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Abstract

We describe new lower bounds for randomized communication complexity and query com-
plexity which we call the partition bounds. They are expressed as the optimum value of linear
programs. For communication complexity we show that the partition bound is stronger than
both the rectangle/corruption bound and the ~y, /generalized discrepancy bounds. In the model of
query complexity we show that the partition bound is stronger than the approzimate polynomial
degree and classical adversary bounds. We also exhibit an example where the partition bound
is quadratically larger than the approximate polynomial degree and adversary bounds.
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1 Introduction

The computational models investigated in communication complexity and query complexity, i.e.,
Yao’s communication model [Yao79] and the decision tree model, are simple enough to allow us to
prove interesting lower bounds, yet they are rich enough to have numerous applications to other
models as well as exhibit nontrivial structure. Research in both these models is concentrated on
lower bounds and a recurring theme is methods to prove such bounds. In this paper we present a
new method for proving lower bounds in both of these models.

1.1 Communication Complexity

In the model of communication complexity there are several general methods to prove lower bounds
in the settings of randomized communication and quantum communication. Linial and Shraibman
[LS09] identified a quantity called ~2, which not only yields lower bounds for quantum protocols,
but also subsumes a good number of previously known bounds. There is another quantity called the
generalized discrepancy, the name being coined in [CA08], which also coincides with 9 as is implicit
in [LS09]. The generalized discrepancy can be derived from the standard discrepancy bound in a
way originally suggested by Klauck [K07]. The standard discrepancy bound was first shown to be
applicable in the quantum case by Kremer and Yao [Kre95]. Razborov [Raz03] (implicitly) and
Sherstov [S08] (explicitly), showed that the v2 method yields a tight £2(y/n) bound for the quantum
communication complexity of the Disjointness problem, arguably the most important single function
considered in the area (for a matching upper bound see [AA05]). This leaves our knowledge of
lower bound methods in the world of quantum communication complexity in a neat form, where
there is one "master method” that seems to do better than everything else; the only potential
competition coming from information theoretic techniques, for example as in Jain, Radhakrishnan
and Sen [JRS03], which are not applicable to all problems, and not known to beat o either.

In the world of randomized communication things appear to be much less organized. Besides
simply applying 72, the main competitors are the rectangle (aka corruption) bound (compare [Y83,
BFS86, Raz92, K03, BPSWO06)), as well as again information theoretic techniques [BKKS04, JKS03].
Both of these approaches are able to beat 2, by allowing ©(n) bounds for the Disjointness problem
[Raz03, BKKS04, KS92]. There is an information theoretic proof of a tight €(n) lower bound for
the Tribes function; an AND of \/n ORs of y/n ANDs of distributed pairs of variables [JKS03]. With
the rectangle bound one cannot prove a lower bound larger than /n for this problem, and neither
with 2. So the two general techniques, rectangle bound and 2, are known to be quadratically
smaller than the randomized communication complexity for some problems, and the information
theoretic approach seems to be only applicable to problems of a ”direct sum” type.

In this paper we propose a new lower bound method for randomized communication complexity
which we call the partition bound !. We derive this bound using a linear program, which captures a
relaxation of the fact that a randomized protocol is a convex combination of deterministic protocols
and hence a convex combination of partitions of the communication matrix into rectangles. Linear
programs have been previously used to describe lower bounds in communication complexity. Lovasz
[LI0] gives a program which, as we show, turns out to capture the rectangle bound. Our program
for the partition bound however uses stricter constraints to overcome the one-sidedness of Lovasz’s

Tn this paper we are only concerned with the two-party, two-way model and the partition bound for other models
can be defined analogously. For example for the Number on the Forehead Model it can be defined by replacing
rectangles by cylinder intersections. For the two-party, one-way model it can be defined analogously.



program. Karchmer, Kushilevitz and Nisan [KKN95] give a linear program for fractional covers,
as well as a linear program which can be seen to be equivalent to our zero-error partition bound
for relations, where it was introduced as a lower bound for deterministic complexity.

We also describe a weaker bound to the partition bound which we call the smooth rectangle
bound. It is inherently a one-sided bound and is derived by relaxing constraints in the linear program
for the partition bound. This bound has recently been used to prove a strong direct product theorem
for Disjointness in [K09]. Another way to derive the smooth rectangle bound is as follows. Suppose
we want to prove a lower bound for a function f. Then we could apply the rectangle bound, but
sometimes this might not yield a large enough lower bound. Instead we apply the rectangle bound
to a function g that is sufficiently close to f, under a suitable probability distribution, so that lower
bounds for g imply lower bounds for f. Maximizing this over all g, close to f, gives us the smooth
rectangle bound. This is the same approach that turns the discrepancy bound into the generalized
discrepancy. We will use the term smooth discrepancy in the following, because it better captures
the underlying approach.

After defining the partition bound and the smooth rectangle bound we proceed to show that the
smooth rectangle bound subsumes both the standard rectangle bound and 73 /smooth discrepancy.
We also show that the LP formulation of the smooth rectangle bound coincides with its natural
definition as described above. This leaves us with one unified general lower bound method for
randomized communication complexity, the partition bound.

We also define the Las-Vegas partition bound via a linear program and exhibit it to be a
lower bound on the Las-Vegas communication complexity (refer [KN97]). We compare the zero-
error partition bound/Las-Vegas partition bound to other standard lower bound methods on
deterministic/Las-Vegas communication complexity.

1.2 Query Complexity

We then turn to randomized query complexity. Again there are several prominent lower bound
methods in this area. Some of the main methods are the classical version of Ambainis’ adversary
method, the quantum version is from [A02] and classical versions are by Laplante/Magniez [LMOS]
and Aaronson [A08]; the approximate polynomial degree [NS94, BBCT01]; the randomized certifi-
cate bound defined by Aaronson [A06], this being the query complexity analogue of the rectangle
bound in communication complexity, as well as older methods like block-sensitivity [Nis91].

We again propose a new lower bound, the partition bound, defined via a linear program, this
time based on the fact that a decision tree partitions the Boolean cube into subcubes. We then
proceed to show that our lower bound method subsumes all the other bounds mentioned above. In
particular the partition bound is always larger than the classical adversary bound, the approximate
degree, and block-sensitivity.

To further illustrate the power of our approach we describe a Boolean function, AND of ORs,
which we continue to call Tribes, for which the partition bound yields a tight linear lower bound,
while both the adversary bound and the approximate degree are at least quadratically smaller.

Organization

In Section 2 we define the communication complexity partition bound, smooth rectangle bound
and mention other previously known lower bound methods. We then present some of the key
comparisions between these bounds as mentioned. In Section 3 we perform the same excercise for



query complexity. We defer all proofs to Section A. In Section B we present the definitions of
partition bound for Las-Vegas communication and query complexity and show that they serve as
corresponding lower bounds respectively. In Section C we define the partition bound for relations
for communication complexity and query complexity and show that they serve as correponding
lower bounds respectively.

2 Communication Complexity Bounds

Let f: X x)Y — Z be a partial function. All the functions considered in this paper are partial
functions unless otherwise specified, hence we will drop the term partial henceforth. It is easily
verified that strong duality holds for the programs that appear below and hence optima for the
primal and dual are same. Let R be the set of all rectangles in X x ). We refer the reader to [KN97]
for introduction to basic terms in communication complexity. Below we assume (z,y) € X x Y, R €
R,z € Z, unless otherwise specified. Let f~! C X x ) denote the subset where f(-) is defined. For

sets A, B we denote A — B % {a:a € A ,a ¢ B}. We assume € > 0 unless otherwise specified.

2.1 New Bounds: Definitions

Definition 1 (Partition Bound) The e-partition bound of f, denoted prt.(f), is given by the
optimal value of the following linear program.

Primal Dual
min: Z Z Wz, R mazx: E (1= €)pta,y + Z D,y
= R (zy)ef~? (z,9)
V(I,y) S f71 : Z wf(a:,y),R 2 1- €, VZ,VR : Z M,y + Z ¢:v,y S 17
R:(z,y)ER (z,y)ef~1(z)NR (z,y)ER
V(z,y) : Z Z wr =1, Y(z,y) : poy > 0,dz,y €R .
R:(z,y)ER z

Vz,VR:w.r >0 .

Below we present the definition of smooth-rectangle bound as a one-sided relaxation of the
partition bound. As we show in the next subsection, it is upper bounded by the partition bound.

Definition 2 (Smooth-Rectangle bound) The e- smooth rectangle bound of f denoted srece(f)
is defined to be max{srec?(f) : z € Z}, where srecZ(f) is given by the optimal value of the following
linear program.

Primal Dual
min: Z WR max: Z (1= € pay — Pa,y) — Z € o,y
ReR (zy)ef~1(z) (zy)ef~1—f=1(2)
-1

V@y) ef ) Y wr>l-g¢ VR: 3 (e — Ge) — 3 foy <1,

Ri(ey)eR (z,y)ef~1(2)NR (@y)e(RNF~1)—f~1(2)
Vz,y) e fl(z): Y. wr<l, V(z,y) : oy > 0500,y >0 .

R:(z,y)ER
Vwy) e —f =) Y, wr<e

R:(z,y)€ER

VR:wRZO .



Below we present an alternate and ”natural” definition of smooth-rectangle bound, which jus-
tifies its name. In the next subsection we show that the two definitions are equivalent.

Definition 3 (Smooth-Rectangle bound : Natural definition) In the natural definition, (e, 9)-
smooth-rectangle bound of f, denoted srec.s5(f), is defined as follows (refer to the definition of
r/é/cj’)‘(g) in the next subsection):

sreces(f) & max{srec5(f) : z € 2},

srec; 5(f) ot max{sf\ref:f’g‘(f) : X a (probability) distribution on X x Y N f~1}.

— )\ def —~ —

srecy (f) = max{reci(g) 1 g: X x Y — Z; " I;iA[f(w,y) # g(z,y)] < 8 Mg~ '(2)) > 0.5}.
Below we define smooth-discrepancy via a linear program. Later we present the natural definition
of smooth-discrepancy and in the next subsection we show that the two definitions are equivalent.
As we also show in the next subsection smooth-discrepancy is upper bounded by smooth-rectangle
bound which in turn is upper bounded by the partition bound.

Definition 4 (Smooth-Discrepancy) Let f : X x Y — {0,1} be a Boolean function. The
smooth-discrepancy of f, denoted sdisc.(f), is given by the optimal value of the following linear
program.

Primal Dual
min: Z WR + VR max: Z M,y — (1 + €)¢z,y
RER (z,y)ef1

V(z,y)e f71A): 1+e> Z wr —vr > 1, VR : Z (Hay — Poy) — Z (Bz,y — Gzy) < 1,
R:(z,y)ER (zy)ef~1(NR (z,y)ERNF—1(0)

V(z,y) € fﬁl(o) o l+e> Z vr —wr > 1, VR: Z (Hay = bay) — Z (Bz,y — Pzy) <1,
R:(z,y)€R (z,y)ef~1H(O)NR (z,y)€RNF=1(1)

VR :wgr,vg >0 . V(z,y) : pay = 05¢zy >0 .

2.1.1 Known Bounds: Definitions

Below we present the definition of the rectangle bound via a linear program. This program was
first described by Lovasz [L.90] although he did not make the connection to the rectangle bound.

Definition 5 (Rectangle-Bound) The e-rectangle bound of f, denoted rec.(f), is defined to be
max{rec?(f) : z € Z}, where recZ(f) is given by the optimal value of the following linear program.

Primal Dual
min: Z WR max: Z (1—€) - ployy — Z € la,y
R (zy)ef~1(z) (zy)ef~t—f=1(2)
V(z,y) € f(2): Z wr21—¢ VR : Z Py — Z Hay <1,
Ri(wy)€R (z.v)€f~1(2)NR (z.y)E(RNF=1)=f=1(2)
Vz,y) e ft— ) Z wr <€, V(2,y) : payy >0 .
R:(z,y)€R

VR:wgr >0 .

Below we present the alternate, natural and conventional definition of rectangle bound as used
in several previous works [Y83, BFS86, Raz92, K03, BPSWO06]. In the next subsection we show
that the two definitions are equivalent.



Definition 6 (Rectangle-Bound: Conventional definition) In the conventional definition, -
rectangle bound of f, denoted rec.(f) is defined as follows:

rec.(f) & max{rec’(f) : z € 2}

rec (f) % max rec>(f) : A a distribution on X x Y N f~1 with A(f~'(z)) > 0.5}.
2\, gy def . 1
rec.”(f) = mm{)\(f—l(z) a0

€
Below we present the definition of discrepancy via a linear program followed by the conventional
definition of discrepancy. It is easily seen that the two are exactly the same.

"R e R withe- MfH2)NR) > AR - f1(2))} .

Definition 7 (Discrepancy) Let f: X x Y — {0,1} be a Boolean function. The discrepancy of
f, denoted disc(f), is given by the optimal value of the following linear program.

Primal Dual
min: Z Wgr + VR max: Z M,y
R (zy)ef—t

Y(z,y) € f(1): Z wRr — VR > 1, VR : Z Ha,y — Z Moy <1,
Ri(zy)€R (zy)Ef~1H(MNR (,y)ERNF=1(0)

Viz,y) € fH0): Y wr—wr>1, VR: S ey Y ey <1
Ri(zy)eR (z.y)€F~L(0)NR (z,y)ERNF~1(1)

VR :wgr,vr 20 . V(z,y) : pay >0 .

Definition 8 (Discrepancy: Conventional definition) Let f : X x ) — {0,1} be a Boolean
function. The discrepancy of f, denoted disc(f) is defined as follows:

disc(f) def max{disc*(f) : A a distribution on X x Y N f1}.
1

| e )er( D@ gy

Below we present the natural definition of smooth-discrepancy which has found shape in previous
works [KO07, S08]. It is defined in analogous fashion from discrepancy as smooth-rectangle bound
is defined from rectangle bound.

disc*(f) & min{ :RETR} .

Definition 9 (Smooth-Discrepancy: Natural Definition) Let f : Xx)Y — {0,1} be a Boolean
function. The 6- smooth-discrepancy of f, denoted sdiscs(f), is defined as follows:

Sa\iSJC(;(f) wf max{sa\is/cg(f) : X a distribution on X x Y N f71}.

— A
sdiscs (f) def max{disc*(g) : g: X x Y — Z;( P)r /\[f(x,y) # g(z,y)] < 0}
x?y —
Below we define the v2 bound of Linial and Shraibman [L.S09] where it is also implicitly shown that
it is equivalent to smooth-discrepancy. We present a proof of this equivalence later for completeness.

Definition 10 (72 bound [LS09]) Let A be a sign matriz and o > 1. Then,

def

< r(X)e(Y) ; yg(A) %

Y2(A) = Y2(B).

min min
X,Y:XY=A B:¥(i,j) 1<A(i,5) B(i,j) <o

Above r(X) represents the largest {5 norm of the rows of X and ¢(X) represents the largest £2 norm
of the columns of Y.



Below we present two well-known lower bound methods for deterministic communication com-
plexity. We present a comparison of these with the 0-error partition bound in the next subsection.

Definition 11 (log-rank bound) Let f : X x Y — Z be a total function. Let My denote the
communication matriz associated with f; D(f) denote the deterministic communication complezity
of f and rank(-) represents the rank over the reals. Then it is well known [KN97] that D(f) >

logy rank(f).

Definition 12 (Fooling Set) Let f : X x Y — Z be a total function. A set S C X x Y is called
a fooling set (for f) if there exists a value z € Z, such that

e For every (z,y) € S, f(x,y) = z.
o For every two distinct pairs (x1,y1) and (x2,y2) in S, either f(x1,y2) # z or f(x2,y1) # 2.
It is easily argued that D(f) > logy |S| [KN97].

2.2 Comparison between bounds

The following theorem captures some key relationships between the bounds defined in the previous
section. Below R? “b( f) denotes the public-coin, e-error communication complexity of f. All logs in
this paper are taken to base 2.

Theorem 1 Let f: X x Y — Z be a function and let € > 0.
1. R () > log prt.(f).

prtc(f) = srece(f).

srece(f) > rece(f).

Let f: X xY — Z be a total function, then D(f) = O((log prty(f) +logn)?). Later we exhibit
that the quadratic gap between D and logprty is tight. For relations however there could be
an exponential gap between logprty and D as shown in [KKN95].

e e

5. Let f: X xY — Z be a total function, and let S C X x Y be a fooling set. Then prty(f) > |S].

The following lemma shows the equivalence of the two definitions of the rectangle bound.

Lemma 1 Let f: X XY — Z be a function and let € > 0. Then for all z € Z,

1. rec(f) < 5 (f).
2. reci(f) = 5 (3 —€) - recs(f).
The following lemma shows the equivalence of the two definitions of the smooth-rectangle bound.

Lemma 2 Let f: X XY — Z be a function and let € > 0. Then for all z € Z,

1. srec?(f) < srect 1-<(f).
2

2



2. sreci(f) > 4 (4 — o) - s7ecs, . (f).
The following lemma shows the equivalence of the two definitions of smooth-discrepancy.

Lemma 3 Let f: X xY — {0,1} be a function and let ¢ > 0. Then
1. sa\igcéfg(f) > sdisce(f).

2. %-sﬁc#(f)gsdisce(f).

442
The following lemma states the rectangle bound dominates the discrepancy bound for Boolean
functions and hence the smooth-rectangle bound dominates the smooth-discrepancy bound.

Lemma 4 Let f : X x Y — {0,1} be a function; let z € {0,1} and let \ be a distribution on
XxYNft Leted >0, then

reci(f) > (% — )disc (f) — % .

This implies by definition and Lemma 1,
— 1 1
reci (f) > reci(f) > (5 — e)disc(f) — 5

= 578 5(1) > (5 — e)sdiscs(f) — 5

For a function g : X x ¥ — {0,1}, let A, be the sign matrix corresponding to g, that is

Agy(z,y) def (—1)9@¥) . Following lemma states the equivalence between smooth-discrepancy and

the 79 bound. This fact is implicit in Linial and Shraibman [L.S09]. We present a proof of this in
Section A for completeness.

Lemma 5 ([LS09]) Let f: X x Y — {0,1} be a Boolean function and let o > 1. Then

%~sdisc L (f) < 9(Af) < 8-sdisc1(f) .

2(a+1) a+1

From Lemma 4 and Lemma 5 we have the following corollary.

Corollary 1 Let f: X x Y — {0,1} be a Boolean function; let z € {0,1}; let &« > 1,¢ > 0. Then,
1 1 1
Srec > (2 —€)=9S - .
Sk s ()2 (5 9584y —
The following theorem captures some separations between some of the bounds we mentioned.
Theorem 2 1. log prt.(Disj) > log rec.(Disj) = Q(n), while log~§(Disj) = O(y/n) for alle < 1/2
and o > 1.

2. There is a function f: {0,1}" x {0,1}" — {0,1} such that logprt. (f) > logrec.(f) = Q(n),
while log rank(f) = O(n%%2) for all e < 1/2.

3. Let the function LNE : {0, 1}"2 x {0, 1}”2 — {0, 1} be defined as
LNE(z1,..., 2051y .-y yn) =1 <= Vi:z; # vy,

where all x;,y; are strings of length n. Then D(LNE) = logrank(LNE) = n?, however
Ro(LNE) = O(n) and log prty(LNE) = O(n).



3 Query Complexity Bounds

3.1 New Bounds: Definitions

Let f:{0,1}" — {0,1}"™ be a partial function. Henceforth all functions considered are partial
unless otherwise specified. An assignment A : S — {0,1}"™ is an assignment of values to some
subset S of n variables. We say that A is consistent with x € {0,1}" if z; = A(4) for all i € S. We
write z € A as shorthand for "A is consistent with x’. We write |A| to represent the size of A which
is the cardinality of S (not to be confused with the number of consistent inputs). Furthermore we
say that an index i appears in A, iff i € S where S is the subset of [n] corresponding to A. Let A
denote the set of all assignments. Below we assume z € {0,1}", A € A and z € {0,1}", unless
otherwise specified.

Definition 13 (Partition Bound) Let f : {0,1}" — {0,1}™ be a function and let € > 0. The
e-partition bound of f, denoted prt.(f), is given by the optimal value of the following linear program.

Primal Dual
min: Zsz,A oAl max: Z (1—e€)pa +Z¢I
z A zef—1 x
vee f Z We),a 2 1—¢ VA, Vz: Z /,L;C—FZ(% < 9l
A:z€eA zef~1(z)NA €A
Voi Y Y wea=1, Ve > 0,60 €R
A:xz€eA z

Vz,VA:w,a >0 .

We define the query complexity version of the smooth discrepancy bound as follows. We show in
the next subsection that it is equivalent to approximate degree (up to log factors).

Definition 14 (Smooth-Discrepancy) Let f : {0,1}" — {0,1} be a function. The smooth-
discrepancy of f, denoted sdisce(f), is given by the optimal value of the following linear program.

Primal Dual
min: Z(w,q +va) - 2l 4l maz: Z (1—€pae — ) — ( Z e + )
A zef—1 zgf—1

Veef): 1> Y wa-wazl-g VAT > (=)= > (e — ¢e) <2,
Az A zef~1(1)NA zeAzgf1(1)

VoefH0): 1> Y va-wa>l-g VAT Y (e = Y (e — ¢e) <2,
A:z€A z€A,xgf—1(1) zeANF=1(1)

Vo : 1ZZUA*WA2*L Vo pz > 050, >0 .

A:zeA
VA :wa,va >0 .

3.1.1 Known Bounds

In this section we define some known complexity measures of functions. All of these except the
(error less) certificate complexity are lower bounds for randomized query complexity. See the survey
by Buhrman and de Wolf [BW02] for further information.

Definition 15 (Certificate Complexity) Forz € {0,1}™, a z-certificate for f is an assignment
A such that x € A = f(x) = z. The certificate complexity C.(f) of f on x is the size of the smallest



f(z)-certificate that is consistent with x. The certificate complexity of f is C(f) def max,e p-1 Co(f).
The z-certificate complexity of f is C*(f) def maxXy, f(z)—> Cz (f)-

Definition 16 (Sensitivity and Block Sensitivity) For z € {0,1}" and S C [n], let ° be x
flipped on locations in S. The sensitivity s, (f) of f on x is the number of different i € [n] for which
f(z) # f(zl). The sensitivity of f is s(f) def max,e -1 Sz(f).

The block sensitivity bs;(f) of f on x is the mazimum number b such that there are disjoint

sets By, ..., By for which f(x) # f(xB). The block sensitivity of f is bs(f) def max,er-1 bs; (f). If

f is constant, we define s(f) = bs(f) = 0. It is clear from definitions that s(f) < bs(f).

Definition 17 (Randomized Certificate Complexity [A06]) A e-error randomized verifier for
x € {0,1}™ is a randomized algorithm that, on input y € {0,1}", queries y and (i) accepts with
probability 1 if y = x, and (ii) rejects with probability at least 1 — € if f(y) # f(x). If y # x but

fly) = f(z), the acceptance probability can be arbitrary. Then RCE(f) is the maximum number of

queries used by the best e-error randomized verifier for x, and RC.(f) def max,e -1 RCE(f).

The above definition is stronger than the one in [A06].

Definition 18 (Approximate Degree) Let f : {0,1}" — {0,1} be a Boolean function and let
€ > 0. A polynomial R"™ — R is said to e-approrimate [, if |pf(vx) — f(x)| < e foralxe f~! and

0 < p(x) <1 for all z € {0,1}". The e-approzimate degree deg.(f) of f is the minimum degree
among all multi linear polynomials that e-approxzimate f. If € = 0 we write deg(f).

Definition 19 (Classical Adversary Bound) Let f : {0,1}" — {0,1}™ be a function. Let
p = {ps : x € {0,1}",p, is a probability distribution on [n|}. The classical adversary bound for f
denoted cadv(f), is defined as

cadv(f) ©f min  max !
P a g f@FFY) D g,y 0D (), py (1)}

The classical adversary bound is defined in an equivalent but slightly different way by Laplante
and Magniez [LMO08]; the above formulation appears in their proof and is made explicit in [SS06].
Aaronson [A08] defines a slightly weaker version as observed in [LMO8]. Laplante and Magniez
do not show an general upper bound for the classical adversary bound, but it is easy to see that
cadv(f) = O(C(f)) for all total functions.

Definition 20 (Quantum Adversary Bound) Let f : {0,1}" — Z be a function. Let T' be a
Hermitian matriz whose rows and columns are labeled by elements in {0,1}", such that I'(x,y) =0
whenever f(x) # f(y). Fori € [n], let D; be a Boolean matriz whose rows and columns are labeled
by elements in {0,1}", such that D;(z,y) =1 if x; # y; and D;(x,y) = 0 otherwise. The quantum
adversary bound for f, denoted adv(f) is defined as

adv def max —HFH
I'#0 max; HF ¢} DzH '



3.2 Comparison between bounds

The following theorem captures the key relations between the above bounds. Below R¢(f) denotes
the e-error randomized query complexity of f.

Theorem 3 Let f: {0,1}" — {0,1}"™ be a function and € > 0, then
1. Re(f) = g logprt.(f).
2. logprty(f) > C(f).
3. Let e <1/2, then logprte (f) > e-bs(f) +loge — 2.

log prt.(f) = RC_2¢_(f) +loge.

logprt.(f) > (1 — 4e) - cadv(f) + loge.

SN

Let f :{0,1}" — {0,1} be a Boolean function. Then, log prt.(f) > log sdiscoc(f) > d’éége(f)—l—
loge.

=

Let f:{0,1}™ — {0,1} be a Boolean function. Then, logsdisce(f) < O(a;ge(f) -logn).

8. Let f:{0,1}" — {0,1} be a Boolean function. Then, D(f) = O(logprty(f) - logprty 5(f))
and D(f) = O(log prtl/g(f)?’), where D(f) represents the deterministic query complexity of f.

Consider the Tribes function Tribes : {0,1}" — {0, 1}, which is defined by an AND of /n ORs
of /n variables. We show that the partition bound gives a tight lower bound for this function while
no other general lower bounds methods as mentioned above gives tight lower bound.

Theorem 4 Let € € (0,1/16), then

Re(Tribes) > — log prt.(Tribes) > Q(n),

N =

while C(Tribes), cadv(Tribes), adv(Tribes),aEé(Tribes) = O(y/n).

We give an example of a function f such that the logprty(f) is asymptotically larger than
Ro(f), the Las-Vegas communication complexity. Let 7" represent the complete binary NAND tree
of height h. Let f* be the corresponding function evaluated by T" with its leaves serving as input
variables to f". Tt is well known that Ro(f") = ©(( M)") [SW86]. We show the following:

4
Theorem 5 log prty(f*) = Q(2").

The following lemma shows that even the non-zero error partition bound sometimes can be
larger than the degree.

Lemma 6 There is a function f:{0,1}" — {0,1} such that logprt.(f) > Q(bs(f)) = Q(n), while
deg(f) = O(n%62) for all e < 1/2.

By composing Tribes with the function f above we can also get a function for which log prt, is
polynomially larger than C and deg simultaneously.

Remark: We remark, without proof, that the error in the partition bound (both communication
and query) and its relatives can in general be boosted down in the same way as the error for
randomized protocols, for example we have: For all relations f: log prty—«(f) = O(k -logprty 5(f)).

10



4 Open Questions

Communication Complexity

1. Is Ryy3(f) < poly(logprt; 3(f)) for all functions/relations f7?

2. Is prty j3(Tribes) = Q(n) 7

Query Complexity
L. IsRyss(f) = O(log? prty/3(f)) or better still is Ry /3(f) = O(log prty s5(f)) ?
2. Is adv(f) = O(log prti/3(f)) 7

3. Is deg(f) = O(prto(f)) 7

Acknowledgment: The work done is supported by the internal grants of the Centre for Quantum
Technologies, Singapore.

References

[A06]

[A08]

[AAO5]

[A02]

[BFS86]

[BKKS04]

[BPSWO06]

[BBCT01]

[BW02]

S. Aaronson. Quantum certificate complexity. In STAM J. Comput., 35(4), pages 804—
824, 2006.

S. Aaronson. Lower Bounds for Local Search by Quantum Arguments. In J. Comput.
Syst. Sci., 74(3), pages 313-322, 2008.

S. Aaronson and A. Ambainis. Quantum search of spatial regions. In Theory of Com-
puting, 1(1), pages 47-79, 2005.

A. Ambainis. Quantum Lower Bounds by Quantum Arguments. In J. Comput. Syst.
Sci., 64(4), pages 750-767, 2002.

L. Babai, P. Frankl, and J. Simon. Complexity classes in communication complexity
theory. In Proceedings of 27th IEEE FOCS, pages 337-347, 1986.

Z. Bar-Yossef, T. S. Jayram, R. Kumar, D. Sivakumar. An information statistics
approach to data stream and communication complexity. In J. Comput. Syst. Sci.,
68(4): 702-772, 2004.

P. Beame, T. Pitassi, N. Segerlind, A. Wigderson. A Strong Direct Product Theorem
for Corruption and the Multiparty Communication Complexity of Disjointness. In
Computational Complexity, 15(4): 391-432, 2006.

R. Beals, H. Buhrman, R. Cleve, M. Mosca, and R. de Wolf. Quantum lower bounds
by polynomials. Journal of the ACM, 48(4):778-797, 2001. Earlier version in FOCS’98.
quant-ph/9802049.

H. Buhrman and R. de Wolf. Complexity measures and decision tree complexity: A
survey. Theoretical Computer Science, 288(1):21-43, 2002.

11



[CAOS]

[JRS03]

[JKS03]

[KS92]

[KKN95]

[K03]

[KO7]

[K09)]

[Kre95]

[KN97]

[LMO8]

[LS09]

[L90]

[Nis91]

[NS94]

[NW95]

[Raz92]

A. Chattopadhyay, A. Ada. Multiparty Communication Complexity of Disjointness.
ECCC Technical Report 15(002), 2008.

R. Jain, J. Radhakrishnan, P. Sen. A Lower Bound for the Bounded Round Quantum
Communication Complexity of Set Disjointness. In FOCS 2003, pages 220-229, 2003.

T. S. Jayram, R. Kumar, D. Sivakumar. Two applications of information complexity.
In STOC 2003, pages 673-682, 2003.

B. Kalyanasundaram and G. Schnitger. The probabilistic communication complexity
of set intersection. SIAM Journal on Discrete Mathematics, 5(4):545-557, 1992.

M. Karchmer, E. Kushilevitz, N. Nisan. Fractional Covers and Communication Com-
plexity. In STAM J. Discrete Math., 8(1): 76-92, 1995.

H. Klauck. Rectangle Size Bounds and Threshold Covers in Communication Complex-
ity. In: IEEE Conference on Computational Complexity 2003, pages 118-134, 2003.

H. Klauck. Lower Bounds for Quantum Communication Complexity. SIAM J. Comput.,
37(1): 20-46, 2007.

H. Klauck. A Strong Direct Product Theorem for Disjointness. arXiv:0908.2940, 2009.

I. Kremer. Quantum communication. Master’s thesis, Hebrew University, Computer
Science Department, 1995.

E. Kushilevitz and N. Nisan. Communication Complexity. Cambridge University Press,
1997.

S. Laplante, F. Magniez. Lower Bounds for Randomized and Quantum Query Complex-
ity Using Kolmogorov Arguments. SIAM Journal on Computing, 38(1), pages 4662,
2008.

N. Linial, A. Shraibman. Lower bounds in communication complexity based on factor-
ization norms. Random Struct. Algorithms, 34(3), pages 368-394, 2009.

L. Lovasz. Communication Complexity: A Survey. In Paths, Flows, and VLSI Layout,
edited by B. H. Korte, Springer, 1990.

N. Nisan. CREW PRAMSs and decision trees. SIAM Journal on Computing, 20(6):999—
1007, 1991.

N. Nisan and M. Szegedy. On the degree of Boolean functions as real polynomials.
Computational Complexity, 4(4):301-313, 1994.

N. Nisan and A. Wigderson. On Rank vs. Communication Complexity. Combinatorica
, 15(4):557-565, 1995.

A. Razborov. On the distributional complexity of disjointness. Theoretical Computer
Science, 106(2):385-390, 1992.

12



[Raz03] A. Razborov. Quantum communication complexity of symmetric predicates. Izvestiya of
the Russian Academy of Science, mathematics, 67(1):159-176, 2003. quant-ph/0204025.

[SWS86] M. Saks, A. Wigderson. Probabilistic boolean decision trees and the complexity of
evaluating game trees. FOCS 1986, pages 29-38-94, 1986.

[S08] A. A. Sherstov. The pattern matrix method for lower bounds on quantum communi-
cation. STOC 2008, pages 85-94, 2008.

[SS06] R. Spalek, M. Szegedy. All Quantum Adversary Methods are Equivalent. Theory of
Computing, 2(1):1-18, 2006.

[Yao79] A. C-C. Yao. Some Complexity Questions Related to Distributive Computing . In
Proceedings of STOC 1979, pages 209213, 1979.

[Y83] A.C.C. Yao. Lower Bounds by Probabilistic Arguments. 24th IEEE Symp. Foundations
of Computer Science, pp. 420428, 1983.

A Proofs

Proof of Theorem 1:

1. Let P be a public coin randomized protocol for f with communication ¢ def RP Ub( f) and worst
case error €. For binary string r, let P, represent the deterministic protocol obtained from P
on fixing the public coins to r. Let r occur with probability ¢(r) in P. Every deterministic
protocol amounts to partitioning the inputs in X x ) into rectangles. Let R, be the set of
rectangles corresponding to different communication strings between Alice and Bob in P,.. We
know that |R,| < 2¢, since the communication in P, is at most ¢ bits. Let 2}, € Z be the
output corresponding to rectangle R in P,. Let

def
wp= Y ).

r:ReR, and 2=z

It is easily seen that for all (z,y,2) € X x Y x Z:

Pr[P outputs z on input (z,y)] = Z wl R
R:(z,y)ER

Since the protocol has error at most € on all inputs in f~! we get the constraints:

V(x, y) € f_l : Z w}(x)’R Z 1—¢€.
R:(z,y)ER

Also since the Pr[P outputs some z € Z on input (x,y)] = 1, we get the constraints:

V(m,y):z Z w,p=1.

R:(z,y)ER

13



Of course we also have by construction : Vz,VR : w} p > 0. Therefore {w, p: 2z € Z,R € R}
is feasible for the primal of prt.(f). Hence,

prec(f) <D D wlg = qr)-[R| <2°) q(r) =2°.
z R T

r

2. Fix 2/ € Z. We will show that srec? (f) < prt.(f); this will imply srec(f) < prt_(f). Let
{w, r : 2z € Z,R € R} be an optimal solution of the primal for prt.(f). Let us define

VRER: wg def w, g, hence VR € R,wgr > 0. Now,

V(z,y) € f1(2): Z wypr>1l—€¢ = Z wr > 1 —¢,

R:(z,y)ER R:(z,y)ER
Y(z,y)e 1 —F1(): Z WeayrR>1—€ = Z wp < €,
R:(z,y)ER R:(z,y)ER
Y(x,y) : Z szﬁzl = Z wr <1 .
R:(z,y)€ER z R:(z,y)€R

Hence {wg : R € R} forms a feasible solution to the primal for srec?(f) which implies

srecZ(f) < ZwR < Zzwz,R =prt.(f) .
R z R

3. Fix z € Z. Since the primal program for srec?(f) has extra constraints over the primal
program for rec?(f), it implies that rec?(f) < srec?(f). Hence rec.(f) < srece(f).

4. (Sketch) Let W & {w, r} be an optimal solution to the primal for prtyf. It is easily seen

that

Wz,R >0= ((l',y) €ER= f(xvy) = Z) .
Using standard Chernoff type arguments we can argue that there exists subset W/ C W with
|W'| = O(nprtyf) such that :

V(x,y) e fh: > Crwpn >0
R:($,y)€R,wf(w,y),R€W/

Hence W' is a cover of X x ) using monochromatic rectangles. Now using arguments as in
Theorem 2.11 of [KN97] it follows that D(f) = O((log prt, f + logn)?).
def def . . def . .
5. Define pizy = 1505, = 0iff (z,y) € S and gy = ¢y = 0 otherwise. Since no two elements
of S can appear in the same rectangle, it is easily seen that the constraints for the dual of

prtg(f) are satisfied by {4y, @2y} - Hence prig(f) = 3, ) (Hay — bzy) = [5].
O

Proof of Lemma 1:

14



1. Fix z € Z. Let k & recZ(f). Let {pzy : (z,y) € X x Y} be an optimal solution to the dual
for rec?(f). We can assume without loss of generality that (z,y) ¢ f~! = pz, = 0. Let

def def
k1 = Z(x,y)efﬂ(z) Hay and ko = Z(my)e‘ffl_ffl(z) Ha,y- Then,

k= (1—¢) Z Py — € Z Py

(zy)ef~1(2) (zy)ef~1—f~1(2)
= k‘:(l—é)kl—ekg
= kiy > kand k; > €eky (since k, k2 >0) . (1)

Let us define X\, def ’;’;I’ iff f(z,y) =z and Ay y def ‘;‘;:, otherwise. It is easily seen that A

is a distribution on X x ¥ N f~! and A\(f~%(z)) = 0.5. For all R € R,

Z Hxy — Z M.y < 1

(zy)ef 1 (HNR (@y)e®BNf~H)—F1(2)
= > 2kiday— Y. 2kpdgy <1
(@y)ef 1 (HNR (y)eR—F1(2)
2k
= > 2kiday - > Ay < 1 (from (1))
(@y)ef 1 (HNR (@ y)eR—F1(2)
1
= € Z )\QZ y m ~ Z )\m y
(@y)ef~H(2NR (.y)€R—1~1(2)
1
=€ Z Aoy — % < Z Azy (from (1))
(@y)ef L (HNR (z.y)eR—F~1(2)

Let R € R be such that Z(:p,y)ef_l(z)ﬂR Azy = % Then we have from above

% DV I N W 2)

(zy)ef~Hz)NR (zy)eR—f~1(2)

Therefore by definition réc=(f) > k which implies rAeE:Z% (f) > k.
2

2. Fix z € Z. Let k = rec; (f). Let A be a distribution on X x ¥ N f~! such that reci (f) =
recz () and A(f~1(2)) > 0.5. Let us define pipy & k- Apy iff f(2,y) = 25 pry & k- 222 iff

(z,y) € 71— f71(2) and gy = 0 otherwise. Now let R € R be such that A(f~1(2)NR) < ,

then
Z )‘x,y S = Z ,Uf:r:,y S 1.
(zy)ef~t(z)NR (zy)ef~t(=)NR

Let A(f~%(2) N R) > 4, then

x| =

2¢ Z )\gm; < Z )\:Jc,y
(zy)ef~H(z)NR (zy)eR—F1(2)

= Z Mz y < Z Hzy -
(zy)ef~H(z)NR (zy)e(RNf=1H)—f~1(2)
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Hence the constraints of the dual program for rec?(f) are satisfied by {p, : (z,y) € X x V}.
Now,

rec;(f) = Z (L—€) pay — Z € Hay

)T (2) el T i)
_ )\m,y
= k- > =€) day - > 5
(zy)ef~1(z) (wy)ef~1=f~1(2)
1
> g-(§ _¢) (since A(f1(2)) > 0.5) .

Proof of Lemma 2:

1. Fix z € Z. Let {ptzy, 02y : (x,y) € X x Y} be an optimal solution to the dual for srec?(f).

We can assume w.l.o.g. that (z,y) ¢ f™' = puy = duy = 0; also that (z,y) ¢ f71(z) =
¢zy = 0. Let us observe that we can assume w.l.o.g. that V(z,y) € f~1(2), either pi;, = 0

or ¢y = 0. Otherwise let us say that for some (z,y) € f42): Hay = ¢zy > 0. Then using

def : : :
iy = fizy — Gzy and Doy % 0 instead of (Ha,y, Pzy), and the rest the same, is a strictly

better solution; that is the objective function is strictly larger in the new case. A similar
argument can be made if for some (x,y) € f71(2) : duy > frzy > 0.

Let g : X x Y — Z be such that g(x,y) = f(z,y) iff ¢, =0 and g(x,y) # f(z,y) otherwise

(g remains undefined wherever f is undefined). For all (z,y) let u def pgy iff ¢y =0 and
iy y = Gry otherwise. Then V(z,y), il ,, > 0 and

VReR: Z oy — uy) — Z Py <1
(zy)ef~1(z)NR (zy)e(RNf~1)—f1(z)
=VReR: Sy, - > [y <1 . (3)
(z,y)€g~(2)NR (z,y)e(RNg~—1)—g~1(2)

Hence {u, , : (w,y) € X x Y} is a feasible solution to the dual of rec?(g). Now,

def
k = Z (1 - 6) : :ug(:,y - Z € M;:,y (4)

(z,y)€g™1(2) (zy)eg—t—g71(2)
= Z (1 =€) pay — Z € Puy — Z € Hay
(zy)€f~1(2) (@y)ef~1(z) (xy)ef~1=f~1(2)
Z Z (1 — 6) . Hx,y - Z be,y - Z € - Nx,y
(zy)ef~1(z) (zy)ef~1(2) (y)ef~1—f1(»)
= srec’(f) . (5)
def def def pl, .
Let ky = 2 (ey)eg1(z) Hry and k2 = 2 (e y)eg—1-g1() My Lot Aoy = l;kly iff g(z,y) =
z and Az, def %’ otherwise. It is clear that X\ is a distribution on X x Y N ¢~ ! and

Ag~1(2)) = 0.5. As in the proof of Part 1. of Lemma 1, using (3) and (4), we can argue that
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—~ 2z, Z,A .
rec. (9) = rece”(g) = k. Alsosince 3, e p-1(1=€)pay—dzy) = 0and 3o, e 1) (Hay —

Day) =D (wy)e(f-1)—f-1(z) Hay < 1 we can argue that -, e p—1(,) oy < (1—€)k2 (We assume
srec?(f) is at least a large constant) . Therefore,

Profglwy) £ Syl = 3 wcloc

)=\ 2ky — 2

) @ajel 1)

Hence by definition, srec? 1. (f) > srec>?y_, (f) > réc2(g) > k > srec?(f). The last inequal-
27 2 2179 2

ity follows from (5).

. Fixze€ 2. Let k& srec‘;eé(f). Let A be distribution on X x YN f~! such that ﬁ?cgeé(f) -
srAe/cg’ef‘% (f). Let g : XxY — Z be a function such that srec2. (f) = recg’)‘(g) and A(g~1(2)) >

2¢,5 €
0.5 and A(f # g) < €/2. Note that we can assume w.l.o.g. that g(z,y) # f(x,y) = f(x,y)
2.

For (z,y) € f~1, let us define pg,, e k. Aey iff g(z,y) = f(z,y) = z and pyy e k. ’\ge’y

iff
def s _
f(z,y) # z. Let ¢y, = k- /\2:’ iff z = f(x,y) # g(x,y). For (z,y) & f1, let prpy = ¢uy = 0.
Now let R € R be such that A(¢~!(z) N R) < 1, then

1
Z )\Ly < E = Z M,y <1
(z,y)eg=1(z)NR (z,y)eg=1(z)NR
= Z :um,y - ¢z,y S 1
(zy)ef~L(z)NR
Let A(g~'(z) N R) > 1, then
2e > Aey < > Ary
(z,y)€g—1(2)NR (z,y)€ER—g1(2)
= Z Mw,y S Z Nz,y + ¢z,y
(z,y)€g—1(2)NR (z,y)€R—g1(2)
= Z Hzy — Qb:p,y < Z My -
(zy)ef~1(z)NR (zy)e(RNf~1)—f~1(2)

Hence the constraints of the dual program for srec?(f) are satisfied by {1zy, ¢y @ (z,y) €
X x VY. Now,

srec’(f) > Z (1 =€) pay — bay) — Z € Hay

(zy)ef~1(z) (zy)ef~1=f1(2)

> Z (1_6)'Nac,y_ Z Gy — Z € Hzy
(z,y)€9~1(2) (zy)ef~1(z) (z,y)¢g71(2)

= k- o -9 _ L > Aoy = D Avy

Y 2e o 2
(z,y)eg~1(2) (z,y):f (2,y)#g(z,y) ()¢9~ 1(2)
> Fodly
= 99

The last inequality follows since A(g~1(2)) > 0.5 and \(f # g) < ¢/2.
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Proof of Lemma 3:

1. Let k & sdiscc(f). Let {fqy, ¢z} be an optimal solution to the dual for sdisc.(f). As in the

proof of Lemma 2, we can argue that for all (z,y) € f!, either y,, = 0 or ¢, = 0. For

(z,y) € f71, let us define Aoy & max{flzy, Pzy} and let Az y «f ﬁ It is clear

that A is a distribution on f~ 1. Let us define g : X x Y — {0,1} such that g* = f~1. For
(x,y) € f_la let g(l‘,y) = f(xyy) iff ¢x,y =0 and let g($7y) 7é f(xay) iff ¢x,y 75 0. Now

VR : | Z (Hay — Pzy) — Z (Hoy — Pzy)| <1

(@y)ef 1 ()NR (,y)€RNS~1(0)
= VR:| Y N,— > XN,l<
(zy)€g~ (HNR (z,y)€RNG~1(0)
1 1
= VR ) day— D Agl< <=

(z,y)€g~L()NR (z,y)€RNg=1(0) Ly Moy Pry — K

Hence disc*(g) > k. Also since >y Hay — (1 + €)¢ay =0

1 1 1 e
Pr z,y) # f(z,y)] = oy < —— < = — — .
(=) A[g( y) # f(z,y)] Zx,y fioy T Do (gy) Gy 5+¢-92 73

Hence our result.

e e oA
2. Let 6 & ﬁ Let A be a distribution on f~! such that p & SdISC5(f) = sdiscs (f) and

_ f
Pri, yoalg(@,y) # flz,y)] < 0. For (z,y) € f71, let pigy C ke Npyibuy = 0iff f(z,y) =
g(x,y) and ¢py k- Ny ey = 0 ff f(z,y) # g(x,y). Then,

1
VR : ‘ Z )\x7y - Z )‘x,y| < %
(z,y)eg~ 1 (NR (z,y)€RNg=1(0)
= VR:| > ey —Pey)— D ey —day)| <1
(zy)ef~H(DNR (z,y)€RNf1(0)

Hence {3y, ¢z} form a feasible solution to the dual for sdiscc(f). Now,
sdisce(f) > > ptoy — (1+ )y > k(1 —0) — (1+€)6) = k(1 — (2+€)8) = -
(z.y)
O

Proof of Lemma 4: Let k & disc (f). Let V(x,y) € £~ : iy LA . and pu, , = 0 otherwise.
Then we have:

1

VR: Ty T ay < T

> Ay > Aoy < 1
(zy)eRNf~1(2) (zy)ER—f~1(2)

= VR: Z Py — Z Py <1 .
(zy)eRNf~1(2) (zy)e(RNf=1)~f~1(2)
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Hence the constraints for the dual of the linear program for rec?(f) are satisfied by {p,, : (z,y) €
X x Y}. Now,

rec;(f) > Z (L—€) pay — Z € Hay

(@y)ef~1(2) (@y)ef~1=f~1(2)
=k- I € S B e NS P vy
(@.y)ef~1(2) (2.9)Ef~1(2)

The last inequality follows since disc*(f )=k. O

Proof of Lemma 5: For a sign matrix A, let g4 be the corresponding function given by g4(x,y) def

(1 — A(x,y))/2. For distribution A on X x ), let Py be the matrix defined by Py(z,vy) def Az, y).

For matrix B, define ||B||s & >_i;|B(i,7)]. For matrices C, D, let C'o D denote the entry wise

Hadamard product of C, D. We have the following facts:

Fact 1 ([LS09]) For every sign matriz A,

73 (A) = max

B 27;(B) ((a+1)(4,B) — (a=1)[|Bllz) -

Above, v5(-) is the dual norm of vya(-).

Fact 2 ([LS09]) Let A be a sign matriz and let A be a distribution. Then,

! < discM(g4) < !
_ i _ .
8$15(AoPy) 94 = D5 (Ao Py)
Therefore we have,
1
5 = 1) (A, B) — (a—1)||B

1
~ BiBiv=1273(B) (e +1) {45, B) — (@ — 1))

1
= I%%\Xm (1—(a+ 1))‘(f # g))

< rr;g\xS . disC)‘(g) (1= (a+DA(f #9))

1
< max{8 - disc*(g) : g, A such that A\(f # g) < ol
a

=8-sdisc_1_(f) .

a+1
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Similarly,

(A7) = max s (1= (a + DA # 9)

> H;a)\xdisc)‘(g) (1= (a+DXSf #9)

)

1

1
> max( -disc*(g) : g, A such that A(f # g) < 2at1)

}

I —
=5 SC|ISC2(a1+1) (f) -

O
Proof of Theorem 2:

1. The lower bound is from [Raz92], the upper bound follows from [AAO05].
2. The function is described in [NW95].

3. The lower bound D(LNE) = n? is shown in [KN97] where it was shown that log rank(LNE) =
n?. It is not hard to see that the Las-Vegas complexity of LNE is O(n) which is also shown
in [KN97].

In order to show logprty(LNE) = O(n), we describe a solution to the primal program for
the partition bound for LNE. We will assign a positive weight wg, to every monochromatic
rectangle R such that the sum of weights is small. In this case one can set w, gr % R Where

z is the color of the monochromatic rectangle R (all other w, p are 0).

We present the analysis below assuming that none of x1...2,,y1 ...y, is 0". The analysis
can be extended easily if such is the case.

First we consider the 1-inputs of LNE. Let R,, ., ..., be the rectangle that contains all
inputs with >, 2;(j) - 2i(j) = si mod 2 and },; y;(j) - z:(j) # si mod 2 for all i. Note that
these are 1-chromatic rectangles. We give weight 2"/ 27" to each such rectangle. For every
l-input z1,...,Zn;y1,-..,Y, and all s1,..., s,

Pr in(j)-zi(j):si monAZyi(j)-zi(j);ési mod 2 for all i | =1/4"
21...2n - -
j J

for uniform z1, ..., 2,. Hence

2
2n2n
> wh, —on. 22—,
Treens 218 5ens sn 47’L 2n

when the sum is over all R,, . ., s .., consistent with x1,...,Zn;91,...,9, . The sum of
the weights wg, of all such rectangles is exactly 22".

,,,,, 2Zn,875--+,8n
Now we turn to the 0-inputs. For each of them there is a position k+1, where ;11 = yg1 but
x; #y; for all @ < k. Let R., . ., s1.....s.,u denote the rectangle that contains all inputs with
> 2i(j) zi(j) = s; mod 2and ; yi(j) 2i(j) # s; mod 2foralli <k and xg41 = ypi1 = u.
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O

The rectangle R, . -, si...s.,u Teceives weight 2k/2”k. As before it can be argued that every
0-input lies in 27% /2% such rectangles, so the constraints are satisfied. The overall sum of
rectangle weights is at most

Hence log prty(LNE) < log ZRERLNE wgr = O(n).

Proof of Theorem 3:

1. Let {w, 4} be an optimal solution to the primal of prt.(f). Let P be a randomized algorithm

which achieves R.(f). Then P is a convex combination of deterministic algorithms where
each deterministic algorithm is a decision tree of depth at most R.(f). As in the proof of
Part 1. of Theorem 1, we can argue that > ,w; 4 < oR<(f). Now since for each A above
Al < R(f),

prc(f) = Zzwz,AQ‘A‘ < Re(/) Z Z wa | < 92Re(f)
z A

2e{0,1}m A€ A

Hence our result.

. Let {w; 4} be an optimal solution to the primal of prty(f). It is easily observed that w, 4 > 0

implies that A is a z-certificate. Fix z € f~1, now

pl’to ZZw A 2| |> Z W(z),A " 2‘A|>2C (. (Z wf(x%A)

A:z€A A:z€A
— 9C(f)

Hence log prty(f) > max,e;+{C,(f)} = C(f).

def

. Fix x € f~1. Let b = bs,(f) and let By,..., B, be the blocks for which f(z) # f(xP).

Let g, def et Lo, def —(1 — €)py and for each i € [b], let —¢, B, = p,5, def #;. Let

by = Ly o for y ¢ {z,2B1,... 2B}
(a) Let |A| > eb. It is clear that Vz € {0,1}™ : 3 /¢ p-10,)na oy + Dpren G < 2 < olAl

(b) Let |[A| < eb. Let z # f(z) or & ¢ A. Tt is clear that 3 /cr—1(,yna bar + D pen Gor <
0 < 2Kl

(c) Let |A] < eb and z = f(x) and x € A. Since at most eb blocks among Bj, ..., B, can
have non-empty intersection with the subset S C [n] corresponding to A, at least (1 —¢€)b

among {z51,... 2P} belong to A; therefore (since € < 0.5)
2€b—1
Yo e+ Y gw<e 22— (1—e)b <0< 24
z’ef~1(z)NA z'€eA
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Therefore the constraints for prti( f) are satisfied. Now,
€ _ o E eb eb— 1_ eb—2
pree (f) > ;(1 = DHa s = (1= )2 = (2 )2 =2

Hence our result.

. Let {w, 4} be an optimal solution to the primal of prt.(f). Let a def S qwaa -2 Let

A€ (A Al <log@). Then .3 ygpwsn < e Fixae [ lLa,wd“@4eA'xe
A}. We know that

def
ami wax)A>wax)A—e>1—26.
Ac Al A:xzeA

The verifier V,, for x acts as follows:

(a) Choose A € A/, with probability (z) =3

(b) Query locations in A.

(¢) Accept iff locations queried are consistent with A. Reject otherwise.
Now it is clear that if the input is « then V, accepts with probability 1. Also the number
of queries of V, are at most log ¢ on any input y. Let y be such that f(y) # f(z). Let

AL (A€ ALy e A} Then,

Z W(z),A < Z Z Wz A < Z Z Wy A+ €< 2e .

AeAL AcAlyeA  z#£f(y) AeAyeA  z4£f(y)

Hence y would be accepted with probability at mos

. Let {w, 4} be an optimal solution to the primal of prt.(f). Let a & Sy waa -2 and

o 2 log¢. Let A" = %ef {A:[A] < k}; then 35, > 404 w2n < €. We set p as in the definition

of cadv as follows. For all z € f~1, let A’ def {A e A" : xz € A}. Define distributions p, on
[n] as follows:
P P def Wi (x),A
(a) Choose A € A/, with probability ¢(x, A) = e B
(b) Choose i uniformly from the set {i : i appears in A}.
It is easily seen that p, is a distribution on [n]. We will show that
1 k

max . - — < ) 6
x’y:f(x)#f(y) szﬁﬁyz mln{pm (Z)apy (Z)} 1—4e ( )

which proves our main claim.

Take any x, y such that f(z) # f(y). Let’s define Vi € [n], g, (i) = o Do Ac AL i appears in A 4(T5 A);
similarly define g, (4). It is clear that Vi € [n] : py(i) > qu(z‘) and py (i) > qy—él). We will show:

> min{g,(i), g, ()} > 1 4e,

(S
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which implies (6).
Now assume for a contradiction that 3, ., min{g.(i),qy(i)} <1 — 4e. Consider a hybrid
input r € {0,1}" constructed in the following way: if ¢, (i) > ¢,(4) then r; « x;, otherwise

def
ri = Y;. Now,

Z sz,A 2 Z ;wz,A

AreA z Aec A,
> Y wima— Y @@ Y wima— Y ay(d)
AeA; i:q2 (1) <qy (4) Ac A, i:qy (1) <qx ()
> Y wpmat Y, wiga— » min{g(i),q(0)}
Ac Al AG.A’y 1 2Y;
> Y wpwmat Y wiga— Y, min{a(i)gi)} -2
AizcA AyeA T FY;

> 2(1—€e)—(1—4¢)—2¢ > 1.
This contradicts the assumption that {w, 4} is a feasible solution to the primal of prt.(f).

. log prty.(f) > logsdiscac(f) follows using similar arguments as before and hence proof skipped.

We turn to the second part. Let {wa,v4} be an optimal solution to the primal of sdiscac(f).

Let o & S a(wa +va) - 2140 Let A/ e {A:[A] <log ¢} then 3 4y 4 wa +va < e For

A e A let ma(x) be the multilinear polynomial which is 1 iff z € A (over the Boolean inputs

x). Note that the degree of my4 is at most |A|. Let p(z) oo Y oaea(wa —wva)-ma(x). Then

the degree of p(x) is at most log ¢. Now since the constraints of the primal of sdiscoc(f) are
satisfied by {wa,v4}, we get,

VJIEf*l(l)Zl—f—GZp(x): Z wa —v4 > 1 — 3e,

AeA:xzcA
and
Vl"ef_l(o) =1 —e<p(r) = Z wy —v4 < —14 3¢,
AcAl:zcA
and

Ve:—1—e<p(z)<l4e.

Therefore (p(z)/(1 + €) +1)/2, 2e-approximates f and hence our result.

. Let p(z) be a polynomial that e-approximates f and has degree k = aéée(f). Then ¢(z) =
2p(x) — 1 has the same degree. Write ¢(z) in the standard form g(z) = g, ¢s - ms, where
mg is the monomial [, ; and the cg are the coefficients. Now we define the solutions for
the program for sdisco.. We identify S C [n] with the partial assignment A(S) that sets the
variables in S to 1, and will set w4 = v4 = 0 for all other partial assignments A associated
with S. Otherwise if cg < 0, we set wy(g) = 0 and vy(5) = —cg, if cg > 0, we set vgg) =0
and w4(g) = cs. It is now easy to see that this yields a feasible solution to the primal program
of sdisce(f).

23



It remains to show that the cost of the solution is no more than exponential in O(klogn).
Note that ¢(z) contains at most ), (7;) monomials of degree at most k, so it suffices to
show that every |cg| is bounded. We will show that any |cg| in ¢(z) is indeed bounded by
(2k+ 1)

Consider S C [n]. Denote ts = » g .qcglcs| and t; = maxg, g—;ts. Then tg < 1, because
cg is the constant coefficient of ¢ and equals ¢(0™). Similarly we can see that t; < 2j-t;_1 +1:
For every S of size j we can write

ts < Z tsr + |Cs’,
S/CS,|S|=j—1

and

esl < Y te+1,

5'CS,|S"|=j—1
because q(es) =D gicgcs € [—1,1] for the string eg containing 1’s in S.
By induction this proves that |cg| < (2j + 1)!, and hence the cost of our solution is bounded
by Zj<k ( ) (25 +1)!- 27 < exp(O(klogn)).

8. For a Boolean function f, it is known that D(f) = O(C(f)bs(f)) and D(f) = O(bs(f)?3) (refer
to [BWO02]). The desired result is implied now using earlier parts of this theorem.

O

Proof of Theorem 4: We denote the Tribes function by f. We exhibit a solution to the dual of
the linear program for prt.(f). In fact we use a one-sided relaxation of the LP for prt.(f), similar
to the smooth rectangle bound. It is easily observed that the optimum of the LP below, denoted

opt.(f) is at most prt.(f).

Primal Dual
ZwA,QIA\ max: Z (1—e€)pus — Z Eﬂx+z¢x
z:f(z)=1 z: f(x)=0 T

Vz with f(z Z wa > 1—c¢, VA : Z Ho — Z /LerZd)ZSQIA‘,

AxeA zef—1(1)nA zef~1(0)NA €A
Vz with f(z DY wa<l, Yz e > 0,0, <0 .

A:zcA
Vz with f(z Z wa <€,

A:xzcA
VA:wa >0 .

We will work with the dual program and will assign nonzero values for (u,, ¢,) on three types
of inputs. Denote the set {(4,7) : 7 =1,...,y/n} by B;. This is a block of inputs that feeds into a
single OR. The first set of inputs has exactly one z; ; = 1 per block B;. Clearly these are inputs

with f(z) = 1, and there are exactly \/ﬁ\/ﬁ such inputs. Denote the set of these inputs by 77.
Then we consider a set of inputs with f(z,y) = 0. Denote by T the set of inputs in which all but

one block B; have exactly one 1, and one block B; has no x; ; = 1. Again, there are \/ﬁ‘/ﬁ such
inputs. Finally, T5 contains the set of inputs, in which all B; except one have exactly one 1, and

24



one block has two 1’s. There are (y/n)V™(n — \/n)/2 such inputs. Let 0 def 1 — 4e and,

26n
Forallz €Ty : Ha = — 7= ¢, =0,
vn
25n
Forall z € Ty : pzzﬁ; ¢, =0,
de - \/n
—4.96n

Forallz €T, : ¢, =

i e =0,
3(n — n)yn¥"
Forallx ¢ ToUT1 UTy @ pg = ¢y =0 .
Claim 1 {ps, ¢, } as defined is feasible for the dual for opt.(f).

Proof Clearly Va : i, > 0,¢, < 0. Let A be an assignment with |A| > dn; in this case,

A

zef~H(1)NA zef~1(0)N €A zef~1(1)

From now on |A| < dn. Let A fix at least two input positions to 1 in a single block B;. In this case

dooHe— D ety ¢ <0<2M

zef~1(1)NA zef~1(0)NA z€A

clearly,

Hence from now on consider A which fixes at most a single input position to 1 in each block B;.
For block i let «; denote the number of positions fixed to 0 in B;; let 8; € {0, 1} denote the number

of positions fixed to 1 and let v; denote the number of free positions, i.e., \/n — a; — ;.
First consider the case when k & > Bi < (1—4€)y/n and w.l.o.g. assume that the last k& blocks

contain a 1. The number of inputs in 77 consistent with A is exactly HZ:‘/ﬁfk vi- The number of
inputs in Tj consistent with A is

ik
> 11 V2 NG

=1 ]:17»\/57]63]751 =1 =1

Hence,
< 20n 1 4e <0
Z Pz — Z Hm"‘ngm_\/»\/ﬁ( _IG)H'YZ'_ .
zef~1(1)NA z€f~1(0)nNA z€EA n i=1

Now assume that k =), 3; > (1 — 4€)y/n. Again w.l.o.g. the last k£ blocks have 3; = 1. There
are H;f;*k ~; inputs in 71 N A. The number of inputs in 75 N A is at least

Vn—k Vvn Vvn—k
IRAE Yoo = I | n(t—6—4e),
i=1 i=y/n—k+1 i=1
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because we can choose a single 1 for the first /n — k blocks, and a second 1 in any of the last k
blocks. Hence

4. 2671
Y e < - yi | -n(1 =6 —4e) - —
zEANT, i=1 3(n —/n)y/n
= — Z pr | -n(l—38 —4e) 3 4
e ANTy (n o \/ﬁ)
4
< - Z Hax (1_5_46)’32_ Z Pz
e ANTy e ANTy

Hence the constraints for dual of opt,(f) are satisfied by all A. O

Finally we have,

prec(f) Zopt(f)= D (I—ua— Y ety o

z:f(x)=1 z:f(x)=0
= 0n (1 6—46—§> = 20(m)
€

Hence our result.
The upper bound on C(Tribes) is obvious, and implies the bound on cadv. The remaining
bounds follow from the existence of efficient quantum query algorithms for the problem. [J

Proof of Theorem 5: Let us define the weights for the dual of prty(f") in a recursive fashion.

We first define the weights for the inputs for f! as follows pqg %ef —1, mo1 = p1o0 o 1.6, u11 def

1.2. Let 21,22 be two inputs to f*~!, then define the weights for f* as follows (z1z2 represents
concatenation):

def . _ _ . def
Hxiao = My Moy iff fh 1(1:1) =1lor fh 1('1;2) = 17 otherwise Haxizo = Mz My -

We have the following lemma:

Lemma 7 Let Afh represent the set of all monochromatic assignments of f*. For all h, we have
the following invariants.

LNYAEApn i | Y cnbal < 24l

2 VA Yaeu pra)=1 B — Laea g ()0 Hal < 24

Proof We prove the invariants using induction. For the base case (h = 1) they can be checked by
direct calculation. Assume that they are true for h — 1 and we need to show for h.

1. Let A = A;As be a 0-monochromatic assignment of f", then A;, A> need to be each a
1-monochromatic assignment of f*~!. Hence by induction,

|Z/‘€E| = |( Z /’Ll“l) ( Z ﬂx2)| :| Z N11| | Z Mx2| < 2‘A1|2‘A2| :2|A‘ .

T€EA r1€A To€ A2 r1€A; ro€ A2
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2. Let A = A;Ay be a 1-monochromatic assignment of f*, then either A; or Ay needs to be
a 0-monochromatic assignment of f*~!. Let w.l.o.g A; be a 0-monochromatic assignment.
Then we have by induction,

|Zﬂx|:| Z oy |

z€A T1€A1,19€ A2
=[( Z Py ) - ( Z Hay — Z Py
T1€A] xo€Ag, fh—1(z0)=1 xo€Ag, fh=1(x2)=0
= (D )l I( > [y — > Has )|
r1E€AL zo€Ag, fi—1(z9)=1 xo€Ag, fh—1(z2)=0

< olAal . gld2l — olAl

3. Let A = Ay, Ay be some assignment of f». Then by induction we have,

Y e— Y

z€A, fh(x)=1 z€A,fh(x)=0
= ’ — Z Mzy fzy — Z Heay Pazo
z1€AL, fP=1(z1)=1,22€As, fP—1 (z2)=1 z1€A1, fP=1(21)=0,22€ A2, fh—1(z2)=0
+ Z Py fhay T Z Hay Has |
T1€AL, fh1(z1)=1,20€Aa, fP 1 (22)=0 x1€AL P (21)=0,22€ Az, fh1 (z2)=1
= [( Z Hay — Z fa)( Z Hay — Z s )|
1 €AL 1 (21)=1 z1€AL f=1(z1)=0 z2€A2, fP—1(z2)=1 €A, =1 (z2)=0

< glAilgldz| — glAl

(]
Therefore {1, :  input of f*} satisfy the constraints for the dual of prty(f”). Now define

h, def . h, def
ap = Z Mz 5 &y = Z Mz -

z,fh(z)=1 ,fM (2)=0
Then we see
h_ (oh=12 . h _ o h—1_ h—1 h—142
ag = (e7)" ;o =209 g —(ap )"
This implies aff — af = (o™ — af™1)2. Now since o] = 2.2,a} = 1.2 we have that o} — o} =

for all h > 2. Hence for h > 2,

(af™h?

A =al —1=("1?-1> 5

oh—1

h s (@) : 1 _ hy — O(9h
Therefore ay > 15— Since oy = 2.2, we conclude log prt,(f") = Q(2"). O

Proof of Lemma 6:(Sketch) Examples of such functions are given in [NS94, NW95] with the best
construction attributed to Kushilevitz in the latter paper. [
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B Las-Vegas Partition Bound

Communication Complexity

In this section we consider the Las-Vegas communication complexity. Las-Vegas protocols use
randomness and for each input they are allowed to output ”don’t know” with probability 1/2,
however when they do give an answer then it is required to be correct. An equivalent way to view
is that these protocols are never allowed to err, but for each input we only count the expected
communication (over the coins), instead of the worst case communication (as in deterministic
protocols). Below we present a lower bound for Las-Vegas protocols via a linear program, which
we call the Las-Vegas partition bound.

Definition 21 (Las-Vegas Partition Bound) Let f : X x Y — Z be a partial function. The
Las-Vegas partition bound of f, denoted prtyy (f), is given by the optimal value of the following
linear program. Let Ry denote the set of monochromatic rectangles for f.

Primal Dual
. 1
man. Z wr + Z VR max. Z 5 * M,y + Z ¢ﬂc,y
RERy ReR (z,y)ef—1t (@,y)
. 1
V(z,y) € f Z WR > > VR e Ry : Z Ha,y + Z Gy < 1,
RER:(z,y)ER (zy)Ef~INR (z,9)ER
Viw,y): Y wrp+ Y. wr=1, VRER: 3 duy<l,
RERy:(z,y)ER R:(z,y)€R (z,y)ER
VR :wg,vr >0 . V(@,y) i ploy > 0,029y €ER .

The constant above is arbitrary and can be any constant in (0,1) and will give asymptotically
similar value for the bound. The following lemma follows easily using arguments as before. Below
Ro(f) represents the Las-Vegas communication complexity of f; please refer to [KN97] for explicit
definition of Ry(f).

Lemma 8 Let f: X x Y — Z be a partial function. Then, Ro(f) > logprtyy, .

Query Complexity
The Las-Vegas partition bound for query complexity is defined as follows.

Definition 22 (Las-Vegas Partition Bound) Let f : X — Z be a partial function. The Las-
Vegas partition bound of f, denoted prtyi, (f), is given by the optimal value of the following linear
program. Let Ay denote the set of monochromatic assignments for f.

Primal Dual
min: Z wa -2+ Z va -2 max: Z ! o+ Z%
A€Ay AcA zef—1 2 T
_ 1

Veef s D waxg, VAeAr: Y gt Y de <2
A€Ap:z€A zef-1nA €A

Vr : Z wA+ZUA:1, VAGA:ZQSISQ‘AI,

A€Af:zeA A:zcA z€EA
VA:wa,va >0 . Ve :pr > 0,0, €R .
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As before the constant above is arbitrary and can be any constant in (0, 1) and will give asymptot-
ically similar value for the bound. The following lemma follows easily using arguments as before.
Below Ro(f) represents the Las-Vegas query complexity of f.

Lemma 9 Let f : X — Z be a partial function. Then Ro(f) > logprtry .

Remark: For communication complexity let prt}, (f) be defined similarly to prtyy (f), except that
the constraints

V(z,y) € f7: Z wr > 1/2

ReRys:(z,y)ER

are replaced by
Y(z,y) e f1: Z wr=1/2 .

ReRys:(z,y)ER

Then we can observe prty(f) > prt} (f) > 3prto(f). Note that log prt} (f) forms a lower bound
for Ro(f) if there is a Las-Vegas protocol for f that has the probability of output 'don’t know’ for
all inputs. Similarly for query complexity.

C Partition bound for relations

Communication Complexity

Here we define the partition bound for relations.

Definition 23 (Partition Bound for relation) Let f C X' xY X Z be a relation. The e-partition
bound of f, denoted prt.(f), is given by the optimal value of the following linear program.

Primal Dual
min: Z Z Wz, R maz: Z (1 - E)Hz,y + @z,y
z R (z,y)
Y(z,y) : Z Z wyr > 1—¢, Vz,VR : Z ey + Z Py < 1,
R:(z,y)€ER  z2:(z,y,2)Ef (z,y):(z,y)ER;(x,y,2)Ef (z,y)ER
Y(z,y) : Z szﬂ =1, YV(x,y) : flzyy > 0,02,y ER .

R:(z,y)€ER z
Vz,VR :w; r >0 .

As in Theorem 1, we can show that partition bound is a lower bound on the communication
complexity. Its proof is skipped since it is very similar.

Lemma 10 Let f C X x Y x Z be a relation. Then, RP“®(f) > log prt,(f) .

Query Complexity
Here we define the partition bound for query complexity for relations.

Definition 24 (Partition Bound for relations) Let f C X x Z be a relation, let ¢ > 0. The
e-partition bound of f, denoted prt.(f), is given by the optimal value of the following linear program.
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Primal Dual

min: Z Z w4 - 214 max: Z(l — €) s + O
z A

x

Vz : Z Z wz,AZl—G, VZ,\V/A: Z M1+Z¢1§2‘A‘7

Aiz€A  zi(z,z)Ef z:x€A;j(z,z)Ef z€EA
Vo : Z sz’A:L Vo :pe > 0,0 €R .
A:z€A z

Vz,VA:w, 4 >0 .

As in Theorem 3, we can show that partition bound is a lower bound on the randomized query
complexity of f. Its proof is skipped since it is very similar.

Theorem 6 Let f C X x Z be a relation, let € > 0. Then, Re(f) > 3logprt.(f) -

30



