
Quantum Information and Computation, Vol. 0, No. 0 (2003) 000–000
c© Rinton Press

ON PARALLEL COMPOSITION OF ZERO-KNOWLEDGE PROOFS
WITH BLACK-BOX QUANTUM SIMULATORS

RAHUL JAIN

Centre for Quantum Technologies and Department of Computer Science, National University of Singapore

3 Science Drive 2, Singapore 117543. rahul@comp.nus.edu.sg

ALEXANDRA KOLLA

EECS Department, Computer Science Division, University of California, Berkeley

Berkeley, California, USA 94720. akolla@cs.berkeley.edu

GATIS MIDRIJANIS

EECS Department, Computer Science Division, University of California, Berkeley

Berkeley, California, USA 94720. gatis@cs.berkeley.edu

BEN W. REICHARDT

Computer Science Department and Institute for Quantum Computing, University of Waterloo

200 University Avenue West Waterloo, Ontario, Canada N2L 3G1. breic@iqc.ca

Received (received date)

Revised (revised date)

Let L be a language decided by a constant-round quantum Arthur-Merlin (QAM) proto-

col with negligible soundness error and all but possibly the last message being classical.
We prove that if this protocol is zero knowledge with a black-box, quantum simulator

S, then L ∈ BQP. Our result also applies to any language having a three-round quan-

tum interactive proof (QIP), with all but possibly the last message being classical, with
negligible soundness error and a black-box quantum simulator.

These results in particular make it unlikely that certain protocols can be composed in

parallel in order to reduce soundness error, while maintaining zero knowledge with a
black-box quantum simulator. They generalize analogous classical results of Goldreich

and Krawczyk (1990).
Our proof goes via a reduction to quantum black-box search. We show that the exis-

tence of a black-box quantum simulator for such protocols when L /∈ BQP would imply

an impossibly-good quantum search algorithm.

Keywords: Quantum, Zero-Knowledge, Interactive-Proofs, Parallel Composition

Communicated by: to be filled by the Editorial

1 Introduction

A zero-knowledge (ZK) protocol for language L allows a prover to convince a verifier the
membership of an input x in L, without disclosing any extra information. That is when
x ∈ L, anything efficiently computable after interacting with the prover could also have
been efficiently computed without the interaction. Such protocols play a central role in
cryptography. However, practical protocols must be both secure and round-efficient. Parallel
composition is a common technique for reducing the error probability of an interactive protocol

1

2 ON PARALLEL COMPOSITION . . .

without increasing the number of rounds, and therefore one is interested in parallel-composing
ZK protocols while maintaining the ZK property. However, Goldreich and Krawczyk [1] proved
that only BPP languages have three-round interactive proofs with negligible soundness error,
that are black-box-simulation ZK. This precludes parallel composition of the well-known three-
round ZK protocols for Graph Isomorphism while maintaining black-box zero knowledge,
unless the language is in BPP. Moreover, [1] also precludes parallel composition of any
constant-round Arthur-Merlin (AM) black-box-simulation ZK protocols except for languages
in BPP.

Precise definitions of these terms, and of the other classes that we will informally introduce
in this section, are given in Section 2. Roughly, the concept of zero-knowledge is formalized
by requiring an efficient simulator that produces a probability distribution indistinguishable
from the distribution of the original verifier’s conversations with the honest prover. Black-
box-simulation ZK means that the simulator is only allowed to call the verifier as a black-box
subroutine. In an AM protocol, the verifier’s messages are fair coin tosses.

In this work, we revisit the problem of parallel composition of black-box-ZK protocols
from the perspective of quantum computation, and find that the impossibility results of [1]
extend even to certain quantum cases. Quantum computation has significant consequences for
cryptography, especially since exponential speedups by quantum computers have been found
for problems that are crucial in current cryptographic systems. In the specific context of zero
knowledge, quantum computers raise several interesting questions:

1. Quantum simulators: What happens if one weakens the zero-knowledge requirement
to say that, if x ∈ L, anything efficiently computable after interacting with the prover,
could also have been efficiently computed on a quantum computer without the interac-
tion? In other words, we allow the black-box simulator to be a quantum computer and
ask if round-efficient ZK protocols can exist for a larger class of languages than BQP

(refer to Definition 6). It is encouraging that black-box quantum simulators are known
to be more powerful than black-box classical simulators in some settings. For exam-
ple, Watrous [2] has given a black-box quantum simulator for the standard three-round
Graph Isomorphism protocol that succeeds with probability exactly one, whereas clas-
sical simulators for the same protocol succeed with probability only approaching one.
Perhaps quantum exact simulators, as in [2], could be helpful in maintaining black-box
ZK under parallel composition.

2. Quantum messages: What happens for protocols with quantum messages? We
know that every quantum statistical zero-knowledge (QSZK) language has a black-box
quantum-simulation zero-knowledge, three-round quantum Arthur-Merlin (QAM) pro-
tocol [3, 2].aThe soundness error of these protocols is exponentially close to 1/2. If the
[1] result extends to the QAM case, then this would give strong evidence against parallel
repetition of QAM protocols to reduce soundness error to be exponentially small, unless
BQP = QSZK.

aThe first and third messages of the QAM protocol are quantum, and the second message, from the verifier,
is a classical coin flip. See Definition 3.

R. Jain, A. Kolla, G. Midrijanis, B.W. Reichardt 3

Our Results:

We answer the first question above and make partial progress on the second. We prove that
only BQP languages have three-round interactive protocols (IP) (see Theorem 2), or constant-
round AM protocols (see Theorem 3), that have negligible soundness error and are black-box
quantum simulation ZK.b Our results also hold if the last message from the prover in these
protocols is a quantum message. In particular, only BQP languages have black-box quantum-
simulation ZK, negligible-soundness, three-round QAM protocols with the first two messages
being classical. We show our results for computational zero knowledge and therefore they
apply as well for the stricter notions of statistical and perfect zero knowledge.

Our Techniques:

Let us now briefly discuss our techniques and the central idea of reduction to search. For
simplicity, assume a three-round QAM protocol Π for a language L with all three protocol
messages being classical but a quantum verifier (see Definition 3). Assume that Π is black-box-
simulation QCZK with negligible soundness error. We prove L ∈ BQP by exhibiting an efficient
quantum algorithm Z that decides the language L. Even though a similar algorithm works
in the classical case studied by Goldreich and Krawczyk, our analysis of Z is quite different
from the analysis in [1]. For comparison, we therefore sketch the idea of the algorithm and of
its analysis in this section. The formal details appear in Section 3.

Throughout the paper, we use capital letters to represent random variables, and lower-case
letters to represent individual strings. For a random variable A, we let A also represent its
distribution.

Idea of the algorithm Z: Let x be the input whose membership in L needs to
be decided. Since the protocol Π is QCZK, there exists a simulator S with running
time t polynomial in |x|. Let H be a random variable uniformly distributed in
H(2t + 1), where H(2t + 1) is a strongly (2t + 1)-universal family of efficiently
computable hash functions from {0, 1}n1 to {0, 1}n2 , where n1, n2 are the lengths of
the first and second messages, respectively, in Π (see Definition 8). For h ∈ H(2t+
1), let Vh represent a verifier who, if the first message is α, replies with h(α). Run
S on the random verifier VH and measure S’s output in the computational basis
to obtain the (random) transcript (A,B,C); representing the prover Merlin’s first
message, the verifier Arthur’s response and Merlin’s second message, respectively.
Run Arthur’s acceptance predicate on the modified transcript (A,H(A), C), and
declare x ∈ L if and only if it accepts.

We claim that Z accepts inputs x ∈ L, and rejects inputs x /∈ L, with good completeness
and soundness parameters (see Definition 3).
Sketch of proof: For x ∈ L, by using the zero-knowledge property of L and properties of the
family of hash functions H(2t+ 1), it can be verified that the algorithm Z accepts with good
probability. We do not elaborate this case here. Instead we focus on the more interesting case
of x /∈ L. We show that if the algorithm Z accepts a string x /∈ L with probability ε, then

bAs every BQP language has a zero-round protocol with a quantum verifier, which is trivially quantum-
simulation black-box ZK, this result characterizes the class BQP.

4 ON PARALLEL COMPOSITION . . .

there exists a cheating Merlin who fools the honest Arthur with probability Ω(ε/t2). This
contradicts the protocol’s soundness being non-negligible for ε constant and t polynomial.c

The cheating MerlinM∗ is designed as follows. Since the algorithm Z accepts x /∈ L with
probability ε, the modified transcript (A,H(A), C) satisfies Arthur’s acceptance predicate
with probability ε. Therefore, a natural intention ofM∗ could be to act so that the transcript
of the actual interaction is distributed “close” to (A,H(A), C). M∗ can start by sending the
first message A′ (A′ ∈ {0, 1}n1), such that A′ is distributed identical to A. Now Arthur,
being honest, replies with message B′ uniformly distributed in {0, 1}n2 and independent of
A′. Now, we cannot show that the distribution of the first two messages (A′, B′) is either the
same, or even close in `1 distance to the distribution of (A,H(A)). In particular, H(A) is not
necessarily independent of A.

However, using properties of the family H(2t+ 1), we will argue below that H(A) is “well
spread out,” i.e., has sufficiently high min-entropydeven conditioned on the value of A. This
means that (A′, B′) can be “closely coupled” to (A,H(A)). For two distributions P and Q,
by saying that P can be closely coupled to Q, we mean that the probabilities of Q, scaled
down by t2, are point wise less than the corresponding probabilities of P . Note that then if
a predicate accepts Q with probability ε, it also accepts P with probability ε/t2.

Let us define random variable C ′ such that for all α ∈ {0, 1}n1 , β ∈ {0, 1}n2 , (C ′|(A′ =
α,B′ = β)) = (C|(A = α,H(α) = β)). If the first and second messages are α, β respectively,
then M∗ sends the third message distributed according to C ′|(A′ = α,B′ = β). Due to this
strategy of M∗, the transcript of the actual interaction (A′, B′, C ′), remains closely coupled
to the modified simulated transcript, (A,H(A), C). Since we have assumed that the modified
simulated transcript (A,H(A), C) satisfies Arthur’s acceptance predicate with probability ε,
from property of closely coupled distributions that we mentioned above, Arthur is fooled to
accept the actual transcript (A′, B′, C ′) with probability at least ε/t2.

Since B′ is uniform and independent of A′, in order to show that (A′, B′) can be “closely
coupled” to (A,H(A)), it can be verified that it is enough to show that H(A) has high min-
entropy even conditioned on the value of A. Indeed, the main technical lemma of our paper,
Lemma 1, shows that the simulator S, which can be thought of as making at most t queries
to H and outputting A (in which case H,A become correlated random variables), cannot
cause H(α) to have high min-entropy for most α distributed according to A. By definition of
min-entropy, this means for most α, for any β, the probability Pr[H(α) = β|A = α] is small.
In order to provide some intuition, let us assume S ′ is some classical algorithm making at
most t queries to a random function F , chosen uniformly from the set of all functions from
{0, 1}n1 to {0, 1}n2 and outputting A ∈ {0, 1}n1 . We show the following weaker statement;
that is for all β ∈ {0, 1}n2 ,

Pr[F (A) = β] ≤ t+ 1
2n2

. (1)

Let us fix a β. The goal of S ′ is now to maximize Pr[F (A) = β]. This can be viewed as a
search problem. It is easy to see that the optimal procedure for S ′ is:

Make t different queries to F . If any response is β then output the corresponding

cIn the classical case, the cheating Merlin’s success probability is Ω(ε/t), so a quantum black-box simulator
can be no more than quadratically more efficient.
dFor a distribution X taking values in X , min-entropy of X is defined to be minx∈X − log Pr[X = x].

R. Jain, A. Kolla, G. Midrijanis, B.W. Reichardt 5

queried location. Otherwise, output any new location.

Eq. (1) is now immediate. Note that, since S ′ makes at most t queries to F , this procedure
would also be optimal with the same probability of success even if F were only drawn uni-
formly from a strongly (t + 1)-universal family of hash functions. In Lemma 1, since S is
a quantum algorithm and we need to show a stronger statement, the proof takes a different
track. However, it also uses a reduction to the black-box search problem. �

Here, we would like to point out the main differences between our analysis and the analysis
in [1]:

1. The algorithm in [1] constructs the responses of a random function on the fly, as queries
from S to verifier arrive. Quantumly, however since S is a BQP machine, queries can
come in superposition, and it is difficult to reply to them as a consistent, uniform
random function F, i.e., map

∑
x αx|x〉 7→

∑
x αx|x〉|F (x)〉. It is not even possible to

sample efficiently from the set of all functions from {0, 1}n1 to {0, 1}n2 , since n1, n2 are
polynomial in |x|. This is why we must use a random hash function H drawn uniformly
from H(2t+ 1), which is a much smaller family. However since H still has (2t+ 1)-wise
independence, it suffices for our purposes.

2. The more important difference is that [1]’s arguments, showing that if their algorithm
accepts an x /∈ L with good probability then there exists a good cheating prover,
are essentially combinatorial. They can be phrased as inserting the honest Arthur
into a random query round of the simulator. Our arguments however cannot rely just
on classical combinatorics, and a careful rephrasing (as sketched above) is needed to
reduce the analysis to quantum search lower bounds. Since for the purpose of efficiency,
we are forced to provide the input to the search algorithm, from a source of limited
independence, a technical contribution of this work is also in showing that search is
hard on average for such inputs as well.

We would like to clarify one more aspect of the algorithm Z. Why does Z use VH , instead
of running the simulator S on the honest Arthur? The reason is that the zero knowledge
property of L only restricts S’s behavior for x ∈ L. However as we argued above, for x /∈ L,
we still want to be sure that S’s output has high min-entropy, even conditioned on its first
message. Using an efficiently computable hash function as a verifier in the algorithm Z, gives
us some control on S’s output even when x /∈ L; we can guarantee that the second message
in S’s output is correct, and therefore not too concentrated. Using a hash function works for
the x ∈ L case too, because the transcript of interaction with VH (averaged over randomness
in H) is distributed the same as the transcript with the honest Arthur.

Finally, the generalization to constant-round AM protocols goes through along similar
lines. These arguments also go through for three-round interactive protocols, by running the
simulator on deterministic verifiers that use as their (private) random coins the hash of the
prover’s first message.

1.1 Organization

We make the necessary definitions including of our models in Section 2. In Section 3, we give
the proof for three-round QAM protocols. We then generalize this proof in two directions.

6 ON PARALLEL COMPOSITION . . .

First, we extend its validity to three-round quantum interactive QIP (private-coins) protocols
in Section 5. Next, in Section 6 we generalize it to constant-round QAM protocols, requiring
slightly more involved notation. In Section 7 we conclude with some open problems.

2 Preliminaries

We call a function δ negligible, δ ∈ negl(n), if for every positive polynomial p, δ(n) =
O(1/p(n)). Let poly(n) denote the set of functions that are each O(p(n)) for some poly-
nomial p. We call an algorithm efficient if it can be run on a classical or quantum Turing
machine (depending on the context) whose running time is at most polynomial in the input
length.

We often use the following brief notation. Say X1 and X2 are random variables taking
values in X . Let x1, x2 represent elements of X . Then we write, for example, Pr[X1 = X2]
to mean Pr(x1,x2)←(X1,X2)[x1 = x2]. For better familiarity with the usual conventions and
notations concerning random variables and other concepts of probability theory please refer
to [4].

2.1 Quantum Oracle

Definition 1 A quantum oracle Uf for a function f : {0, 1}n1 → {0, 1}n2 is the unitary
taking

|x〉|a〉 → |x〉|a⊕ f(x)〉 , (2)

for any x ∈ {0, 1}n1 and a ∈ {0, 1}n2 . Here, ⊕ is the bitwise exclusive-or operation.
Note that Uf is its own inverse, so oracle access to Uf and U−1

f is no more powerful than
oracle access to just Uf .

Below we provide brief definitions of classical and quantum Interactive Proofs, Arthur-
Merlin protocols, Zero-knowledge protocols etc. For more detailed and precise definitions
please refer to [5, 6, 3, 2].

2.2 Interactive proofs (IP) and Arthur-Merlin protocols (AM)

A classical interactive proof (IP) for a language L is a classical communication protocol be-
tween two parties, the prover P and the verifier V. Both parties receive the input x. They
exchange messages, and the verifier finally outputs “accept” or “reject.” The verifier V’s
running time is bounded by a polynomial in the length of x, but there are no efficiency con-
straints on P. The protocol should satisfy completeness and soundness requirements for some
constants εc, εs > 0 with εc + εs < 2/3:

1. If x ∈ L, then the verifier V accepts with probability at least 1− εc.

2. If x /∈ L, then no cheating prover P∗ can make V accept with probability more than εs.

An AM protocol is a special kind of interactive proof in which the verifier’s messages are
restricted to be uniformly random coin flips, which are independent of each other and of
prover’s messages.

2.3 Quantum Arthur-Merlin protocol (QAM)

Similar to IP and AM, we can also define quantum analogs, QIP and QAM, where quantum
messages are exchanged, and the verifier can apply quantum operations. For most parts in this

R. Jain, A. Kolla, G. Midrijanis, B.W. Reichardt 7

paper, we are concerned with special three-round quantum Arthur-Merlin (QAM) protocols in
which only the third message, from the prover, is quantum. Therefore, we describe in detail
only such protocols in Definition 3 below. The details for the special three-round QIP protocols
and special constant round QAM protocols, with only the last message being quantum, that we
are also concerned with in this paper, can be inferred easily from Definition 3 in an analogous
fashion. We begin with the following definition.
Definition 2 (Quantum predicate) A quantum predicate is a two-outcome measurement
given by an operator E, 0 ≤ E ≤ I. When applied on a quantum state ρ, the probabilities of
the two outcomes, accept and reject, are TrEρ and Tr(I − E)ρ, respectively. The predicate is
efficient if it can be implemented in polynomial time by a quantum Turing machine.
Definition 3 (Special QAM protocol) In a three-round quantum Arthur-Merlin (QAM)
protocol 〈A,M〉 for language L, with the first two messages being classical, verifier Arthur
(A) and prover Merlin (M) are each given the input x ∈ {0, 1}n. Then,

1. Merlin sends Arthur an α ∈ {0, 1}n1 .

2. Arthur replies with a uniformly random β ∈ {0, 1}n2 , independent of the first message.

3. Merlin sends ρ, a quantum state, and Arthur decides to accept or reject based on an
efficient quantum predicate (depending on x) on the “transcript” |α〉〈α| ⊗ |β〉〈β| ⊗ ρ.

Here n1, n2 ∈ poly(n) and ρ is a state on poly(n) qubits. Note that there are no efficiency
requirements on Merlin. For convenience, we will let (α, β, ρ) denote the transcript. We will
also write “A accepts” to mean that Arthur’s predicate accepts. Let 〈A,M〉(x) denote the
distribution of protocol transcripts (α, β, ρ) between Arthur A and Merlin M. We will also
refer to 〈A,M〉(x) as the verifier’s view in this protocol. The protocol satisfies, for some
constants εc, εs > 0 with εc + εs < 2/3:

• Completeness: If x ∈ L, Pr(A accepts 〈A,M〉(x)) ≥ 1− εc.

• Soundness: If x /∈ L, then for any possibly cheating MerlinM∗, Pr(A accepts 〈A,M∗〉(x)) ≤
εs.

In the special three-round QIP protocols that we consider between prover P and verifier V,
the verifier’s view on input x consists of its private coins together with the transcript of the
interaction. We denote the random variable of this view by 〈P,V〉(x).

2.4 Zero knowledge

Informally, as we have stated earlier, a zero-knowledge proof for a language L is an interactive
proof for L such that if x ∈ L, then the verifier, no matter what it does, can “learn nothing”
more than the validity of the assertion that x ∈ L [7, 6]. For a cheating verifier V∗, the notion
of it not “learning” more is formalized, in the context of the protocols that we consider, using
the definitions as follows.
Definition 4 (Computationally indistinguishability) Two transcript distributions A and
B on n classical or quantum bits, are said to be computationally indistinguishable if for any
efficient quantum predicate M running in time polynomial in n,

|Pr[M accepts A]− Pr[M accepts B]| ∈ negl(n) .

8 ON PARALLEL COMPOSITION . . .

Definition 5 (Quantum computational zero knowledge) An interactive protocol Π (of
the special kinds that we consider) for language L, with prover P and verifier V, is compu-
tational zero knowledge if for every efficient verifier V∗ there exists an efficient quantum
algorithm SV∗ , called the simulator, as follows. Let SV∗(x) be S’s output on input x repre-
senting verifier’s view in the protocol between P and V∗. Then for all x ∈ L, the distributions
of SV∗(x) and of verifier V∗’s actual view 〈P,V∗〉(x) while interacting with P are computa-
tionally indistinguishable.

Definition 6 (Black-box quantum computational zero knowledge) An interactive pro-
tocol Π (of the special kinds that we consider), is black-box quantum computational zero knowl-
edge if there exists a single simulator S that works for all efficient verifiers V∗, and that uses
the verifier V∗ only as a black-box oracle. That is, the access of S to V∗ is limited to querying
V∗ and receiving the response.

The following remarks are in order:

1. Perfect zero knowledge and statistical zero knowledge are two stronger notions of zero
knowledge that require the distributions of SV∗(x) and of 〈P,V∗〉(x) to be the same
or statistically indistinguishable, respectively. In the case of perfect zero knowledge,
the simulator is additionally allowed to output “failure” instead of a transcript with
probability ≤ 1/2.

2. Unlike the special quantum protocols that we consider, in which only the last message
is quantum, for protocols with more quantum messages, the definition of quantum zero
knowledge needs changes. For precise definitions, please refer to [3, 2].

3 Three-round QAM protocols with the first two messages classical

In this section we present our result for three-round QAM protocols, Theorem 1.

Theorem 1 Let L be a language with a three-round QAM protocol Π with the first two
messages classical, as in Definition 3, having completeness and soundness errors εc and εs,
respectively. Assume that Π is a black-box, quantum computational zero-knowledge protocol.
Let S be the simulator with a running time bounded by t. If t

√
εs = o(1− εc − negl(n)), then

L is in BQP.

In particular, if εs is negligible and εc a constant, then L ∈ BQP.
Although Definition 6 requires a simulator that works for all efficient verifiers V∗, the

proof of Theorem 1 will only require that the simulator S works for a limited set of verifiers,
verifiers that essentially just apply a fixed function to the prover’s message to determine their
reply.

Definition 7 For h : {0, 1}n1 → {0, 1}n2 , let Vh represent a dishonest verifier who replies
deterministically β = h(α) on message α, and uses the same acceptance predicate as used by
Arthur A.

In fact, in order for Theorem 1 to hold, the simulator S only has to work for the set
of cheating verifiers {Vh : h ∈ H}, where H is a certain strongly t-universal family of hash
functions:

Definition 8 (Strongly t-universal family of hash functions) A set H of functions from
{0, 1}n1 to {0, 1}n2 is a strongly t-universal family of hash functions if for H chosen uniformly

R. Jain, A. Kolla, G. Midrijanis, B.W. Reichardt 9

from H, the random variables {H(α) : α ∈ {0, 1}n1} are t-wise independent and each H(α) is
uniformly distributed in {0, 1}n2 .

For all positive integers n1, n2, t, there exists a strongly t-universal family H(n1, n2, t) of
efficiently computable hash functions {0, 1}n1 → {0, 1}n2 [8, 9, 10].

With these definitions out of the way, we are ready to prove Theorem 1.
Proof:[Proof of Theorem 1] The proof goes by presenting and analyzing the following efficient
algorithm Z for deciding membership in L:

Algorithm Z: Input x ∈ {0, 1}n, Output accept/reject.

1. Draw H uniformly from H := H(n1, n2, 2t+ 1).

2. Run S on VH with input x. Consider the three output registers, corresponding
to the prover’s first message, the verifier’s response, and the prover’s second
message, respectively. In order to ensure that the first two messages in the
simulated transcript are classical, measure the corresponding registers in the
computational basis. Let A andB be the respective random variables obtained
after the measurement, and let C be the contents of the third register after
the measurement. Note that C is a random quantum state correlated with A
and B. The output simulated transcript is then (A,B,C).

3. Compute H(A). Run A’s acceptance predicate on the modified simulated
transcript (A,H(A), C), and accept if and only if the predicate accepts.

Algorithm Z runs in polynomial time, since running S, choosing and evaluating a hash
function in H, and running Arthur’s acceptance predicate are all efficient. We claim:
Claim 1 For x ∈ L, Pr[Z accepts x] ≥ 1 − εc − negl(n). For x /∈ L, Pr[Z accepts x] =
O(t
√
εs).

Theorem 1 follows immediately from Claim 1. �

Proof:[Proof of Claim 1]
The first two steps of algorithm Z define a joint distribution for (H,A,B,C). Here, A,B

are random variables taking values in binary strings, H is a random hash function, and C

is a random density matrix. Note that the algorithm does not use B, the simulated second
message. Z’s acceptance probability is, from step 3,

Pr[Z accepts x] = Pr[A accepts (A,H(A), C)] ,

where the probability is over the joint distribution of (H,A,B,C), and also over any random-
ness in the acceptance predicate of A.

Case x ∈ L: Let x ∈ L. Our aim is to relate Pr[Z accepts x] to Pr[A accepts 〈A,M〉(x)],
which is at least 1− εc by the completeness criterion. We compute

Pr[Z accepts x] = Pr[A accepts (A,H(A), C)]

=
1
|H|

∑
h∈H

Pr[A accepts (A, h(A), C)|H = h]

≥ 1
|H|

∑
h∈H

Pr[A accepts (A,B,C) ∧ h(A) = B|H = h] (3)

10 ON PARALLEL COMPOSITION . . .

since H is uniform on H, and since adding the check h(A) = B can only reduce the probability.
Note that (A,B,C)|(H = h) is the distribution of the simulator’s output on verifier Vh,

after measuring the registers corresponding to the first two messages. Let 〈Vh,M〉(x) denote
the distribution of protocol transcripts between verifier Vh and Merlin M on input x (see
Definition 3). By the computational zero-knowledge assumption, the acceptance probability
of any efficient predicate on (A,B,C)|(H = h) can differ from the acceptance probability
of the same predicate on 〈Vh,M〉(x) only by a negligible amount. In particular this holds
for the following efficient quantum predicate E: on three-register input ρ, measure the first
two registers, and accept iff (A accepts ρ ∧ h(first register) = second register). Now, on
〈Vh,M〉(x), the second message is by definition h of the first message, so the event (E accepts
〈Vh,M〉(x)) reduces to the event (A accepts 〈Vh,M〉(x)). Therefore, continuing from Eq. (3)
we have:

Pr[Z accepts x] ≥ 1
|H|

∑
h∈H

Pr[A accepts (A,B,C) ∧ h(A) = B|H = h]

=
1
|H|

∑
h∈H

Pr[E accepts (A,B,C)|H = h]

≥ 1
|H|

∑
h∈H

Pr[E accepts 〈Vh,M〉(x)]− negl(n)

=
1
|H|

∑
h∈H

Pr[A accepts 〈Vh,M〉(x)]− negl(n)

= Pr[A accepts 〈VH ,M〉(x)]− negl(n) .

Finally, since H is drawn from a strongly (2t+ 1)-universal hash family, for each α, H(α)
is uniformly distributed. Therefore, the transcript 〈VH ,M〉(x) is distributed identically to
〈A,M〉(x); in either case, the second message is uniformly distributed and independent of
the first message. We conclude

Pr[Z accepts x] ≥ Pr[A accepts 〈VH ,M〉(x)]− negl(n)

= Pr[A accepts 〈A,M〉(x)]− negl(n) (4)

≥ 1− εc − negl(n) .

Case x /∈ L: Let x /∈ L. Let q := Pr[Z accepts x] = Pr[A accepts (A,H(A), C)]. Consider
the following cheating Merlin M∗.

Cheating Merlin M∗ Recall the joint distribution (H,A,B,C) defined by Z.
Note that H,A need not be independent in this joint distribution.

1. On input x, send an α drawn according to A.

2. On receiving A’s message β, send back the quantum state C|(A = α,H(α) =
β) to Arthur. If Pr[H(α) = β|A = α] = 0, then send state |0〉〈0|.

Note that sampling from the conditional distribution C|(A = α,H(α) = β) may not be
efficient. However, M∗ is not required to be efficient.

R. Jain, A. Kolla, G. Midrijanis, B.W. Reichardt 11

The cheating probability of M∗ is exactly

Pr[A accepts 〈A,M∗〉(x)]

=
∑

(α,β)∈{0,1}n1+n2

Pr[A = α]
1

2n2
Pr[A accepts (α, β, (C|A = α,H(α) = β))] . (5)

The factor of 1/2n2 is the probability with which Arthur replies with a given β. By the
soundness criterion, M∗’s cheating probability is upper-bounded by εs.

Intuitively,M∗ is only successful if the uniform distribution of β has sufficient overlap with
the distribution of H(α) from the simulator’s output, at least for most α drawn according to
A. Then the two distributions can be coupled, relating Arthur’s acceptance probability while
interacting with M∗ to q. An extreme counterexample might be that conditioned on A = α;
H(α) were somehow fixed. Then β would almost never agree with H(α), so M∗ wouldn’t
know what to send for the last message and would have to abort.

Unlike the case x ∈ L, Definition 5 puts no guarantees on the simulator S when x /∈ L, so
it is possible that S’s output (A,B,C) could be very different from 〈A,M〉(x). Regardless,
as we show in the following key lemma, one can argue using black-box query search lower
bounds that H(A) is on average not too concentrated even given A.

Lemma 1 (Search reduction) Let sα := maxβ Pr[H(α) = β|A = α], where (H,A,B,C)
is the joint distribution defined in Z. Then there is a universal constant c such that the
expectation

Eα←A[sα] ≤ ct2/2n2 . (6)

The proof is deferred to Section 4.
By applying Markov’s inequality to Eq. (6), we obtain:

Corollary 1 Fix δ ∈ (0, 1]. There exists a set Good ⊆ {0, 1}n1 such that:

1. Pr(A ∈ Good) ≥ 1− δ.

2. For all α ∈ Good, sα ≤ ct2

δ2n2 .

Now continuing from Eq. (5), we have

εs ≥
∑

α∈Good,β

Pr[A = α]
1

2n2
Pr
[
A accepts (α, β, (C

∣∣A = α,H(α) = β))
]

=
∑

α∈Good,β

Pr[A = α,H(α) = β]
Pr[H(α) = β|A = α]

1
2n2

Pr
[
A accepts (α, β, C)

∣∣A = α,H(α) = β
]

≥ δ

ct2

∑
α∈Good,β

Pr[A = α,H(α) = β] Pr
[
A accepts (α, β, C)

∣∣A = α,H(α) = β
]

(7)

=
δ

ct2
Pr[A accepts (A,H(A), C), A ∈ Good]

≥ δ

ct2
(Pr[A accepts (A,H(A), C)]− Pr[A /∈ Good])

≥ δ

ct2
(q − δ) .

12 ON PARALLEL COMPOSITION . . .

The second inequality above follows since Pr[H(α) = β|A = α] ≤ sα ≤ ct2

δ2n2 , from the
definition of sα, Lemma 1, and since α ∈ Good. The final inequality uses the definition
q = Pr[Z accepts x] = Pr[A accepts (A,H(A), C)] and Corollary 1. Set δ = q/2 to complete
the proof of Claim 1, and thus also of Theorem 1. �

4 Proof of Lemma 1: Reduction to search

Lemma 1 is proved by reducing to search, then applying a search lower bound.
We briefly sketch the idea of the proof first. Let s := Eα←A[sα], where sα is as in the

statement of the lemma. For each α ∈ {0, 1}n1 , let

βα := argmaxβ Pr[H(α) = β|A = α] .

(Recall the joint distribution of (H,A,B,C) from algorithm Z.) With this definition, note
that s = Pr[H(A) = βA]. Let (A′, B′, C ′) be the simulator S’s output when run on VF ,
where F is a uniformly random function from {0, 1}n1 to {0, 1}n2 . Let s′ := Pr[F (A′) = βA′],
where the probability is over both F and the simulator. First, we argue that s′ = s because
the set of random variables {H(α) : α ∈ {0, 1}n1} have sufficient independence. Next, by
reduction to black-box search and using known quantum search lower bounds, we argue that
the probability of the event (F (A′) = βA′) is O(t2/2n2) for any algorithm—in particular for
S—that makes at most t queries to oracle for F and outputs A′. We now present the formal
proof.
Lemma 2 Let H be uniformly distributed in H(2t + 1) and let F be uniformly distributed
over the set of all functions {0, 1}n1 → {0, 1}n2 . Let A = AH ∈ {0, 1}n1 be the classical
output, after measurement, of a quantum algorithm A that starts in state |0〉 and makes at
most t oracle queries to H. Let A′ = AF ∈ {0, 1}n1 be the corresponding output when A
is run on F . Then (A,H(A)) and (A′, F (A′)) have the same distribution. In particular,
Pr[H(A) = βA] = Pr[F (A′) = βA′].
Proof:[Proof of Lemma 2] The proof follows by application of the polynomial method [11, 12].
Given a string x = (xα)α∈{0,1}n1 ∈ {0, 1}n22

n1 , let fx : {0, 1}n1 → {0, 1}n2 be the function
fx(α) = xα. It is well known that the state of the quantum query algorithm A starting at
|0〉, after t queries to the oracle for function fx is∑

z

pz(x)|z〉 ,

where the coefficients pz(x) are polynomials in the binary variables xα,i with α ∈ {0, 1}n1 and
i ∈ [n2] := {1, . . . , n2}. A block, for any fixed α, consists of the variables xα,i with i ∈ [n2].
Also, it can be verified through standard arguments, that each pz(x) has “block degree” at
most t, meaning that each term involves variables xα,i for at most t different α:

pz(x) =
∑
d≤t

α1,...,αd∈{0,1}n1

S1,...,Sd⊆[n2]

pz,α1,...,αd,S1,...,Sd

d∏
j=1

∏
i∈Sj

xαj ,i

Therefore, for a fixed x ∈ {0, 1}n22
n1 , on making t queries to the oracle for fx, the probability

of output of any particular α is a polynomial of block degree at most 2t [11]. By making one

R. Jain, A. Kolla, G. Midrijanis, B.W. Reichardt 13

additional query to oracle for fx, one can instead output (α, xα), which increases the block
degree by at most one. That is, the probability of output (α, xα) is a polynomial of block
degree at most 2t + 1. Averaging this polynomial over the oracle being H gives the same
probability as averaging over F by strong (2t + 1)-universality. In either case, the variables
xα are (2t+1)-wise independent and uniform. Therefore, (A,H(A)) and (A′, F (A′)) have the
same distribution. �

Lemma 3 Let F be uniformly distributed over the set of all functions {0, 1}n1 → {0, 1}n2 .
Fix a sequence (βα)α∈{0,1}n1 of elements of {0, 1}n2 . Let A ∈ {0, 1}n1 be the classical output,
after measurement, of a quantum algorithm A that starts in state |0〉 and makes at most t
oracle queries to F .

Pr[F (A) = βA] = O(t2/2n2) . (8)

Remark 1 We state without proof that if A in Lemma 3 was a classical algorithm making
at most t oracle queries to F , then we would have the stronger statement Pr[F (A) = βA] =
O(t/2n2).
Proof:[Proof of Lemma 3] Let S := {x ∈ {0, 1}2n2 : x has a 1 in exactly one position}. Let
X be a random variable uniformly distributed in S. Standard search lower bounds imply
that with t oracle queries to the bits of X, the probability of a quantum algorithm to find the
location of the 1 is O(t2/2n2) [11]. (The same bound for a classical algorithm is O(t/2n2).)

Now algorithm A can be used to construct an algorithm B for finding the 1 in X as
follows:

Algorithm B: Fix G a function chosen uniformly from the set of all functions from
{0, 1}n1 to {0, 1}n2 . For each α ∈ {0, 1}n1 , fix Zα a string chosen uniformly from
{0, 1}n2 r {βα}. Define,

F (α) =

{
βα if XG(α) = 1

Zα if XG(α) = 0
.

Note that F : {0, 1}n1 → {0, 1}n2 is a uniformly random function, when averaged
over the choices of X,G and the Zαs. Now run A. When A makes a query to
α ∈ {0, 1}n1 , return F (α).e When A stops, measure A’s output A′, and output
G(A′).

From the above construction, finding βα in F implies finding a 1 in X. Moreover, since A
makes at most t queries to F , B makes at most 2t queries to X. Therefore,

Pr[F (A′) = βA′] = Pr[X(G(A′)) = 1] = O(t2/2n2) .

�

Proof:[Proof of Lemma 1] Recall the joint distribution of (H,A,B,C) from the algorithm Z.
Lemma 1 now follows from above two lemmas by setting A := S, βα := argmaxβ Pr[H(α) =

eThis response can be implemented in superposition, using at most two oracle queries to X: choose βα or Zα
depending on XG(α), then uncompute XG(α). It is not necessarily efficient, except in terms of oracle queries.

14 ON PARALLEL COMPOSITION . . .

β|A = α] and observing that Eα←A[sα] = Pr[H(A) = βA], where sα is as in the statement of
the Lemma 1. �

5 Three-round QIP protocols

The extension of Theorem 1 to a three-round interactive proof 〈V,P〉, follows on similar lines
as the three-round QAM case, with a few differences that we will highlight. Let us first
introduce the notation for this section.

Notation: In an interactive proof, the honest verifier V is given coins R drawn uniformly
at random from {0, 1}nc at the beginning of the protocol. For a string r, let Vr : {0, 1}n1 →
{0, 1}n2 be the function determining verifier’s V’s response to the prover’s first message, when
the coins are fixed to r. We will also write “Vr accepts” to mean that V’s predicate with coins
r accepts. For a function h : {0, 1}n1 → {0, 1}nc , define the dishonest verifier Vh to behave
exactly as the honest verifier V does with coins h(α), where α is the prover’s first message.
In particular, Vh responds to message α with Vh(α)(α). Vh’s view of the interaction therefore
consists of the two messages from the prover.

The result for this section is:

Theorem 2 Let L be a language with a three-round interactive protocol Π, with possibly
the last message from prover being quantum, having completeness and soundness errors εc
and εs, respectively. Assume that Π is a black-box, quantum computational zero-knowledge
protocol. Let S be the simulator with a running time bounded by t. If t

√
εs = o(1−εc−negl(n)),

then L is in BQP.

Proof: The proof of Theorem 2 is similar to that of Theorem 1, with some modifications to
the algorithm and the cheating prover. The new efficient algorithm Z ′ for language L is:

Algorithm Z ′: Input x ∈ {0, 1}n, Output accept/reject.

1. Choose H uniformly at random from H(2t + 1). Run S (with input x) on
VH and measure its output corresponding to the first message from P in the
computational basis to obtain the classical random variable A. Let C be the
output of S corresponding to the last message from P.

2. Accept if and only if VH(A) accepts the transcript (A,VH(A)(A), C).

As before we have the following claim:
Claim 2 For x ∈ L, Pr[Z ′ accepts x] ≥ 1 − εc − negl(n). For x /∈ L, Pr[Z ′ accepts x] =
O(t
√
εs).

It is easy to verify that the algorithm Z ′ runs in polynomial time. Theorem 2 then follows
immediately from Claim 2. �

Proof:[Proof of Claim 2] The case x ∈ L goes along similar lines as in the proof of Theorem 1
and we skip the details for brevity.

Consider the case x /∈ L. Let B := VH(A)(A). Algorithm Z ′ defines a joint distribution
for (H,A,B,C). Let F be chosen uniformly from the set of all functions from {0, 1}n1 to
{0, 1}nc . Run the simulator S on VF and let A′, C ′ be its outputs analogous to A,C. Let
B′ := VF (A′)(A′). Since S makes at most t queries, using arguments as in proof of Lemma 2

R. Jain, A. Kolla, G. Midrijanis, B.W. Reichardt 15

we have,

q := Pr[Z ′ accepts x] = Pr[VH(A) accepts (A,B,C)]

= Pr[VF (A′) accepts (A′, B′, C ′)] . (9)

The main property that we need to observe in this case is:
Lemma 4 For all α ∈ {0, 1}n1 and β ∈ {0, 1}n2 , the random variables F (α)|(A′ = α,B′ = β)
and C ′|(A′ = α,B′ = β) are independent. In other words, for all α ∈ {0, 1}n1 , we have
following Markov network:f

(F (α)|A′ = α)→ (B′|A′ = α)→ (C ′|A′ = α) .

Proof: Let N := 2n1 . For every α ∈ {0, 1}n1 , define the random variable Y (α) := VF (α)(α),
so B′ = Y (A′). Note that the simulator S, while querying VF , has oracle access only to
the random function Y : {0, 1}n1 → {0, 1}n2 and not directly to the random function F :
{0, 1}n1 → {0, 1}nc . Therefore the following is a Markov network:

(F (1)F (2) . . . F (N))→ (Y (1)Y (2) . . . Y (N))→ (A′, C ′) .

The random variables (F (1)F (2) . . . F (N)) are all independent of each other. Also, since for
each α, Y (α) is a function only of α and F (α), the random variables (Y (1)Y (2) . . . Y (N)) are
also all independent of each other. Therefore for every α ∈ {0, 1}n1 we also have the following
Markov network:

F (α)→ Y (α)→ (A′, C ′) ,

which remains a Markov network if we condition each variable on A′ = α, as claimed. �

Exactly on the lines of Lemma 1, search lower bounds imply:
Lemma 5 Let sα := maxr∈{0,1}nc Pr[F (α) = r|A′ = α], where (F,A′, B′, C ′) is the joint
distribution defined as above. Then there is a universal constant c such that the expectation

Eα←A′ [sα] ≤ ct2/2nc . (10)

Applying Markov’s inequality to Eq. (10) gives:
Corollary 2 Fix δ ∈ (0, 1]. There exists a set Good ⊆ {0, 1}n1 such that:

1. Pr(A′ ∈ Good) ≥ 1− δ.

2. For all α ∈ Good, sα ≤ ct2

δ2nc .

Now define the cheating prover P∗ as:
Cheating prover P∗: Recall the joint distribution (F,A′, B′, C ′) defined earlier.

1. On input x, send α drawn from A′.

2. On receiving the honest verifier V’s message β, send back message to V, dis-
tributed according to C ′|(A′ = α,B′ = β).

fThe random variables X,Y, Z taking values in X ,Y,Z are said to form a Markov network X → Y → Z if
for all y ∈ Y the random variables X|(Y = y) and Z|(Y = y) are independent.

16 ON PARALLEL COMPOSITION . . .

Now the cheating probability of P∗ is Pr[V accepts 〈V,P∗〉(x)]. Therefore,

εs ≥ Pr[V accepts 〈V,P∗〉(x)]

=
∑

(α,r)∈{0,1}n1+nc

Pr[A′ = α]
1

2nc
Pr[Vr accepts (α,Vr(α), (C ′|A′ = α,B′ = Vr(α)))]

≥
∑

α∈Good,r

Pr[A′ = α]
1

2nc
Pr[Vr accepts (α,Vr(α), (C ′|A′ = α,B′ = Vr(α)))]

=
∑

α∈Good,r

Pr[A′ = α, F (α) = r]
Pr[F (α) = r|A′ = α]

1
2nc

Pr[Vr accepts (α,Vr(α), (C ′|A′ = α,B′ = Vr(α)))]

≥ δ

ct2

∑
α∈Good,r

Pr[A′ = α, F (α) = r] Pr[Vr accepts (α,Vr(α), (C ′|A′ = α,B′ = Vr(α)))]

=
δ

ct2

∑
α∈Good,r

Pr[A′ = α, F (α) = r] Pr[Vr accepts (α,Vr(α), (C ′|A′ = α, F (α) = r))]

=
δ

ct2

∑
α∈Good,r

Pr[A′ = α, F (α) = r,Vr accepts (α,Vr(α), (C ′|A′ = α, F (α) = r))]

=
δ

ct2
Pr[VF (A′) accepts (A′, B′, C ′), A′ ∈ Good]

=
δ

ct2
(Pr[VF (A′) accepts (A′, B′, C ′)]− Pr[A′ /∈ Good])

≥ δ

ct2
(q − δ) .

The third inequality above follows since Pr[F (α) = r|a′ = α] ≤ sα ≤ ct2

δ2nc (from Corollary 2,
the definition of sα, and since α ∈ Good). The third equality above follows since from
Lemma 4,

(C ′|A′ = α,B′ = Vr(α)) = (C ′|A′ = α, F (α) = r,B′ = Vr(α)) = (C ′|A′ = α, F (α) = r) .

The final inequality uses Eq. (9) and Corollary 2. Set δ = q/2 to complete the proof of
Claim 2, and thus also of Theorem 2. �

Remark 2 While we extend the three-round QAM proof to constant-round QAM protocols, as
in Section 6, this proof for three-round QIP protocols cannot be similarly extended. The proof
would only work for constant-round QIP protocols if the honest verifier were guaranteed to use
independent randomness to determine his response in each round. The proof breaks down if it
refers to the same randomness for different messages. In that case, the black-box simulator’s
output transcript need not only depend on the verifier’s messages. It may depend directly on
the randomness behind that message, and so the analog to Lemma 4 would be false.

6 Constant-round QAM protocols with only the last message quantum

In this section, we extend Theorem 1 for three-round QAM protocols to (2k+ 1)-round QAM

protocols with all but the last message classical, for k any constant.

R. Jain, A. Kolla, G. Midrijanis, B.W. Reichardt 17

Theorem 3 Let k be a fixed positive integer. Let L be a language with a (2k + 1)-
round QAM protocol Π, with all but the last message classical, having completeness and
soundness errors εc and εs, respectively. Assume that Π is a black-box, quantum compu-
tational zero-knowledge protocol. Let S be the simulator with a running time bounded by t. If
(t2kεs)1/(k+1) = o(1− εc − negl(n)), then L is in BQP.
Proof:

Assume without loss of generality that the first message is from the prover M. We will
use the following notation.

Notation: For an indexed variable xi, let xj1 denote the j-tuple (x1, x2, . . . , xj). Let
ni be the length of the ith message in the protocol. For each i ∈ [k], let Hi be a strongly
(2t + 1)-universal family of efficiently computable hash functions {0, 1}Ni → {0, 1}n2i , with
Ni = n1 +n2 + · · ·+n2i−1 and a t to be specified later (Definition 8). We will use α1, . . . , α2k

to denote classical messages of the first 2j rounds. For hash functions, hk1 := (h1, . . . , hk) ∈
H1× · · · ×Hk, let Ahk

1
represent the deterministic dishonest Arthur who returns hi(α2i−1

1) as
the (2i)th message when the transcript of the first 2i− 1 messages is α2i−1

1 .
Black-box access is modeled by giving the simulator S access to k oracles, evaluating the

k hash functions (on arbitrary inputs). The oracle Uhi takes

|x〉|a〉|b〉 → |c〉|x〉|a⊕ hi(x)〉|b〉

Equivalently, the simulator can be given a single oracle that takes as input also the round
number to apply the appropriate hash function.

Let the random variables Hi be uniformly and independently distributed over Hi. Hk
1 :=

(H1, . . . ,Hk). Let (A1, A3, . . . , A2k+1) be the simulator S’s output for Arthur’s view, corre-
sponding to the prover’s messages only, when run on the random verifierAHk

1
. (A1, A3, . . . , A2k−1

are random classical messages, while A2k+1 is a random density matrix.) Let A2i = Hi(A2i−1
1),

so A2k+1
1 := (A1, A2, . . . , A2k+1). Thus running S on AHk

1
overall defines a joint distribution

over (Hk
1 , A

2k+1
1). As in the three-round case, our algorithm Z for deciding L is:

Algorithm Z: On input x, using the simulator S, sample from the distribution
A2k+1

1 . Accept if and only if the sampled message satisfies Arthur’s acceptance
predicate.

Our main claim will be:
Claim 3 For x ∈ L, Pr[Z accepts x] ≥ 1 − εc − negl(n). For x /∈ L, Pr[Z accepts x] =
O((t2kεs)1/(k+1)).
Algorithm Z runs in polynomial time, since S, choosing and evaluating various hash functions,
and Arthur’s acceptance predicate are all efficient. Therefore, Theorem 3 follows immediately
from Claim 3. �

Proof:[Proof of Claim 3] Let

q := Pr[Z accepts x] = Pr[A accepts A2k+1
1] . (11)

For x ∈ L, Z accepts with good probability by the computational zero knowledge assumption
and by averaging over the hash functions, as in Theorem 1. We skip the details for brevity
and focus on the x /∈ L case. Define a cheating Merlin M∗ as follows:

18 ON PARALLEL COMPOSITION . . .

Cheating Merlin M∗: If the transcript so far is α2i
1 , send the next message

according to the distribution of A2i+1|(A2i
1 = α2i

1).
The cheating probability of M∗ is Pr[A accepts 〈A,M∗〉(x)]. Therefore,

εs ≥ Pr[A accepts 〈A,M∗〉(x)]

=
∑

α2k+1
1 ∈{0,1}Nk+1

Pr[A1 = α1]
1

2n2
Pr[A3 = α3|A2

1 = α2
1] · · · 1

2n2k
Pr[A2k+1 = α2k+1|A2k

1 = α2k
1]

×Pr[A accepts α2k+1
1]

 .

(12)

Let
α2i(α2i−1

1) := argmaxα2i Pr[A2i = α2i|A2i−1
1 = α2i−1

1] .

Then using arguments involving search lower bounds as in Lemma 3, we can similarly con-
clude:

∀i ∈ [k] : Pr[A2i = α2i(A2i−1
1)] ≤ ct2

2n2i

for some constant c. Let δ ∈ (0, 1]. By Markov’s inequality, for all i ∈ [k], there exists
Goodi ⊆ {0, 1}Ni , such that:

1. Pr[A2i−1
1 ∈ Goodi] ≥ 1− δ.

2. For all α2i−1
1 ∈ Goodi, Pr[A2i = α2i(A2i−1

1)|A2i−1
1 = α2i−1

1] ≤ ct2

δ2n2i
.

Let Good =
⋂k
i=1 Goodi × {0, 1}Nk+1−Ni . Then

Pr[A2k+1
1 ∈ Good] ≥ 1− kδ . (13)

Now from Eq. (12), we have:

εs ≥
∑

α2k+1
1 ∈{0,1}Nk+1

Pr[A1 = α1]
1

2n2
Pr[A3 = α3|A2

1 = α2
1] · · · 1

2n2k
Pr[A2k+1 = α2k+1|A2k

1 = α2k
1]

×Pr[A accepts α2k+1
1]

≥
∑

α2k+1
1 ∈Good

 (δ
ct2 Pr[A2 = α2|A1 = α1]) · · · (δ

ct2 Pr[A2k = α2k|A2k−1
1 = α2k−1

1])

×Pr[A1 = α1] Pr[A3 = α3|A2
1 = α2

1] · · ·Pr[A2k+1 = α2k+1|A2k
1 = α2k

1]

×Pr[A accepts α2k+1
1]

=
(
δ

ct2

)k
Pr[A accepts A2k+1

1 , A2k+1
1 ∈ Good]

≥
(
δ

ct2

)k
(Pr[A accepts A2k+1

1]− Pr[A2k+1
1 /∈ Good])

≥
(
δ

ct2

)k
(q − kδ) .

The first inequality is by restricting the sum to good transcripts, and inserting terms δ2n2i

ct2 Pr[A2i =
α2i(A2i−1

1)|A2i−1
1 = α2i−1

1] ≤ 1. (Compare to Eq. (7).) The last inequality follows from
Eq. (11) and Eq. (13). Setting δ = q/(2k), completes the proof. �

R. Jain, A. Kolla, G. Midrijanis, B.W. Reichardt 19

Remark 3 This proof would not have gone through had we defined A2i = Hi(A2i−1); it is
necessary to hash the entire preceding transcript A2i = Hi(A2i−1

1) (as in [1]), in order to put
an upper bound on Pr[A2i = α2i|A2i−1

1 = a2i−1
1] ≤ Pr[A2i = α2i(A2i−1

1)|A2i−1
1 = a2i−1

1].

7 Open problems

Many open problems remain related to this work. We would like to be able to analyze protocols
with more “quantum-ness.” For example, what can one say about three-round interactive
proofs with classical messages but a quantum verifier? Here the honest verifier may not even
have any private coins, but instead may use quantum mechanics to randomize. Since the
verifier’s response will no longer be a deterministic function Vr(α) of its coins r and the first
message α, our approach of setting the coins equal to a function h(α) will not make sense.

Also, we would like to understand QAM protocols in which all the prover’s messages are
quantum. The problem currently is that hashing the first message (say, in the computational
basis) collapses its state. Therefore it is no longer true that the honest-verifier transcript is
the same as the average of the hash-function verifiers transcripts, so the key equality in the
x ∈ L case, Eq. (4), will no longer hold.

Acknowledgements
We appreciate many helpful discussions with Sean Hallgren, Umesh Vazirani and Hoeteck
Wee. We thank the anonymous referees for helping us improve the presentation of the paper.
We acknowledge support from NSF ITR Grant CCR-0121555, and ARO Grant DAAD 19-03-
1-0082. Large part of this work was conducted while the authors were at the University of
California, Berkeley. Part of the work was conducted when the first author was at Computer
Science Department and Institute for Quantum Computing, University of Waterloo, Canada
where it was supported by an ARO grant.

References

1. Oded Goldreich and Hugo Krawczyk. On the composition of zero-knowledge proof systems. In
Proceedings of the 17th ICALP, pages 268–282, 1990.

2. John Watrous. Zero-knowledge against quantum attacks. In Proceedings of the 38th ACM Sym-
posium on Theory of Computing, pages 296–305, 2006.

3. John Watrous. Limits on the power of quantum statistical zero-knowledge. In Proceedings of the
43rd Symposium on Foundations of Computer Science, pages 459–468, 2002.

4. K.L. Chung. A Course in Probability Theory. Academic Press; 2nd edition, 2000.
5. O. Goldreich. Modern Cryptography, Probabilistic Proofs and Pseudorandomness. Springer, 1999.
6. Oded Goldreich and Yair Oren. Definitions and properties of zero-knowledge proof systems.

Journal of Cryptology, 7:1–32, 1993.
7. Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of interactive

proof systems. SIAM Journal of Computing, 18(1):186–208, 1989.
8. A. Joffe. On a set of almost deterministic k-independent random variables. Annals of probability,

2(1):161–162, 1974.
9. Mark N. Wegman and J. Lawrence Carter. New hash functions and their use in authentication

and set equality. Journal of Computer and System Sciences, 22:265–279, 1981.
10. Benny Chor and Oded Goldreich. On the power of two-point based sampling. Journal of Com-

plexity, 5(1):96–106, 1989.
11. Robert Beals, Harry Buhrman, Richard Cleve, Michele Mosca, and Ronald de Wolf. Quantum

lower bounds by polynomials. Journal of the ACM, 48(4):778–797, 2001.

20 ON PARALLEL COMPOSITION . . .

12. Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Information.
Cambridge University Press, Cambridge, UK, 2000.

	Introduction
	Organization

	Preliminaries
	Quantum Oracle
	Interactive proofs (IP) and Arthur-Merlin protocols (AM)
	Quantum Arthur-Merlin protocol (QAM)
	Zero knowledge

	Three-round QAM protocols with the first two messages classical
	Proof of Lemma 1: Reduction to search
	Three-round QIP protocols
	Constant-round QAM protocols with only the last message quantum
	Open problems

