Long and Williamson [BLW96] is similar to the learning lemma
of Blumer et al. [BEHW89] and concerns non-boolean functions.

Theorem 7. Let G be a class of functions over a finite domain Y into the range [0, 1]. Let π be an
arbitrary probability distribution over Y and let ε ∈ (0, 1/2) and δ ∈ (0, 1). Let d

def= Pε2/576(G). Then
there exists a deterministic learning algorithm L which has the following property. Given as input a
set S ∈ Ym of m examples chosen according to πm and labeled according to an unknown function
g ∈ G, L outputs a hypothesis g′ ∈ G such that if m ≥ m0(d, ε, δ) where

m0(d, ε, δ) = c0

(
1
ε4

log
1
δ

+
d

ε4
log2 d

ε

)
for some constant c0 > 0, then with probability at least 1− δ over the random samples,∑

y∈Y
π(y) · |h′(y)− h(y)| ≤ ε.

Following is a fundamental quantum information theoretic fact shown by Holevo [Hol73].

Theorem 8 (The Holevo bound [Hol73]). Let X be classical random variable taking values in
X . Let M be a quantum system and let Y be a random variable obtained by performing a quantum
measurement on M . Then,

I(X : Y ) ≤ I(X : M). (7)

Following is an interesting and useful information theoretic fact first shown by Helstrom [Hel76].

Theorem 9 ([Hel76]). Let XQ be a joint classical-quantum system where X is a classical boolean
random variable. For a ∈ {0, 1}, let the quantum state of Q when X = a be ρa. The optimal success
probability of predicting X with a measurement on Q is given by

1
2

+
1
2
· ‖Pr[X = 0]ρ0 − Pr[X = 1]ρ1‖1.

2.2 One-way communication

In this article we only consider the two-party one-way model of communication. Let f ⊆ X ×Y ×Z
be a relation. The relations we consider are always total in the sense that for every (x, y) ∈ X × Y,
there is at least one z ∈ Z, such that (x, y, z) ∈ f . In a one-way protocol P for computing f , Alice
and Bob get inputs x ∈ X and y ∈ Y respectively. Alice sends a single message to Bob, and their
intention is to determine an answer z ∈ Z such that (x, y, z) ∈ f . In the one-way protocols we
consider, the single message is always from Alice to Bob. A total function f : X × Y → Z, can be
viewed as a type of relation in which for every (x, y) there is a unique z, such that (x, y, z) ∈ f . A
partial function is a special type of relations such that for some inputs (x, y), there is a unique z,
such that (x, y, z) ∈ f and for all other inputs (x, y), (x, y, z) ∈ f,∀z ∈ Z. We view a partial function



f as a function f : X × Y → Z ∪ {∗}, such that the inputs (x, y) for which f(x, y) = ∗ are exactly
the ones for which (x, y, z) ∈ f,∀z ∈ Z.

Let us first consider classical communication protocols. We let D1(f) represent the deterministic
one-way communication complexity, that is the communication of the best deterministic protocol
computing f correctly on all inputs. For ε ∈ (0, 1/2), let µ be a probability distribution on X × Y.
We let D1,µ

ε (f) represent the distributional one-way communication complexity of f under µ with
expected error ε, i.e., the communication of the best private-coin one-way protocol for f , with
distributional error (average error over the coins and the inputs) at most ε under µ. It is easily noted
that D1,µ

ε (f) is always achieved by a deterministic one-way protocol, and will henceforth restrict
ourselves to deterministic protocols in the context of distributional communication complexity. We
let R1,pub

ε (f) represent the public-coin randomized one-way communication complexity of f with
worst case error ε, i.e., the communication of the best public-coin randomized one-way protocol for
f with error for each input (x, y) being at most ε. The analogous quantity for private coin randomized
protocols is denoted by R1

ε(f). The public- and private-coin randomized communication complexities
are not much different, as shown in Newman’s result [New91] that

R1(f) = O(R1,pub(f) + log log |X |+ log log |Y|). (8)

The following result due to Yao [Yao77] is a very useful fact connecting worst-case and distributional
communication complexities. It is a consequence of the min-max theorem in game theory [KN97,
Thm. 3.20, page 36].

Lemma 4 (Yao’s principle [Yao77]). R1,pub
ε (f) = maxµ D1,µ

ε (f).

We define R
1,[]
ε (f) def= maxµ product D1,µ

ε (f). Note that R
1,[]
ε (f) could be significantly smaller than

R1,pub
ε (f) as is exhibited by the Greater Than (GTn) function for which R1,pub(GTn) = Ω(n), whereas

R
1,[]
ε (f) = O(1).

In a one-way quantum communication protocol, Alice and Bob are allowed to do quantum op-
erations and Alice can send a quantum message (qubits) to Bob. Given ε ∈ (0, 1/2), the one-way
quantum communication complexity Q1

ε(f) is defined to be the communication of the best one-way
quantum protocol with error at most ε on all inputs. Given a distribution µ on X×Y, we can similarly
define the quantum distributional one-way communication complexity of f , denoted Q1,µ

ε (f), to be
the communication of the best one-way quantum protocol P for f such that the average error of P
over the inputs drawn from the distribution µ is at most ε. We define Q

1,[]
ε (f) def= maxµ product Q1,µ

ε (f).

3 A new upper bound on classical one-way distributional communication
complexity

In this section we present the upper bounds on the distributional communication complexity, D1,µ
ε (f)

for any distribution µ (possibly non-product) on X ×Y. We begin by restating the precise result for
boolean functions.

Theorem 10. Let f : X × Y → {0, 1} be a boolean function and let ε ∈ (0, 1/2) be a constant. Let
µ be a distribution (possibly non-product) on X × Y. Let XY be joint random variables distributed
according to µ. There is a universal constant κ such that,

D1,µ
ε (f) ≤ κ · 1

ε
log

1
ε
·
(

1
ε
· I(X : Y ) + 1

)
· VC(f).

In other words,
D1,µ

ε (f) = O ((I(X : Y ) + 1) · VC(f))

For showing this result we will crucially use the following fact shown by Harsha, Jain, McAllester
and Radhakrishnan [HJMR07] concerning communication required for generating correlations. We
begin with the following definition.



Definition 3 (Correlation protocol). Let (X, Y ) be a pair of correlated random variables taking
values in X × Y. Let Alice be given x ∈ X , sampled according to the distribution X. Alice should
transmit a message to Bob, such that Alice and Bob can together generate a value y ∈ Y distributed
according to the conditional distribution Y |X=x; that is the pair (x, y) should have joint distribution
(X, Y ). Alice and Bob are allowed to use public randomness. Note that the generated value y should
be known to both Alice and Bob.

Harsha et al. [HJMR07] showed that the minimal expected number of bits that Alice needs to
send (in the presence of shared randomness), denoted TR(X : Y ), is characterized by the mutual
information I(X : Y ) as follows.

Theorem 11 ([HJMR07]). There exists a universal positive constant l such that,

I(X : Y ) ≤ TR(X : Y ) ≤ 4I(X : Y ) + l.

We will also need the following lemma.

Lemma 5. Let m ≥ 1 be an integer. Let XY be correlated random variables. Let µx be the dis-
tribution of Y |X = x. Let Y ′ represent another random variable correlated with X such that the
distribution of Y ′|(X = x) is µ⊗m

x (m independent copies of µx). Then,

I(X : Y ′) ≤ m · I(X : Y ).

Proof. Consider,

I(X : Y ′) = S(Y ′)−Ex←X [S(Y ′|X = x)]
= S(Y ′)−m ·Ex←X [S(Y |X = x)]
≤ m · S(Y )−m ·Ex←X [S(Y |X = x)]
= m · I(X : Y )

The first inequality above follows from Fact 2 by noting that Y ′ is m-copies of Y . ut

We are now ready for the proof of Thm. 10.
Proof of Thm. 10: Let m

def= m0(VC(f), ε/4, ε/4) = c0 ·
(

1
ε/4 log 1

ε/4

)
· (VC(f)+1) as in Lem. 3. Let

l be the constant as in Thm. 11. Let c
def= 4m · I(X : Y )+ l. We exhibit a public coin protocol P with

inputs drawn from µ, in which Alice sends two messages M1 and M2 to Bob. The expected length of
M1 is at most c and the length of M2 is always at most m. The average error (over inputs and coins)
of P is at most ε/2. Let P ′ be the protocol that simulates P but aborts and outputs 0, whenever the
length of M1 in P exceeds 2c/ε. From Markov’s inequality this happens with probability at most
ε/2. Hence the expected error of P ′ is at most ε/2 + ε/2 = ε. Since the expected error (over coins
and inputs) of P ′ is at most ε, there exists a deterministic protocol (by fixing coins suitably) with
communication bounded by 2c/ε+m and distributional error at most ε. This implies our result from
definition of D1,µ

ε (f) and by setting κ appropriately.
For x ∈ X , let µx be the distribution of Y |X = x. In P, on receiving the input x ∈ X ,

Alice first sends a message M1 to Bob, according to the corresponding correlation protocol as in
Definition 3, and they together sample from the distribution of µ⊗m

x . Let y1, . . . , ym be the sam-
ples generated. Note that from the properties of correlation protocol both Alice and Bob know
the values of y1, . . . , ym. Alice then sends to Bob the second message M2 which is the values of
f(x, y1), . . . , f(x, ym). Bob then considers the first x′ (according to the lexicographically increasing
order) such that ∀i ∈ [m], f(x′, yi) = f(x, yi) and outputs f(x′, y), where y is his actual input. Using
Lem. 3, it is easy to verify that for every x ∈ X , the average error (over randomness in the protocol
and inputs of Bob) in this protocol P will be at most ε/2. Hence also the overall average error of P
is at most ε/2. Also from Thm. 11 and Lem. 5, we can verify that the expected length of M1 in P
will be at most 4m · I(X : Y ) + l. ut

Following similar arguments and using Thm. 7 and Thm. 11, we obtain a similar result for
non-boolean functions as follows.



Theorem 12. Let k ≥ 2 be an integer. Let f : X × Y → [k] be a non-boolean function and let ε ∈
(0, 1/6) be a constant. Let f ′ : X×Y → [0, 1] be such that f ′(x, y) = f(x, y)/k. Let µ be a distribution
(possibly non-product) on X ×Y. Let XY be joint random variables distributed according to µ. There
is a universal constant κ such that,

D1,µ
3ε (f) ≤ κ · k

4

ε5
·
(

log
1
ε

+ d log2 dk

ε

)
· (I(X : Y ) + log k)

where d
def= P ε2

576k2
(f ′) is the ε2

576k2 -pseudo-dimension of f ′.

Proof. Let m
def= m0(d, ε/k, ε) = c0

(
k4

ε4 log 1
ε + dk4

ε4 log2 dk
ε

)
as in Thm. 7. Let l be the constant as in

Thm. 11. Let c
def= 4m · I(X : Y ) + l. We exhibit a public coin protocol P for f , with inputs drawn

from µ, in which Alice sends two messages M1 and M2 to Bob. The expected length of M1 is at most
c and the length of M2 is always at most O(m log k). The average error (over inputs and coins) of P
is at most 2ε. Let P ′ be the protocol that simulates P but aborts and outputs 0, whenever the length
of M1 in P exceeds c/ε. From Markov’s inequality this happens with probability at most ε. Hence
the expected error (over coins and inputs) of P ′ is at most 2ε + ε = 3ε. From P ′, by fixing coins
suitably, we finally get a deterministic protocol with communication bounded by c/ε + O(m log k)
and distributional error at most 3ε. This implies our result from definition of D1,µ

3ε (f) and by setting
κ appropriately.

In P, Alice and Bob intend to first determine f ′(x, y) and then output kf ′(x, y). For x ∈ X , let
µx be the distribution of Y |X = x. On receiving the input x ∈ X , Alice first sends a message M1

to Bob, according to the corresponding correlation protocol as in Definition 3, and they together
sample from the distribution of µ⊗m

x . Let y1, . . . , ym be the samples generated. Alice then sends to
Bob the second message M2 which is the values of f ′(x, y1), . . . , f ′(x, ym) . Bob then considers x′ as
obtained from the learning algorithm L (as in Thm. 7) and then outputs kf ′(x′, y), where y is his
actual input. Therefore from Thm. 7, with probability 1− ε over the samples y1, . . . , ym,∑

y∈Y
π(y) · |f ′(x′, y)− f ′(x, y)| ≤ ε/k. (9)

Note that, (f ′(x′, y) 6= f ′(x, y)) ⇒ |f ′(x′, y) − f ′(x, y)| ≥ 1/k. Hence for samples y1, . . . , ym, for
which (9) holds, using Markov’s inequality, we have Pry←µx

[f ′(x′, y) 6= f ′(x, y)] ≤ ε. Therefore, for
any fixed x, the error of P is at most 2ε and hence also the overall error of P is at most 2ε.

From Thm. 11 and Lem. 5, we can verify that the expected length of M1 in P will be at most
4m · I(X : Y ) + l. The length of M2 is at most O(m log k), since using a prefix free encoding3 each
f ′(x, yi) can be specified in O(log k) bits. This completes the proof. ut

4 A new lower bound on quantum one-way distributional communication
complexity

In this section we present our lower bound on the quantum one-way distributional communication
complexity of a function f , in terms of the one-way rectangle bound of f . We begin with a few
definitions leading to the definition of the one-way rectangle bound.

Definition 4 (Rectangle). A one-way rectangle R is a set S×Y, where S ⊆ X . For a distribution
µ over X × Y, let µR represent the distribution arising from µ conditioned on the event R and let
µ(R) represent the probability (under µ) of the event R.

Definition 5 (One-way ε-monochromatic). Let f ⊆ X × Y × Z be a relation. We call a dis-
tribution λ on X × Y, one-way ε-monochromatic for f if there is a function g : Y → Z such that
PrXY∼λ[(X, Y, g(Y )) ∈ f ] ≥ 1− ε.
3 Prefix free encoding is needed to avoid ambiguity of messages and to know when a particular message has

terminated.



Note that in the case that f : X × Y → {0, 1} is a total boolean function, and λ = λX ⊗ λY is a
product distribution, the requirement for λ to be one-way ε-monochromatic becomes

EY∼λY [max{ Pr
X∼µX

[f(X, Y ) = 0], Pr
X∼µX

[f(X, Y ) = 1]}] ≥ 1− ε.

Definition 6 (Rectangle bound). Let f ⊆ X ×Y ×Z be a relation. For distribution µ on X ×Y,
the one-way rectangle bound is defined as:

rec1,µ
ε (f) def= min{log2

1
µ(R)

: R is one-way rectangle and µR is one-way ε-monochromatic}.

The one-way rectangle bound for f is defined as:

rec1
ε(f) def= max

µ
rec1,µ

ε (f).

We also define,
rec1,[]

ε (f) def= max
µ:product

rec1,µ
ε (f).

We restate our precise result here followed by its proof.

Theorem 13. Let f : X × Y → Z be a total function and let ε ∈ (0, 1/2) be a constant. Let µ be a
product distribution on X × Y and let rec1,µ

ε (f) > 2(log(1/ε)). Then,

Q1,µ
ε3/8(f) ≥ 1

2
· (1− 2ε) · (S(ε/2)− S(ε/4)) · (brec1,µ

ε (f)c − 1).

If f : X × Y → Z ∪ {∗} is a partial function then,

Q1,µ
ε6/(2·154)(f) ≥ 1

2
· (1− 2ε) · ε2

300
· (brec1,µ

ε (f)c − 1).

We begin with the following information theoretic fact.

Lemma 6. Let 0 ≤ d < c ≤ 1/2. Let Z be a binary random variable with min{Pr(Z = 0),Pr(Z =
1)} ≥ c. Let M be a correlated quantum system. Let Z ′ be a classical boolean random variable
obtained by performing a measurement on M such that, Pr(Z 6= Z ′) ≤ d, then

I(Z : M) ≥ I(Z : Z ′) ≥ S(c)− S(d).

Proof. The first inequality follows from the Holevo bound, Thm. 8. For the second inequality we
note that S(Z) ≥ S(c) (since the binary entropy function is monotonically increasing in (0, 1/2])
and from Fano’s inequality, Lem. 1, we have S(Z|Z ′) ≤ S(d). Therefore,

I(Z : Z ′) = S(Z)− S(Z|Z ′) ≥ S(c)− S(d).

ut

We are now ready for the proof of Thm. 13.

Proof of Thm. 13:
For total boolean functions: For simplicity of the explanation, we first present the proof assuming
f to be a total boolean function. Let r

def= brec1,µ
ε (f)c or brec1,µ

ε (f)c − 1 so as to make r even. Let
P be the optimal one-way quantum protocol for f with distributional error under µ at most ε3/4.
(Although we have made a stronger assumption regarding the error in the statement of the Theorem,
we do not need it here and will only need it later while handling non-boolean functions.) Let M

represent the m
def= Q1,µ

ε3/4(f) qubit quantum message of Alice in P. Let XY be the random variables
corresponding to Alice and Bob’s inputs, jointly distributed according to µ. Our intention is to define



binary random variables T1, . . . , Tr/2 such that they are determined by X (and hence a specific value
for T1, . . . , Tr/2 would correspond to a subset of X ) and ∀i ∈ {0, . . . , r

2 − 1},

I(M : Ti+1|T1 . . . Ti) ≥ (1− 2ε) · (S(ε/2)− S(ε/4)).

Therefore from Fact 3 and the chain rule of mutual information, Eq. (6), we have,

m ≥ S(M) ≥ I(M : T1 . . . Tr/2)

=
r/2−1∑
i=0

I(M : Ti+1|T1 . . . Ti)

≥ (1− 2ε) · (S(ε/2)− S(ε/4)) · r
2
.

This completes our proof.
We define T1, . . . , Tr/2 in an inductive fashion. The following construction of Ti+1 also works for

i = 0; we will give more details afterwards.
For i ∈ {0, . . . , r

2 − 1}, assume that we have defined T1, . . . , Ti and we intend to define Ti+1. Let
GOOD1 be the set of “heavy bands”, i.e. those strings t ∈ {0, 1}i such that Pr(T1, . . . , Ti = t) > 2−r.
Then,

Pr(T1, . . . , Ti ∈ GOOD1) ≥ 1− 2−r+i ≥ 1− 2−r/2−1.

Let εt be the error of the protocol P conditioned on T1, . . . , Ti = t. Note that E[εt] is the same
as the overall expected error of P; hence E[εt] ≤ ε3/4. Now using Markov’s inequality we get
a set GOOD2 ∈ {0, 1}i of “small error bands” such that Pr(T1 . . . Ti ∈ GOOD2) ≥ 1 − ε and
∀t ∈ GOOD2, εt ≤ ε2/4. Let GOOD

def= GOOD1 ∩ GOOD2 contains those heavy bands with small
error. Therefore (since r/2 > log(1/ε), from the hypothesis of the theorem),

Pr(T1 . . . Ti ∈ GOOD) ≥ 1− 2−r/2−1 − ε ≥ 1− 2ε. (10)

For t ∈ {0, 1}i and y ∈ Y, let

δt,y
def= min {Pr[f(X, y) = 0|(T1 . . . Ti = t)], Pr[f(X, y) = 1|(T1 . . . Ti = t)]} .

where the probabilities are over the protocol’s randomness and X, the X -part of the product distri-
bution µ. Also let, εt,y be the expected error of P conditioned on Y = y and T1 . . . Ti = t.

For t /∈ GOOD, we define Ti+1|(T1 . . . Ti = t) = 0. Let t ∈ GOOD from now on. Our intention is to
identify for every t a yt ∈ Y, such that εt,yt

≤ ε/4 and δt,yt
≥ ε/2. We will then let Ti+1|(T1 . . . Ti = t)

to be f(X, yt)|(T1 . . . Ti = t). Lem. 6 will now imply, I(M : Ti+1|(T1 . . . Ti = t)) ≥ S(ε/2)− S(ε/4).
Therefore,

I(M : Ti+1|T1 . . . Ti) ≥
∑

t∈GOOD

Pr(T1 . . . Ti = t) · I(M : Ti+1|(T1 . . . Ti = t))

≥ (1− 2ε) · (S(ε/2)− S(ε/4)) (using Eq. 10)

and we would be done.
Now in order to identify a desired yt, we proceed as follows. Since r ≤ rec1,µ

ε (f); from the
definition of rectangle bound and given that µ is a product distribution we have the following. For
all S ⊆ X with µ(S × Y) > 2−r or in other words with Pr[X ∈ S] > 2−r,

Ey←Y

[
min {Pr[f(X, y) = 0|X ∈ S], Pr[f(X, y) = 1|X ∈ S]}

]
> ε. (11)

Note that since t ∈ GOOD, Pr[T1 . . . Ti = t] > 2−r. Recall that conditioning on t implies a subset
of X . Hence (11) implies that Ey←Y [δt,y] > ε. Now using Markov’s inequality and the fact that,
∀(t, y), δt,y ≤ 1/2, we get a set GOODt ⊆ Y such that Pr[Y ∈ GOODt] ≥ ε and ∀y ∈ GOODt,
δt,y ≥ ε/2.



Since t ∈ GOOD, we have εt ≤ ε2/4. Note that εt = Ey←Y [εt,y]. Using a Markov argument again
we finally get a yt ∈ GOODt, such that εt,yt

≤ ε/4. Note that since yt ∈ GOODt, we have δt,yt
≥ ε/2

and we are done.
Now we finish the total boolean functions part by adding a few remarks for construction of T1.

The above process works with minor adjustments which basically delete all appearances of t and
T1, . . . , Ti. Let us start from the definition of δy = min{Pr[f(X, y) = 0],Pr[f(X, y) = 1]} and εy =
the expected error condition on Y = y. Using similar argument we can find a particular y s.t.
εy ≤ ε/4 and δy ≥ ε/2, then we let T1 = f(X, y) and we have I(M : Ti+1) ≥ S(ε/2)− S(ε/4).

For total non-boolean functions: Let f : X × Y → Z be a total non-boolean function and
let r be as before. We follow the same inductive argument as before to define T1 . . . Tr/2. For i ∈
{0, . . . , r

2 − 1}, assume that we have defined T1 . . . Ti. As before we identify a set GOOD ⊆ {0, 1}i
with Pr[T1 . . . Ti ∈ GOOD] ≥ 1 − 2ε, such that ∀t ∈ GOOD,Pr[T1 . . . Ti = t] > 2−r and εt ≤ ε2/8.
Since r ≤ rec1,µ

ε (f), from the definition of rectangle bound and the fact that µ is product, we have ,
∀S ⊆ X with µ(S × Y) > 2−r,

Ey←Y

[
max
z∈Z
{Pr[f(X, y) = z|X ∈ S]}

]
< 1− ε. (12)

For t ∈ {0, 1}i and y ∈ Y, let εt,y be as before and let,

δt,y
def= max

z∈Z
{Pr[f(X, y) = z|(T1 . . . Ti = t)]} .

For t /∈ GOOD, let us define Ti+1|(T1 . . . Ti = t) to be 0. Let t ∈ GOOD from now on. Note
that (12) implies Ey←Y [δt,y] < 1 − ε. Using Markov’s inequality we get a set GOODt ⊆ Y with
Pr[Y ∈ GOODt] ≥ ε/2 and ∀y ∈ GOODt, δt,y ≤ 1− ε/2. Since Ey←Y [εt,y] = εt ≤ ε2/8, again using a
Markov argument we get a yt ∈ GOODt, such that εt,yt

≤ ε/4. Since δt,yt
≤ 1−ε/2 (and ε ∈ (0, 1/2)),

observe that there would exist a set St,yt
⊆ Z such that,

min{Pr[f(X, yt) ∈ St,yt |(T1 . . . Ti = t)],Pr[f(X, yt) ∈ Z − St,yt |(T1 . . . Ti = t)]} ≥ ε/2.

Let us now define Ti+1|(T1 . . . Ti = t) to be 1 if and only if f(X, yt) ∈ St,yt
|(T1 . . . Ti = t) and 0

otherwise. Note that since εt,yt
≤ ε/4, conditioned on T1 . . . Ti = t, there exists a measurement on

M , that can predict the value of Ti+1 with success probability at least 1− ε/4. The rest of the proof
follows as before.

For partial non-boolean functions: Let f : X × Y → Z ∪ {∗} be a partial function and let r
be as before. Let i ∈ {0, . . . , r

2 − 1}. We follow a similar inductive argument as in the case of total
non-boolean functions, except for the definition of Ti+1|(T1 . . . Ti = t). As before we identify a set
GOOD ⊆ {0, 1}i with Pr[T1 . . . Ti ∈ GOOD] ≥ 1 − 2ε, such that ∀t ∈ GOOD,Pr[T1 . . . Ti = t] > 2−r

and εt ≤ ε5/(2 · 154). Since r ≤ rec1,µ
ε (f), from the definition of rectangle bound and the fact that µ

is product, we have the following. For all S ⊆ X with µ(S × Y) > 2−r,

Ey←Y

[
max
z∈Z
{Pr[f(X, y) = (z or ∗)|X ∈ S]}

]
< 1− ε. (13)

For t ∈ {0, 1}i and y ∈ Y, let εt,y be as before and let

δt,y
def= max

z∈Z
{Pr[f(X, y) = (z or ∗)|(T1 . . . Ti = t)]} .

Recall that conditioning on t implies a subset of X . For t /∈ GOOD, let us define Ti+1|(T1 . . . Ti = t)
to be 0. Let us assume t ∈ GOOD from now on. Let GOODt ⊆ Y be such that ∀y ∈ GOODt,
δt,y ≤ 1 − ε/2. Using Markov arguments as before we get a yt ∈ GOODt, such that δt,yt ≤ 1 − ε/2

and εt,yt
≤ (ε/15)4 def= ε′. Since δt,yt

≤ 1 − ε/2 it implies Pr[f(X, yt) = ∗] ≤ 1 − ε/2. Observe now
that can we get a set St,yt

⊆ Z such that,

min{Pr[f(X, yt) ∈ St,yt |(T1 . . . Ti = t)],Pr[f(X, yt) ∈ Z − St,yt |(T1 . . . Ti = t)]} ≥ ε/6. (14)



Let O be the output of Bob when Y = yt. All along the arguments below we condition on T1 . . . Ti = t.
Note that since Bob outputs some z ∈ Z even if f(x, y) = ∗, let us assume without loss of generality
that q

def= Pr[O ∈ St,yt
] ≥ 1/2 (otherwise similar arguments would hold by switching the roles of

St,yt
and Z −St,yt

). Let us define Ti+1 to be 1 if (f(X, yt) ∈ St,yt
∪ {∗}) and 0 otherwise. Note that

Eq. (14) implies Pr[Ti+1 = 1] ≤ 1− ε/6. Now,

q = Pr[O ∈ St,yt |(Ti+1 = 1)] · Pr[Ti+1 = 1]
+Pr[O ∈ St,yt and Ti+1 = 0]

≤ Pr[O ∈ St,yt |(Ti+1 = 1)] · Pr[Ti+1 = 1] + ε′

≤ Pr[O ∈ St,yt |(Ti+1 = 1)] · (1− ε/6) + ε′

This implies,

Pr[O ∈ St,yt
|(Ti+1 = 1)] ≥ q − ε′

1− ε/6
≥ (q − ε′)(1 + ε/6)
= q + qε/6− ε′(1 + ε/6)
≥ q + ε/12− ε(1 + 1/12)/(23 · 154) (since q ≥ 1/2 and ε ≤ 1/2)
≥ q + 0.08ε (15)

Let us define O′ = 1 iff O ∈ St,yt
and O′ = 0 otherwise. Then,

I(M : Ti+1) ≥ I(O′ : Ti+1)
= S(O′)− Pr[Ti+1 = 1] · S(O′|(Ti+1 = 1))
−Pr[Ti+1 = 0] · S(O′|(Ti+1 = 0))

≥ S(q)− S(q + 0.08ε)− S(ε′)
≥ 1− S(0.5 + 0.08ε)− S(ε′)
≥ 1− (1− 2(0.08ε)2)− 2(ε/15)2

≥ ε2/300

The second inequality above follows using Eq. 15; the fact that Pr[O′ = 1|(Ti+1 = 0)] ≤ εt,yt ≤ ε′ ≤
0.5 (since (O′ = 1|(Ti+1 = 0)) is an error event); and the fact that the function S(p) is monotonically
decreasing in [ 12 , 1] and monotonically increasing in [0, 1

2 ]. The third inequality again follows since
the function S(p) is concave and monotonically decreasing in [ 12 , 1]. The fourth inequality follows
from Fact 1. The rest of the proof follows as before. ut

5 Application: Security of boolean extractors against quantum
adversaries

In this section we present a consequence of our lower bound result Thm. 13 to prove security of ex-
tractors against quantum adversaries. In this section we are only concerned with boolean extractors.
We begin with following definitions.

Definition 7 (Min-entropy). Let P be a distribution on [N ]. The min-entropy of P denoted
S∞(P ) is defined to be − log maxi∈[N ] P (i).

Definition 8 (Strong extractor). Let ε ∈ (0, 1/2). Let Y be uniformly distributed on Y. A strong
(k, ε)-extractor is a function h : X ×Y → {0, 1} such that for any random variable X distributed on
X , independent of Y and with S∞(X) ≥ k we have,

‖h(X, Y )Y − U ⊗ Y ‖1 < 2ε,

where U is the uniform distribution on {0, 1}.
In other words, even given Y (and not X); h(X, Y ) is still close (in `1 distance) to being a

uniform bit.



Let X, Y, h be as in the definition above. Let us consider a random variable M , taking values in
some setM, correlated with X and independent of Y . Let us now limit the correlation that M has
with X, in the sense that ∀m ∈ M, S∞(X|M = m) ≥ k. Since h is a strong (k, ε)-extractor, it is
easy to verify that in such a case,

∀m ∈M, ‖h(X, Y )Y |(M = m)− U ⊗ Y |(M = m)‖1 < 2ε

⇒ ‖h(X, Y )Y M − U ⊗ Y M‖1 < 2ε

In other words, still close (in `1 distance) to being a uniform bit.
Now let us ask what happens if the system M is a quantum system. In that case, is it still true

that given M and Y , h(X, Y ) is close to being a uniform bit? This question has been increasingly
studied in recent times specially for its applications for example in privacy amplification in Quantum
key distribution protocols and in the Quantum bounded storage models [KMR05,KR05,KT08].

However when M is a quantum system, the min-entropy of X, conditioned on M , is not easily
captured since conditioning on a quantum system needs to be carefully defined. An alternate way
to capture the correlation between X and M is via the guessing probability. Let us consider the
following definition.

Definition 9 (Guessing-entropy). Let X be a classical random variable taking values in X . Let
M be a correlated quantum system with the joint classical-quantum state being ρXM =

∑
x Pr[X =

x]|x〉〈x| ⊗ ρx. Then the guessing-entropy of X given M , denoted Sg(X ←M) is defined to be:

Sg(X ←M) def= − log max
E

∑
x

Pr(X = x)Tr(Exρx)

where the maximum is taken over all POVMs E def= {Ex : x ∈ X}. (Please refer to [NC00] for a
definition of POVMs).

The guessing-entropy turns out to be a useful notion in the quantum contexts. Let h, X, Y, M be as
before, where M is a quantum system. König and Terhal [KT08] have in a high level shown that if
the guessing entropy Sg(X ← M), is at least k, then given M and Y (and not X), h(X, Y ) is still
close to a uniform bit. We state their precise result here.

Theorem 14. Let ε ∈ (0, 1/2). Let h : X × Y → {0, 1} be a strong (k, ε)-extractor. Let U be the
uniform distribution on {0, 1}. Let Y XM be a classical-quantum system with Y X being classical
and M quantum. Let Y be uniformly distributed and independent of XM and,

Sg(X ←M) > k + log 1/ε.

Then,
‖h(X, Y )Y M − U ⊗ Y M‖1 < 6

√
ε.

We show a similar result as follows.

Theorem 15. Let ε ∈ (0, 1/2). Let h : {0, 1}n × {0, 1}m → {0, 1} be a strong (k, ε)-extractor. Let
U be the uniform distribution on {0, 1}. Let Y XM be a classical-quantum system with Y X being
classical and M quantum. Let X be uniformly distributed on {0, 1}n. Let Y be uniformly distributed
on {0, 1}m and independent of XM and,

I(X : M) < b(ε) · (n− k). (16)

Then,
‖h(X, Y )Y M − U ⊗ Y M‖1 < 1− a(ε) (17)

where a(ε) def= 1
4 · (

1
2 − ε)3 and b(ε) def= ε · (S( 1

4 −
ε
2 )− S( 1

8 −
ε
4 )).

Before proving Thm. 15, we will make a few points comparing it with Thm. 14.



1. Let’s observe that if M is a classical system, then

Sg(X ←M) = − log Em←M [2−S∞(X|M=m)]
≤ Em←M [S∞(X|M = m) · loge 2]
≤ Em←M [S∞(X|M = m)]
≤ S(X|M)

The first inequality follows from the convexity of the exponential function. The last inequality
follows easily from definitions. This implies,

I(X : M) = S(X)− S(X|M) ≤ S(X)− Sg(X ←M). (18)

So if M is classical, then the implication of Thm. 15 appears stronger than the implication in
Thm. 14 (although being weak in terms of the dependence on ε.) We cannot show the inequality
(18) when M is a quantum system but conjecture it to be true. If the conjecture is true, Thm. 15
would have stronger implication than Thm. 14 in the quantum case as well.

2. The proof of Thm. 14 in [KT08] crucially uses some properties of the so called pretty good
measurements (PGMs). Our result follows here without using PGMs and via completely different
arguments.

3. Often in applications concerning the Quantum bounded storage model, an upper bound on the
number of qubits of M is available. This implies the same upper bound on I(X : M). If this
bound is sufficiently small such that it suffices the assumption of Thm. 15, then h could be used
to extract a private bit successfully, in the presence of a quantum adversary.

4. Since Thm. 15 concerns mutual information between the systems X and M , X is required to
be uniformly distributed in the statement of it. However since Thm. 14 concerns the guessing
entropy of X given M , the requirement that X needs to be uniformly distributed does not figure
in and just its guessing entropy given M is required to be large.
Let us return to the proof of Thm. 15. We begin with the following key observation. It essentially

states that a boolean function which can extract a bit from sources of low min-entropy has high
one-way rectangle bound under the uniform distribution.

Lemma 7. Let ε ∈ (0, 1/2). Let h : {0, 1}n × {0, 1}m → {0, 1} be a strong (k, ε)-extractor. Let
µ

def= Un ⊗ Um, where Un, Um are uniform distributions on {0, 1}n and {0, 1}m respectively. Then

rec1,µ
1/2−ε(h) > n− k.

Proof. Let R
def= S ×{0, 1}m be any one-way rectangle where S ⊆ {0, 1}n with µ(R) ≥ 2−n+k which

essentially means that |S| ≥ 2k. Let X be uniformly distributed on S. This implies that S∞(X) ≥ k.
Let Y be uniformly distributed on {0, 1}m and independent of X. Since h is a strong extractor, from
Definition 8 we have (where U is the uniform distribution on {0, 1}):

‖h(X, Y )Y − U ⊗ Y ‖1 < 2ε

⇔ Ey←Y [‖h(X, y)− U‖1] < 2ε (19)

Let g : {0, 1}m → {0, 1} be any function. Then,

Pr[h(X, Y ) = g(Y )] =
1
2
· ‖h(X, Y )− g(Y )‖1

=
1
2
·Ey←Y [‖h(X, y)− g(y)‖1]

≤ 1
2
·Ey←Y [‖h(X, y)− U‖1 + ‖U − g(y)‖1]

=
1
2

+
1
2
·Ey←Y [‖h(X, y)− U‖1] (since ∀y, ‖U − g(y)‖1 = 1)

<
1
2

+ ε (from Eq. 19).



Now from Definition 5, above implies that µR (uniform distribution on R) is not 1/2− ε monochro-
matic. Hence from the definition of the rectangle bound (Definition 6) we have rec1,µ

1/2−ε(h) > n− k.
ut

We will also need the following information theoretic fact.

Lemma 8. Let RQ be a joint classical-quantum system where R is a classical boolean random
variable. Let U be the uniform distribution on {0, 1}. There is a measurement that can be done on
Q to guess value of R with probability

1
2

+
1
2
· ‖RQ− U ⊗Q‖1.

Proof. For a ∈ {0, 1}, let the quantum state of Q when R = a be ρa. Let us note that

‖RQ− U ⊗Q‖1 = ‖Pr[R = 0]ρ0 − Pr[R = 1]ρ1‖1.

Now Helstrom’s Theorem (Thm. 9) immediately helps us conclude the desired. ut

We are now ready for the proof of Thm. 15.
Proof of Thm. 15: We prove our result in the contrapositive manner. Let,

‖h(X, Y )MY − U ⊗MY ‖1 > 1− a(ε).

Note that this is equivalent to:

Ey←Y [‖h(X, y)M − U ⊗M‖1] > 1− a(ε). (20)

Let’s consider a one-way communication protocol P for h where the inputs X and Y of Alice
and Bob respectively are drawn independently from the uniform distributions on {0, 1}n and {0, 1}m
respectively. Let µ be the distribution of XY . Now let M be sent as the message of Alice in P. Note
that Lem. 8 implies that for a given input y, Bob will be able to output the correct answer with
probability 1

2 + 1
2 · ‖h(X, y)M −U ⊗M‖1. Hence we get that the distributional error of P will be at

most

Ey→Y [1− 1
2
− 1

2
· ‖h(X, y)M − U ⊗M‖1]

=
1
2
− 1

2
·Ey→Y [

1
2
· ‖h(X, y)M − U ⊗M‖1]

<
1
2
− 1

2
(1− a(ε)) (from Eq. 20)

=
a(ε)
2

=
1
8
· (1

2
− ε)3.

Let ε′
def= 1/2− ε. Therefore P has distributional error < ε′3/8. Arguing as in the proof of Thm. 13

we get that,

I(X : M) ≥ 1
2
· (1− 2ε′)(S(ε′/2)− S(ε′/4)) · rec1,µ

ε′ (h)

= ε · (S(
1
4
− ε

2
)− S(

1
8
− ε

4
)) · rec1,µ

1/2−ε(h)

= b(ε) · rec1,µ
1/2−ε(h)

> b(ε) · (n− k)

The last inequality follows from Lem. 7 since h is a strong (k, ε)-extractor.
ut



6 Conclusion

The main goal of this work is to show bounds for general total functions instead of specific ones,
with the motivation of approaching the conjecture of R1,pub(f) = O(Q1,pub(f)) mentioned in Sec. 1.
In the wake of our quantum lower bound result, it is natural to ask whether in the two-way model
also, there is a similar relationship between quantum distributional communication complexity of a
function f , under product distributions, and the corresponding rectangle bound.

Further explorations along this approach are expected. For example, concerning the classical
upper bound, a natural question to ask is whether the bound could be tightened, specially in terms
of its dependence on the mutual information I(X : Y ) between the inputs, under a given non-product
distribution. Is it actually true that D1,µ

ε (f) = O(I(X : Y ) + VC(f))? Also, can we say more on the
quantum lower bound result for non-product distributions?
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A

Let n ≥ 1 be a sufficiently large integer. Let the Noisy Partial Matching (NPMn) function be as
follows.

Input:
Alice: A string x ∈ {0, 1}n.
Bob: A string w ∈ {0, 1}n and a Matching M on [2n] comprising of n disjoint edges.

Output:
For a matching M and a string x, let Mx represent the n bit string corresponding to
the n edges of M obtained as follows. For an edge e

def= (i, j) in M the bit included in
Mx is xi ⊕ xj , where xi, xj represent the i, j-th bit of x.

Output bit b ∈ {0, 1} if and only if the Hamming distance between strings (Mx) ⊕ bn

and w is at most n/3. If there is no such bit b then output 0.

Now let the non-product distribution µ on inputs of Alice and Bob be as follows. Let Alice be
given x drawn uniformly from {0, 1}n. Let Bob be given matching M drawn uniformly from the set
of all matchings on [2n]. With probability 1/2, Bob is given w uniformly from the set of all strings
with Hamming distance at most n/3 from Mx and with probability 1/2, he is given w uniformly
from the set of all strings with Hamming distance at most n/3 from (Mx)⊕1n. Note that in µ there
is correlation between the inputs of Alice and Bob and hence µ is non-product. Now we have the
following.

Theorem 16 ([GKK+07], implicit). Let n ≥ 1 be a sufficiently large integer and let ε ∈ (0, 1/2).
Let NPMn and µ be as described above. Then, rec1,µ

ε (NPMn) = Ω(
√

n) whereas Q1,µ
ε (NPMn) =

O(log n).


