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Abstract

We describe new lower bounds for randomized communication complexity and query com-
plexity which we call the partition bounds. They are expressed as the optimum value of linear
programs. For communication complexity we show that the partition bound is stronger than
both the rectangle/corruption bound and the γ2/generalized discrepancy bounds. In the model of
query complexity we show that the partition bound is stronger than the approximate polynomial
degree and classical adversary bounds. We also exhibit an example where the partition bound
is quadratically larger than the approximate polynomial degree and adversary bounds.
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1 Introduction

The computational models investigated in communication complexity and query complexity, i.e.,
Yao’s communication model [Yao79] and the decision tree model, are simple enough to allow us to
prove interesting lower bounds, yet they are rich enough to have numerous applications to other
models as well as exhibit nontrivial structure. Research in both these models is concentrated on
lower bounds and a recurring theme is methods to prove such bounds. In this paper we present a
new method for proving lower bounds in both of these models.

1.1 Communication Complexity

In the model of communication complexity there are several general methods to prove lower bounds
in the settings of randomized communication and quantum communication. Linial and Shraibman
[LS09] identified a quantity called γ2, which not only yields lower bounds for quantum protocols,
but also subsumes a good number of previously known bounds. There is another quantity called the
generalized discrepancy, the name being coined in [CA08], which also coincides with γ2 as is implicit
in [LS09]. The generalized discrepancy can be derived from the standard discrepancy bound in a
way originally suggested by Klauck [K07]. The standard discrepancy bound was first shown to be
applicable in the quantum case by Kremer and Yao [Kre95]. Razborov [Raz03] (implicitly) and
Sherstov [S08] (explicitly), showed that the γ2 method yields a tight Ω(

√
n) bound for the quantum

communication complexity of the Disjointness problem, arguably the most important single function
considered in the area (for a matching upper bound see [AA05]). This leaves our knowledge of
lower bound methods in the world of quantum communication complexity in a neat form, where
there is one ”master method” that seems to do better than everything else; the only potential
competition coming from information theoretic techniques, for example as in Jain, Radhakrishnan
and Sen [JRS03], which are not applicable to all problems, and not known to beat γ2 either.

In the world of randomized communication things appear to be much less organized. Besides
simply applying γ2, the main competitors are the rectangle (aka corruption) bound (compare [Y83,
BFS86, Raz92, K03, BPSW06]), as well as again information theoretic techniques [BKKS04, JKS03].
Both of these approaches are able to beat γ2, by allowing Ω(n) bounds for the Disjointness problem
[Raz03, BKKS04, KS92]. There is an information theoretic proof of a tight Ω(n) lower bound for
the Tribes function; an AND of

√
n ORs of

√
n ANDs of distributed pairs of variables [JKS03]. With

the rectangle bound one cannot prove a lower bound larger than
√
n for this problem, and neither

with γ2. So the two general techniques, rectangle bound and γ2, are known to be quadratically
smaller than the randomized communication complexity for some problems, and the information
theoretic approach seems to be only applicable to problems of a ”direct sum” type.

In this paper we propose a new lower bound method for randomized communication complexity
which we call the partition bound 1. We derive this bound using a linear program, which captures a
relaxation of the fact that a randomized protocol is a convex combination of deterministic protocols
and hence a convex combination of partitions of the communication matrix into rectangles. Linear
programs have been previously used to describe lower bounds in communication complexity. Lovasz
[L90] gives a program which, as we show, turns out to capture the rectangle bound. Our program
for the partition bound however uses stricter constraints to overcome the one-sidedness of Lovasz’s

1In this paper we are only concerned with the two-party, two-way model and the partition bound for other models
can be defined analogously. For example for the Number on the Forehead Model it can be defined by replacing
rectangles by cylinder intersections. For the two-party, one-way model it can be defined analogously.
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program. Karchmer, Kushilevitz and Nisan [KKN95] give a linear program for fractional covers,
as well as a linear program which can be seen to be equivalent to our zero-error partition bound
for relations, where it was introduced as a lower bound for deterministic complexity.

We also describe a weaker bound to the partition bound which we call the smooth rectangle
bound. It is inherently a one-sided bound and is derived by relaxing constraints in the linear program
for the partition bound. This bound has recently been used to prove a strong direct product theorem
for Disjointness in [K09]. Another way to derive the smooth rectangle bound is as follows. Suppose
we want to prove a lower bound for a function f . Then we could apply the rectangle bound, but
sometimes this might not yield a large enough lower bound. Instead we apply the rectangle bound
to a function g that is sufficiently close to f , under a suitable probability distribution, so that lower
bounds for g imply lower bounds for f . Maximizing this over all g, close to f , gives us the smooth
rectangle bound. This is the same approach that turns the discrepancy bound into the generalized
discrepancy. We will use the term smooth discrepancy in the following, because it better captures
the underlying approach.

After defining the partition bound and the smooth rectangle bound we proceed to show that the
smooth rectangle bound subsumes both the standard rectangle bound and γ2/smooth discrepancy.
We also show that the LP formulation of the smooth rectangle bound coincides with its natural
definition as described above. This leaves us with one unified general lower bound method for
randomized communication complexity, the partition bound.

We also define the Las-Vegas partition bound via a linear program and exhibit it to be a
lower bound on the Las-Vegas communication complexity (refer [KN97]). We compare the zero-
error partition bound/Las-Vegas partition bound to other standard lower bound methods on
deterministic/Las-Vegas communication complexity.

1.2 Query Complexity

We then turn to randomized query complexity. Again there are several prominent lower bound
methods in this area. Some of the main methods are the classical version of Ambainis’ adversary
method, the quantum version is from [A02] and classical versions are by Laplante/Magniez [LM08]
and Aaronson [A08]; the approximate polynomial degree [NS94, BBC+01]; the randomized certifi-
cate bound defined by Aaronson [A06], this being the query complexity analogue of the rectangle
bound in communication complexity, as well as older methods like block-sensitivity [Nis91].

We again propose a new lower bound, the partition bound, defined via a linear program, this
time based on the fact that a decision tree partitions the Boolean cube into subcubes. We then
proceed to show that our lower bound method subsumes all the other bounds mentioned above. In
particular the partition bound is always larger than the classical adversary bound, the approximate
degree, and block-sensitivity.

To further illustrate the power of our approach we describe a Boolean function, AND of ORs,
which we continue to call Tribes, for which the partition bound yields a tight linear lower bound,
while both the adversary bound and the approximate degree are at least quadratically smaller.

Organization

In Section 2 we define the communication complexity partition bound, smooth rectangle bound
and mention other previously known lower bound methods. We then present some of the key
comparisions between these bounds as mentioned. In Section 3 we perform the same excercise for

2



query complexity. We defer all proofs to Section A. In Section B we present the definitions of
partition bound for Las-Vegas communication and query complexity and show that they serve as
corresponding lower bounds respectively. In Section C we define the partition bound for relations
for communication complexity and query complexity and show that they serve as correponding
lower bounds respectively.

2 Communication Complexity Bounds

Let f : X × Y → Z be a partial function. All the functions considered in this paper are partial
functions unless otherwise specified, hence we will drop the term partial henceforth. It is easily
verified that strong duality holds for the programs that appear below and hence optima for the
primal and dual are same. Let R be the set of all rectangles in X×Y. We refer the reader to [KN97]
for introduction to basic terms in communication complexity. Below we assume (x, y) ∈ X ×Y, R ∈
R, z ∈ Z, unless otherwise specified. Let f−1 ⊆ X ×Y denote the subset where f(·) is defined. For
sets A,B we denote A−B def= {a : a ∈ A, a /∈ B}. We assume ε ≥ 0 unless otherwise specified.

2.1 New Bounds: Definitions

Definition 1 (Partition Bound) The ε-partition bound of f , denoted prtε(f), is given by the
optimal value of the following linear program.

Primal

min:
∑
z

∑
R

wz,R

∀(x, y) ∈ f−1 :
∑

R:(x,y)∈R

wf(x,y),R ≥ 1− ε,

∀(x, y) :
∑

R:(x,y)∈R

∑
z

wz,R = 1,

∀z, ∀R : wz,R ≥ 0 .

Dual

max:
∑

(x,y)∈f−1

(1− ε)µx,y +
∑
(x,y)

φx,y

∀z, ∀R :
∑

(x,y)∈f−1(z)∩R

µx,y +
∑

(x,y)∈R

φx,y ≤ 1,

∀(x, y) : µx,y ≥ 0, φx,y ∈ R .

Below we present the definition of smooth-rectangle bound as a one-sided relaxation of the
partition bound. As we show in the next subsection, it is upper bounded by the partition bound.

Definition 2 (Smooth-Rectangle bound) The ε- smooth rectangle bound of f denoted srecε(f)
is defined to be max{sreczε (f) : z ∈ Z}, where sreczε (f) is given by the optimal value of the following
linear program.

Primal

min:
∑
R∈R

wR

∀(x, y) ∈ f−1(z) :
∑

R:(x,y)∈R

wR ≥ 1− ε,

∀(x, y) ∈ f−1(z) :
∑

R:(x,y)∈R

wR ≤ 1,

∀(x, y) ∈ f−1 − f−1(z) :
∑

R:(x,y)∈R

wR ≤ ε,

∀R : wR ≥ 0 .

Dual

max:
∑

(x,y)∈f−1(z)

((1− ε)µx,y − φx,y)−
∑

(x,y)∈f−1−f−1(z)

ε · µx,y

∀R :
∑

(x,y)∈f−1(z)∩R

(µx,y − φx,y)−
∑

(x,y)∈(R∩f−1)−f−1(z)

µx,y ≤ 1,

∀(x, y) : µx,y ≥ 0;φx,y ≥ 0 .
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Below we present an alternate and ”natural” definition of smooth-rectangle bound, which jus-
tifies its name. In the next subsection we show that the two definitions are equivalent.

Definition 3 (Smooth-Rectangle bound : Natural definition) In the natural definition, (ε, δ)-
smooth-rectangle bound of f , denoted s̃recε,δ(f), is defined as follows (refer to the definition of
r̃ecz,λε (g) in the next subsection):

s̃recε,δ(f) def= max{s̃reczε,δ(f) : z ∈ Z}.

s̃reczε,δ(f) def= max{s̃recz,λε,δ (f) : λ a (probability) distribution on X × Y ∩ f−1}.

s̃recz,λε,δ (f) def= max{r̃ecz,λε (g) : g : X × Y → Z; Pr
(x,y)←λ

[f(x, y) 6= g(x, y)] < δ;λ(g−1(z)) ≥ 0.5}.

Below we define smooth-discrepancy via a linear program. Later we present the natural definition
of smooth-discrepancy and in the next subsection we show that the two definitions are equivalent.
As we also show in the next subsection smooth-discrepancy is upper bounded by smooth-rectangle
bound which in turn is upper bounded by the partition bound.

Definition 4 (Smooth-Discrepancy) Let f : X × Y → {0, 1} be a Boolean function. The
smooth-discrepancy of f , denoted sdiscε(f), is given by the optimal value of the following linear
program.

Primal

min:
∑
R∈R

wR + vR

∀(x, y) ∈ f−1(1) : 1 + ε ≥
∑

R:(x,y)∈R

wR − vR ≥ 1,

∀(x, y) ∈ f−1(0) : 1 + ε ≥
∑

R:(x,y)∈R

vR − wR ≥ 1,

∀R : wR, vR ≥ 0 .

Dual

max:
∑

(x,y)∈f−1

µx,y − (1 + ε)φx,y

∀R :
∑

(x,y)∈f−1(1)∩R

(µx,y − φx,y)−
∑

(x,y)∈R∩f−1(0)

(µx,y − φx,y) ≤ 1,

∀R :
∑

(x,y)∈f−1(0)∩R

(µx,y − φx,y)−
∑

(x,y)∈R∩f−1(1)

(µx,y − φx,y) ≤ 1,

∀(x, y) : µx,y ≥ 0;φx,y ≥ 0 .

2.1.1 Known Bounds: Definitions

Below we present the definition of the rectangle bound via a linear program. This program was
first described by Lovasz [L90] although he did not make the connection to the rectangle bound.

Definition 5 (Rectangle-Bound) The ε-rectangle bound of f , denoted recε(f), is defined to be
max{reczε (f) : z ∈ Z}, where reczε (f) is given by the optimal value of the following linear program.

Primal

min:
∑
R

wR

∀(x, y) ∈ f−1(z) :
∑

R:(x,y)∈R

wR ≥ 1− ε,

∀(x, y) ∈ f−1 − f−1(z) :
∑

R:(x,y)∈R

wR ≤ ε,

∀R : wR ≥ 0 .

Dual

max:
∑

(x,y)∈f−1(z)

(1− ε) · µx,y −
∑

(x,y)∈f−1−f−1(z)

ε · µx,y

∀R :
∑

(x,y)∈f−1(z)∩R

µx,y −
∑

(x,y)∈(R∩f−1)−f−1(z)

µx,y ≤ 1,

∀(x, y) : µx,y ≥ 0 .

Below we present the alternate, natural and conventional definition of rectangle bound as used
in several previous works [Y83, BFS86, Raz92, K03, BPSW06]. In the next subsection we show
that the two definitions are equivalent.
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Definition 6 (Rectangle-Bound: Conventional definition) In the conventional definition, ε-
rectangle bound of f , denoted r̃ecε(f) is defined as follows:

r̃ecε(f) def= max{r̃eczε (f) : z ∈ Z}

r̃eczε (f) def= max{r̃ecz,λε (f) : λ a distribution on X × Y ∩ f−1 with λ(f−1(z)) ≥ 0.5}.

r̃ecz,λε (f) def= min{ 1
λ(f−1(z) ∩R)

: R ∈ R with ε · λ(f−1(z) ∩R) > λ(R− f−1(z))} .

Below we present the definition of discrepancy via a linear program followed by the conventional
definition of discrepancy. It is easily seen that the two are exactly the same.

Definition 7 (Discrepancy) Let f : X × Y → {0, 1} be a Boolean function. The discrepancy of
f , denoted disc(f), is given by the optimal value of the following linear program.

Primal

min:
∑
R

wR + vR

∀(x, y) ∈ f−1(1) :
∑

R:(x,y)∈R

wR − vR ≥ 1,

∀(x, y) ∈ f−1(0) :
∑

R:(x,y)∈R

vR − wR ≥ 1,

∀R : wR, vR ≥ 0 .

Dual

max:
∑

(x,y)∈f−1

µx,y

∀R :
∑

(x,y)∈f−1(1)∩R

µx,y −
∑

(x,y)∈R∩f−1(0)

µx,y ≤ 1,

∀R :
∑

(x,y)∈f−1(0)∩R

µx,y −
∑

(x,y)∈R∩f−1(1)

µx,y ≤ 1,

∀(x, y) : µx,y ≥ 0 .

Definition 8 (Discrepancy: Conventional definition) Let f : X × Y → {0, 1} be a Boolean
function. The discrepancy of f , denoted disc(f) is defined as follows:

disc(f) def= max{discλ(f) : λ a distribution on X × Y ∩ f−1}.

discλ(f) def= min{ 1
|
∑

(x,y)∈R(−1)f(x,y) · λx,y|
: R ∈ R} .

Below we present the natural definition of smooth-discrepancy which has found shape in previous
works [K07, S08]. It is defined in analogous fashion from discrepancy as smooth-rectangle bound
is defined from rectangle bound.

Definition 9 (Smooth-Discrepancy: Natural Definition) Let f : X×Y → {0, 1} be a Boolean
function. The δ- smooth-discrepancy of f , denoted s̃discδ(f), is defined as follows:

s̃discδ(f) def= max{s̃disc
λ

δ (f) : λ a distribution on X × Y ∩ f−1}.

s̃disc
λ

δ (f) def= max{discλ(g) : g : X × Y → Z; Pr
(x,y)←λ

[f(x, y) 6= g(x, y)] < δ}.

Below we define the γ2 bound of Linial and Shraibman [LS09] where it is also implicitly shown that
it is equivalent to smooth-discrepancy. We present a proof of this equivalence later for completeness.

Definition 10 (γ2 bound [LS09]) Let A be a sign matrix and α ≥ 1. Then,

γ2(A) def= min
X,Y :XY=A

r(X)c(Y ) ; γα2 (A) def= min
B:∀(i,j) 1≤A(i,j)B(i,j)≤α

γ2(B).

Above r(X) represents the largest `2 norm of the rows of X and c(X) represents the largest `2 norm
of the columns of Y .
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Below we present two well-known lower bound methods for deterministic communication com-
plexity. We present a comparison of these with the 0-error partition bound in the next subsection.

Definition 11 (log-rank bound) Let f : X × Y → Z be a total function. Let Mf denote the
communication matrix associated with f ; D(f) denote the deterministic communication complexity
of f and rank(·) represents the rank over the reals. Then it is well known [KN97] that D(f) ≥
log2 rank(f).

Definition 12 (Fooling Set) Let f : X × Y → Z be a total function. A set S ⊆ X × Y is called
a fooling set (for f) if there exists a value z ∈ Z, such that

• For every (x, y) ∈ S, f(x, y) = z.

• For every two distinct pairs (x1, y1) and (x2, y2) in S, either f(x1, y2) 6= z or f(x2, y1) 6= z.

It is easily argued that D(f) ≥ log2 |S| [KN97].

2.2 Comparison between bounds

The following theorem captures some key relationships between the bounds defined in the previous
section. Below Rpub

ε (f) denotes the public-coin, ε-error communication complexity of f . All logs in
this paper are taken to base 2.

Theorem 1 Let f : X × Y → Z be a function and let ε > 0.

1. Rpub
ε (f) ≥ log prtε(f).

2. prtε(f) ≥ srecε(f).

3. srecε(f) ≥ recε(f).

4. Let f : X ×Y → Z be a total function, then D(f) = O((log prt0(f)+log n)2). Later we exhibit
that the quadratic gap between D and log prt0 is tight. For relations however there could be
an exponential gap between log prt0 and D as shown in [KKN95].

5. Let f : X ×Y → Z be a total function, and let S ⊆ X ×Y be a fooling set. Then prt0(f) ≥ |S|.

The following lemma shows the equivalence of the two definitions of the rectangle bound.

Lemma 1 Let f : X × Y → Z be a function and let ε > 0. Then for all z ∈ Z,

1. reczε (f) ≤ r̃eczε
2
(f).

2. reczε (f) ≥ 1
2 · (

1
2 − ε) · r̃ec

z
2ε(f).

The following lemma shows the equivalence of the two definitions of the smooth-rectangle bound.

Lemma 2 Let f : X × Y → Z be a function and let ε > 0. Then for all z ∈ Z,

1. sreczε (f) ≤ s̃reczε
2
, 1−ε

2
(f).
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2. sreczε (f) ≥ 1
2 · (

1
4 − ε) · s̃rec

z
2ε, ε

2
(f).

The following lemma shows the equivalence of the two definitions of smooth-discrepancy.

Lemma 3 Let f : X × Y → {0, 1} be a function and let ε > 0. Then

1. s̃disc 1
2
− ε

8
(f) ≥ sdiscε(f).

2. 1
2 · s̃disc 1

4+2ε
(f) ≤ sdiscε(f).

The following lemma states the rectangle bound dominates the discrepancy bound for Boolean
functions and hence the smooth-rectangle bound dominates the smooth-discrepancy bound.

Lemma 4 Let f : X × Y → {0, 1} be a function; let z ∈ {0, 1} and let λ be a distribution on
X × Y ∩ f−1. Let ε, δ > 0, then

reczε (f) ≥ (
1
2
− ε)discλ(f)− 1

2
.

This implies by definition and Lemma 1,

r̃eczε
2
(f) ≥ reczε (f) ≥ (

1
2
− ε)disc(f)− 1

2
,

⇒ s̃reczε
2
,δ(f) ≥ (

1
2
− ε)s̃discδ(f)− 1

2
.

For a function g : X × Y → {0, 1}, let Ag be the sign matrix corresponding to g, that is

Ag(x, y) def= (−1)g(x,y). Following lemma states the equivalence between smooth-discrepancy and
the γ2 bound. This fact is implicit in Linial and Shraibman [LS09]. We present a proof of this in
Section A for completeness.

Lemma 5 ([LS09]) Let f : X × Y → {0, 1} be a Boolean function and let α > 1. Then

1
2
· s̃disc 1

2(α+1)
(f) ≤ γα2 (Af ) ≤ 8 · s̃disc 1

α+1
(f) .

From Lemma 4 and Lemma 5 we have the following corollary.

Corollary 1 Let f : X × Y → {0, 1} be a Boolean function; let z ∈ {0, 1}; let α > 1, ε > 0. Then,

s̃reczε
2
, 1
α+1

(f) ≥ (
1
2
− ε)1

8
γα2 (Af )− 1

2
.

The following theorem captures some separations between some of the bounds we mentioned.

Theorem 2 1. log prtε(Disj) ≥ log recε(Disj) = Ω(n), while log γα2 (Disj) = O(
√
n) for all ε < 1/2

and α > 1.

2. There is a function f : {0, 1}n × {0, 1}n → {0, 1} such that log prtε(f) ≥ log recε(f) = Ω(n),
while log rank(f) = O(n0.62) for all ε < 1/2.

3. Let the function LNE : {0, 1}n2 × {0, 1}n2 → {0, 1} be defined as

LNE(x1, . . . , xn; y1, . . . , yn) = 1 ⇐⇒ ∀i : xi 6= yi,

where all xi, yj are strings of length n. Then D(LNE) = log rank(LNE) = n2, however
R0(LNE) = O(n) and log prt0(LNE) = O(n).
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3 Query Complexity Bounds

3.1 New Bounds: Definitions

Let f : {0, 1}n → {0, 1}m be a partial function. Henceforth all functions considered are partial
unless otherwise specified. An assignment A : S → {0, 1}m is an assignment of values to some
subset S of n variables. We say that A is consistent with x ∈ {0, 1}n if xi = A(i) for all i ∈ S. We
write x ∈ A as shorthand for ’A is consistent with x’. We write |A| to represent the size of A which
is the cardinality of S (not to be confused with the number of consistent inputs). Furthermore we
say that an index i appears in A, iff i ∈ S where S is the subset of [n] corresponding to A. Let A
denote the set of all assignments. Below we assume x ∈ {0, 1}n, A ∈ A and z ∈ {0, 1}m, unless
otherwise specified.

Definition 13 (Partition Bound) Let f : {0, 1}n → {0, 1}m be a function and let ε ≥ 0. The
ε-partition bound of f , denoted prtε(f), is given by the optimal value of the following linear program.

Primal

min:
∑
z

∑
A

wz,A · 2|A|

∀x ∈ f−1 :
∑
A:x∈A

wf(x),A ≥ 1− ε,

∀x :
∑
A:x∈A

∑
z

wz,A = 1,

∀z, ∀A : wz,A ≥ 0 .

Dual

max:
∑
x∈f−1

(1− ε)µx +
∑
x

φx

∀A,∀z :
∑

x∈f−1(z)∩A

µx +
∑
x∈A

φx ≤ 2|A|,

∀x : µx ≥ 0, φx ∈ R .

We define the query complexity version of the smooth discrepancy bound as follows. We show in
the next subsection that it is equivalent to approximate degree (up to log factors).

Definition 14 (Smooth-Discrepancy) Let f : {0, 1}n → {0, 1} be a function. The smooth-
discrepancy of f , denoted sdiscε(f), is given by the optimal value of the following linear program.

Primal

min:
∑
A

(wA + vA) · 2|A|

∀x ∈ f−1(1) : 1 ≥
∑
A:x∈A

wA − vA ≥ 1− ε,

∀x ∈ f−1(0) : 1 ≥
∑
A:x∈A

vA − wA ≥ 1− ε,

∀x : 1 ≥
∑
A:x∈A

vA − wA ≥ −1,

∀A : wA, vA ≥ 0 .

Dual

max: (
∑
x∈f−1

(1− ε)µx − φx)− (
∑
x 6∈f−1

µx + φx)

∀A :
∑

x∈f−1(1)∩A

(µx − φx)−
∑

x∈A,x 6∈f−1(1)

(µx − φx) ≤ 2|A|,

∀A :
∑

x∈A,x 6∈f−1(1)

(µx − φx)−
∑

x∈A∩f−1(1)

(µx − φx) ≤ 2|A|,

∀x : µx ≥ 0;φx ≥ 0 .

3.1.1 Known Bounds

In this section we define some known complexity measures of functions. All of these except the
(error less) certificate complexity are lower bounds for randomized query complexity. See the survey
by Buhrman and de Wolf [BW02] for further information.

Definition 15 (Certificate Complexity) For z ∈ {0, 1}m, a z-certificate for f is an assignment
A such that x ∈ A⇒ f(x) = z. The certificate complexity Cx(f) of f on x is the size of the smallest
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f(x)-certificate that is consistent with x. The certificate complexity of f is C(f) def= maxx∈f−1 Cx(f).

The z-certificate complexity of f is Cz(f) def= maxx:f(x)=z Cx(f).

Definition 16 (Sensitivity and Block Sensitivity) For x ∈ {0, 1}n and S ⊆ [n], let xS be x
flipped on locations in S. The sensitivity sx(f) of f on x is the number of different i ∈ [n] for which
f(x) 6= f(x{i}). The sensitivity of f is s(f) def= maxx∈f−1 sx(f).

The block sensitivity bsx(f) of f on x is the maximum number b such that there are disjoint
sets B1, . . . , Bb for which f(x) 6= f(xBi). The block sensitivity of f is bs(f) def= maxx∈f−1 bsx(f). If
f is constant, we define s(f) = bs(f) = 0. It is clear from definitions that s(f) ≤ bs(f).

Definition 17 (Randomized Certificate Complexity [A06]) A ε-error randomized verifier for
x ∈ {0, 1}n is a randomized algorithm that, on input y ∈ {0, 1}n, queries y and (i) accepts with
probability 1 if y = x, and (ii) rejects with probability at least 1 − ε if f(y) 6= f(x). If y 6= x but
f(y) = f(x), the acceptance probability can be arbitrary. Then RCxε (f) is the maximum number of
queries used by the best ε-error randomized verifier for x, and RCε(f) def= maxx∈f−1 RCxε (f).

The above definition is stronger than the one in [A06].

Definition 18 (Approximate Degree) Let f : {0, 1}n → {0, 1} be a Boolean function and let
ε > 0. A polynomial Rn → R is said to ε-approximate f , if |p(x) − f(x)| < ε for all x ∈ f−1 and
0 ≤ p(x) ≤ 1 for all x ∈ {0, 1}n. The ε-approximate degree d̃egε(f) of f is the minimum degree
among all multi linear polynomials that ε-approximate f . If ε = 0 we write deg(f).

Definition 19 (Classical Adversary Bound) Let f : {0, 1}n → {0, 1}m be a function. Let
p = {px : x ∈ {0, 1}n, px is a probability distribution on [n]}. The classical adversary bound for f
denoted cadv(f), is defined as

cadv(f) def= min
p

max
x,y:f(x)6=f(y)

1∑
i:xi 6=yi min{px(i), py(i)}

.

The classical adversary bound is defined in an equivalent but slightly different way by Laplante
and Magniez [LM08]; the above formulation appears in their proof and is made explicit in [SS06].
Aaronson [A08] defines a slightly weaker version as observed in [LM08]. Laplante and Magniez
do not show an general upper bound for the classical adversary bound, but it is easy to see that
cadv(f) = O(C(f)) for all total functions.

Definition 20 (Quantum Adversary Bound) Let f : {0, 1}n → Z be a function. Let Γ be a
Hermitian matrix whose rows and columns are labeled by elements in {0, 1}n, such that Γ(x, y) = 0
whenever f(x) 6= f(y). For i ∈ [n], let Di be a Boolean matrix whose rows and columns are labeled
by elements in {0, 1}n, such that Di(x, y) = 1 if xi 6= yi and Di(x, y) = 0 otherwise. The quantum
adversary bound for f , denoted adv(f) is defined as

adv
def= max

Γ6=0

‖Γ‖
maxi ‖Γ ◦Di‖

.
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3.2 Comparison between bounds

The following theorem captures the key relations between the above bounds. Below Rε(f) denotes
the ε-error randomized query complexity of f .

Theorem 3 Let f : {0, 1}n → {0, 1}m be a function and ε > 0, then

1. Rε(f) ≥ 1
2 log prtε(f).

2. log prt0(f) ≥ C(f).

3. Let ε < 1/2, then log prt ε
4
(f) ≥ ε · bs(f) + log ε− 2.

4. log prtε(f) ≥ RC 2ε
1−2ε

(f) + log ε.

5. log prtε(f) ≥ (1− 4ε) · cadv(f) + log ε.

6. Let f : {0, 1}n → {0, 1} be a Boolean function. Then, log prtε(f) ≥ log sdisc2ε(f) ≥ d̃eg2ε(f)+
log ε.

7. Let f : {0, 1}n → {0, 1} be a Boolean function. Then, log sdiscε(f) ≤ O(d̃egε(f) · log n).

8. Let f : {0, 1}n → {0, 1} be a Boolean function. Then, D(f) = O(log prt0(f) · log prt1/3(f))
and D(f) = O(log prt1/3(f)3), where D(f) represents the deterministic query complexity of f .

Consider the Tribes function Tribes : {0, 1}n → {0, 1}, which is defined by an AND of
√
n ORs

of
√
n variables. We show that the partition bound gives a tight lower bound for this function while

no other general lower bounds methods as mentioned above gives tight lower bound.

Theorem 4 Let ε ∈ (0, 1/16), then

Rε(Tribes) ≥ 1
2

log prtε(Tribes) ≥ Ω(n),

while C(Tribes), cadv(Tribes), adv(Tribes), d̃eg(Tribes) = O(
√
n).

We give an example of a function f such that the log prt0(f) is asymptotically larger than
R0(f), the Las-Vegas communication complexity. Let T h represent the complete binary NAND tree
of height h. Let fh be the corresponding function evaluated by T h with its leaves serving as input
variables to fh. It is well known that R0(fh) = Θ((1+

√
33

4 )h) [SW86]. We show the following:

Theorem 5 log prt0(fh) = Ω(2h).

The following lemma shows that even the non-zero error partition bound sometimes can be
larger than the degree.

Lemma 6 There is a function f : {0, 1}n → {0, 1} such that log prtε(f) ≥ Ω(bs(f)) = Ω(n), while
deg(f) = O(n0.62) for all ε < 1/2.

By composing Tribes with the function f above we can also get a function for which log prtε is
polynomially larger than C and deg simultaneously.

Remark: We remark, without proof, that the error in the partition bound (both communication
and query) and its relatives can in general be boosted down in the same way as the error for
randomized protocols, for example we have: For all relations f : log prt2−k(f) = O(k · log prt1/3(f)).
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4 Open Questions

Communication Complexity

1. Is R1/3(f) ≤ poly(log prt1/3(f)) for all functions/relations f?

2. Is prt1/3(Tribes) = Ω(n) ?

Query Complexity

1. Is R1/3(f) = O(log2 prt1/3(f)) or better still is R1/3(f) = O(log prt1/3(f)) ?

2. Is adv(f) = O(log prt1/3(f)) ?

3. Is deg(f) = Õ(prt0(f)) ?

Acknowledgment: The work done is supported by the internal grants of the Centre for Quantum
Technologies, Singapore.
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A Proofs

Proof of Theorem 1:

1. Let P be a public coin randomized protocol for f with communication c def= Rpub
ε (f) and worst

case error ε. For binary string r, let Pr represent the deterministic protocol obtained from P
on fixing the public coins to r. Let r occur with probability q(r) in P. Every deterministic
protocol amounts to partitioning the inputs in X × Y into rectangles. Let Rr be the set of
rectangles corresponding to different communication strings between Alice and Bob in Pr. We
know that |Rr| ≤ 2c, since the communication in Pr is at most c bits. Let zrR ∈ Z be the
output corresponding to rectangle R in Pr. Let

w′z,R
def=

∑
r:R∈Rr and zrR=z

q(r) .

It is easily seen that for all (x, y, z) ∈ X × Y × Z:

Pr[P outputs z on input (x, y)] =
∑

R:(x,y)∈R

w′z,R .

Since the protocol has error at most ε on all inputs in f−1 we get the constraints:

∀(x, y) ∈ f−1 :
∑

R:(x,y)∈R

w′f(x),R ≥ 1− ε .

Also since the Pr[P outputs some z ∈ Z on input (x, y)] = 1, we get the constraints:

∀(x, y) :
∑
z

∑
R:(x,y)∈R

w′z,R = 1 .
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Of course we also have by construction : ∀z,∀R : w′z,R ≥ 0. Therefore {w′z,R : z ∈ Z, R ∈ R}
is feasible for the primal of prtε(f). Hence,

prtε(f) ≤
∑
z

∑
R

w′z,R =
∑
r

q(r) · |Rr| ≤ 2c
∑
r

q(r) = 2c .

2. Fix z′ ∈ Z. We will show that srecz
′
ε (f) ≤ prtε(f); this will imply srecε(f) ≤ prtε(f). Let

{wz,R : z ∈ Z, R ∈ R} be an optimal solution of the primal for prtε(f). Let us define

∀R ∈ R : wR
def= wz′,R, hence ∀R ∈ R, wR ≥ 0. Now,

∀(x, y) ∈ f−1(z′) :
∑

R:(x,y)∈R

wz′,R ≥ 1− ε ⇒
∑

R:(x,y)∈R

wR ≥ 1− ε,

∀(x, y) ∈ f−1 − f−1(z′) :
∑

R:(x,y)∈R

wf(x,y),R ≥ 1− ε ⇒
∑

R:(x,y)∈R

wR ≤ ε,

∀(x, y) :
∑

R:(x,y)∈R

∑
z

wz,R = 1 ⇒
∑

R:(x,y)∈R

wR ≤ 1 .

Hence {wR : R ∈ R} forms a feasible solution to the primal for sreczε (f) which implies

sreczε (f) ≤
∑
R

wR ≤
∑
z

∑
R

wz,R = prtε(f) .

3. Fix z ∈ Z. Since the primal program for sreczε (f) has extra constraints over the primal
program for reczε (f), it implies that reczε (f) ≤ sreczε (f). Hence recε(f) ≤ srecε(f).

4. (Sketch) Let W def= {wz,R} be an optimal solution to the primal for prt0f . It is easily seen
that

wz,R > 0⇒ ((x, y) ∈ R⇒ f(x, y) = z) .

Using standard Chernoff type arguments we can argue that there exists subset W ′ ⊆W with
|W ′| = O(nprt0f) such that :

∀(x, y) ∈ f−1 :
∑

R:(x,y)∈R,wf(x,y),R∈W ′
wf(x,y),R > 0 .

Hence W ′ is a cover of X × Y using monochromatic rectangles. Now using arguments as in
Theorem 2.11 of [KN97] it follows that D(f) = O((log prt0f + log n)2).

5. Define µx,y
def= 1;φx,y

def= 0 iff (x, y) ∈ S and µx,y = φx,y
def= 0 otherwise. Since no two elements

of S can appear in the same rectangle, it is easily seen that the constraints for the dual of
prt0(f) are satisfied by {µx,y, φx,y} . Hence prt0(f) ≥

∑
(x,y)(µx,y − φx,y) = |S|.

�

Proof of Lemma 1:
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1. Fix z ∈ Z. Let k def= reczε (f). Let {µx,y : (x, y) ∈ X × Y} be an optimal solution to the dual
for reczε (f). We can assume without loss of generality that (x, y) /∈ f−1 ⇒ µx,y = 0. Let

k1
def=
∑

(x,y)∈f−1(z) µx,y and k2
def=
∑

(x,y)∈f−1−f−1(z) µx,y. Then,

k = (1− ε)
∑

(x,y)∈f−1(z)

µx,y − ε
∑

(x,y)∈f−1−f−1(z)

µx,y

⇒ k = (1− ε)k1 − εk2

⇒ k1 ≥ k and k1 ≥ εk2 (since k, k2 ≥ 0) . (1)

Let us define λx,y
def= µx,y

2k1
iff f(x, y) = z and λx,y

def= µx,y
2k2

, otherwise. It is easily seen that λ
is a distribution on X × Y ∩ f−1 and λ(f−1(z)) = 0.5. For all R ∈ R,∑

(x,y)∈f−1(z)∩R

µx,y −
∑

(x,y)∈(R∩f−1)−f−1(z)

µx,y ≤ 1

⇒
∑

(x,y)∈f−1(z)∩R

2k1λx,y −
∑

(x,y)∈R−f−1(z)

2k2λx,y ≤ 1

⇒
∑

(x,y)∈f−1(z)∩R

2k1λx,y −
∑

(x,y)∈R−f−1(z)

2k1

ε
λx,y ≤ 1 (from (1))

⇒ ε

 ∑
(x,y)∈f−1(z)∩R

λx,y −
1

2k1

 ≤
∑

(x,y)∈R−f−1(z)

λx,y

⇒ ε

 ∑
(x,y)∈f−1(z)∩R

λx,y −
1
2k

 ≤
∑

(x,y)∈R−f−1(z)

λx,y (from (1))

Let R ∈ R be such that
∑

(x,y)∈f−1(z)∩R λx,y ≥
1
k . Then we have from above

ε

2

 ∑
(x,y)∈f−1(z)∩R

λx,y

 ≤ ∑
(x,y)∈R−f−1(z)

λx,y . (2)

Therefore by definition r̃ecz,λε
2

(f) ≥ k which implies r̃eczε
2
(f) ≥ k.

2. Fix z ∈ Z. Let k = r̃ecz2ε(f). Let λ be a distribution on X × Y ∩ f−1 such that r̃ecz2ε(f) =
r̃ecz,λ2ε (f) and λ(f−1(z)) ≥ 0.5. Let us define µx,y

def= k · λx,y iff f(x, y) = z; µx,y
def= k · λx,y2ε iff

(x, y) ∈ f−1−f−1(z) and µx,y = 0 otherwise. Now let R ∈ R be such that λ(f−1(z)∩R) ≤ 1
k ,

then ∑
(x,y)∈f−1(z)∩R

λx,y ≤
1
k
⇒

∑
(x,y)∈f−1(z)∩R

µx,y ≤ 1 .

Let λ(f−1(z) ∩R) > 1
k , then

2ε
∑

(x,y)∈f−1(z)∩R

λx,y ≤
∑

(x,y)∈R−f−1(z)

λx,y

⇒
∑

(x,y)∈f−1(z)∩R

µx,y ≤
∑

(x,y)∈(R∩f−1)−f−1(z)

µx,y .
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Hence the constraints of the dual program for reczε (f) are satisfied by {µx,y : (x, y) ∈ X ×Y}.
Now,

reczε (f) ≥
∑

(x,y)∈f−1(z)

(1− ε) · µx,y −
∑

(x,y)∈f−1−f−1(z)

ε · µx,y

= k ·

 ∑
(x,y)∈f−1(z)

(1− ε) · λx,y −
∑

(x,y)∈f−1−f−1(z)

λx,y
2


≥ k

2
· (1

2
− ε) (since λ(f−1(z)) ≥ 0.5) .

�

Proof of Lemma 2:

1. Fix z ∈ Z. Let {µx,y, φx,y : (x, y) ∈ X × Y} be an optimal solution to the dual for sreczε (f).
We can assume w.l.o.g. that (x, y) /∈ f−1 ⇒ µx,y = φx,y = 0; also that (x, y) /∈ f−1(z) ⇒
φx,y = 0. Let us observe that we can assume w.l.o.g. that ∀(x, y) ∈ f−1(z), either µx,y = 0
or φx,y = 0. Otherwise let us say that for some (x, y) ∈ f−1(z) : µx,y ≥ φx,y > 0. Then using

µ′x,y
def= µx,y − φx,y and φ′x,y

def= 0 instead of (µx,y, φx,y), and the rest the same, is a strictly
better solution; that is the objective function is strictly larger in the new case. A similar
argument can be made if for some (x, y) ∈ f−1(z) : φx,y ≥ µx,y > 0.

Let g : X × Y → Z be such that g(x, y) = f(x, y) iff φx,y = 0 and g(x, y) 6= f(x, y) otherwise

(g remains undefined wherever f is undefined). For all (x, y) let µ′x,y
def= µx,y iff φx,y = 0 and

µ′x,y = φx,y otherwise. Then ∀(x, y), µ′x,y ≥ 0 and

∀R ∈ R :
∑

(x,y)∈f−1(z)∩R

(µx,y − φx,y)−
∑

(x,y)∈(R∩f−1)−f−1(z)

µx,y ≤ 1

⇒ ∀R ∈ R :
∑

(x,y)∈g−1(z)∩R

µ′x,y −
∑

(x,y)∈(R∩g−1)−g−1(z)

µ′x,y ≤ 1 . (3)

Hence {µ′x,y : (x, y) ∈ X × Y} is a feasible solution to the dual of reczε (g). Now,

k
def=

∑
(x,y)∈g−1(z)

(1− ε) · µ′x,y −
∑

(x,y)∈g−1−g−1(z)

ε · µ′x,y (4)

=
∑

(x,y)∈f−1(z)

(1− ε) · µx,y −
∑

(x,y)∈f−1(z)

ε · φx,y −
∑

(x,y)∈f−1−f−1(z)

ε · µx,y

≥
∑

(x,y)∈f−1(z)

(1− ε) · µx,y −
∑

(x,y)∈f−1(z)

φx,y −
∑

(x,y)∈f−1−f−1(z)

ε · µx,y

= sreczε (f) . (5)

Let k1
def=
∑

(x,y)∈g−1(z) µ
′
x,y and k2

def=
∑

(x,y)∈g−1−g−1(z) µ
′
x,y. Let λx,y

def= µ′x,y
2k1

iff g(x, y) =

z and λx,y
def= µ′x,y

2k2
, otherwise. It is clear that λ is a distribution on X × Y ∩ g−1 and

λ(g−1(z)) = 0.5. As in the proof of Part 1. of Lemma 1, using (3) and (4), we can argue that
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r̃ecz,λε
2

(g) ≥ recz,λε (g) ≥ k. Also since
∑

(x,y)∈f−1((1−ε)µx,y−φx,y) ≥ 0 and
∑

(x,y)∈f−1(z)(µx,y−
φx,y)−

∑
(x,y)∈(f−1)−f−1(z) µx,y ≤ 1 we can argue that

∑
(x,y)∈f−1(z) φx,y ≤ (1−ε)k2 (we assume

sreczε (f) is at least a large constant) . Therefore,

Pr
(x,y)←λ

[g(x, y) 6= f(x, y)] =
∑

(x,y)∈f−1(z)

φx,y
2k2
≤ 1− ε

2
.

Hence by definition, s̃reczε
2
, 1−ε

2
(f) ≥ s̃recz,λε

2
, 1−ε

2

(f) ≥ r̃ecz,λε
2

(g) ≥ k ≥ sreczε (f). The last inequal-

ity follows from (5).

2. Fix z ∈ Z. Let k def= s̃recz2ε, ε
2
(f). Let λ be distribution on X ×Y ∩ f−1 such that s̃recz2ε, ε

2
(f) =

s̃recz,λ2ε, ε
2
(f). Let g : X×Y → Z be a function such that s̃recz,λ2ε, ε

2
(f) = recz,λ2ε (g) and λ(g−1(z)) ≥

0.5 and λ(f 6= g) ≤ ε/2. Note that we can assume w.l.o.g. that g(x, y) 6= f(x, y)⇒ f(x, y) =
z.

For (x, y) ∈ f−1, let us define µx,y
def= k · λx,y iff g(x, y) = f(x, y) = z and µx,y

def= k · λx,y2ε iff

f(x, y) 6= z. Let φx,y
def= k · λx,y2ε iff z = f(x, y) 6= g(x, y). For (x, y) /∈ f−1, let µx,y = φx,y = 0.

Now let R ∈ R be such that λ(g−1(z) ∩R) ≤ 1
k , then∑

(x,y)∈g−1(z)∩R

λx,y ≤
1
k
⇒

∑
(x,y)∈g−1(z)∩R

µx,y ≤ 1

⇒
∑

(x,y)∈f−1(z)∩R

µx,y − φx,y ≤ 1 .

Let λ(g−1(z) ∩R) > 1
k , then

2ε
∑

(x,y)∈g−1(z)∩R

λx,y ≤
∑

(x,y)∈R−g−1(z)

λx,y

⇒
∑

(x,y)∈g−1(z)∩R

µx,y ≤
∑

(x,y)∈R−g−1(z)

µx,y + φx,y

⇒
∑

(x,y)∈f−1(z)∩R

µx,y − φx,y ≤
∑

(x,y)∈(R∩f−1)−f−1(z)

µx,y .

Hence the constraints of the dual program for sreczε (f) are satisfied by {µx,y, φx,y : (x, y) ∈
X × Y}. Now,

sreczε (f) ≥
∑

(x,y)∈f−1(z)

((1− ε) · µx,y − φx,y)−
∑

(x,y)∈f−1−f−1(z)

ε · µx,y

≥
∑

(x,y)∈g−1(z)

(1− ε) · µx,y −
∑

(x,y)∈f−1(z)

φx,y −
∑

(x,y)/∈g−1(z)

ε · µx,y

= k ·

 ∑
(x,y)∈g−1(z)

(1− ε) · λx,y −
1
2ε

∑
(x,y):f(x,y)6=g(x,y)

λx,y −
∑

(x,y)/∈g−1(z)

λx,y
2


≥ k

2
· (1

4
− ε) .

The last inequality follows since λ(g−1(z)) ≥ 0.5 and λ(f 6= g) ≤ ε/2.
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�

Proof of Lemma 3:

1. Let k def= sdiscε(f). Let {µx,y, φx,y} be an optimal solution to the dual for sdiscε(f). As in the
proof of Lemma 2, we can argue that for all (x, y) ∈ f−1, either µx,y = 0 or φx,y = 0. For

(x, y) ∈ f−1, let us define λ′x,y
def= max{µx,y, φx,y} and let λx,y

def= λ′x,y∑
(x,y)∈f−1 λ′x,y

. It is clear

that λ is a distribution on f−1. Let us define g : X × Y → {0, 1} such that g−1 = f−1. For
(x, y) ∈ f−1, let g(x, y) = f(x, y) iff φx,y = 0 and let g(x, y) 6= f(x, y) iff φx,y 6= 0. Now

∀R : |
∑

(x,y)∈f−1(1)∩R

(µx,y − φx,y)−
∑

(x,y)∈R∩f−1(0)

(µx,y − φx,y)| ≤ 1

⇒ ∀R : |
∑

(x,y)∈g−1(1)∩R

λ′x,y −
∑

(x,y)∈R∩g−1(0)

λ′x,y| ≤ 1

⇒ ∀R : |
∑

(x,y)∈g−1(1)∩R

λx,y −
∑

(x,y)∈R∩g−1(0)

λx,y| ≤
1∑

x,y µx,y + φx,y
≤ 1
k
.

Hence discλ(g) ≥ k. Also since
∑

(x,y) µx,y − (1 + ε)φx,y ≥ 0,

Pr
(x,y)←λ

[g(x, y) 6= f(x, y)] =
1∑

x,y µx,y + φx,y

∑
(x,y)

φx,y <
1

2 + ε
≤ 1

2
− ε

8
.

Hence our result.

2. Let δ def= 1
4+2ε . Let λ be a distribution on f−1 such that k def= s̃discδ(f) = s̃disc

λ

δ (f) and

Pr(x,y)←λ[g(x, y) 6= f(x, y)] < δ. For (x, y) ∈ f−1, let µx,y
def= k · λx,y;φx,y = 0 iff f(x, y) =

g(x, y) and φx,y
def= k · λx,y;µx,y = 0 iff f(x, y) 6= g(x, y). Then,

∀R : |
∑

(x,y)∈g−1(1)∩R

λx,y −
∑

(x,y)∈R∩g−1(0)

λx,y| ≤
1
k

⇒ ∀R : |
∑

(x,y)∈f−1(1)∩R

(µx,y − φx,y)−
∑

(x,y)∈R∩f−1(0)

(µx,y − φx,y)| ≤ 1 .

Hence {µx,y, φx,y} form a feasible solution to the dual for sdiscε(f). Now,

sdiscε(f) ≥
∑
(x,y)

µx,y − (1 + ε)φx,y > k((1− δ)− (1 + ε)δ) = k(1− (2 + ε)δ) =
k

2
.

�

Proof of Lemma 4: Let k def= discλ(f). Let ∀(x, y) ∈ f−1 : µx,y
def= k · λx,y and µx,y = 0 otherwise.

Then we have:

∀R :
∑

(x,y)∈R∩f−1(z)

λx,y −
∑

(x,y)∈R−f−1(z)

λx,y ≤
1
k

⇒ ∀R :
∑

(x,y)∈R∩f−1(z)

µx,y −
∑

(x,y)∈(R∩f−1)−f−1(z)

µx,y ≤ 1 .
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Hence the constraints for the dual of the linear program for reczε (f) are satisfied by {µx,y : (x, y) ∈
X × Y}. Now,

reczε (f) ≥
∑

(x,y)∈f−1(z)

(1− ε) · µx,y −
∑

(x,y)∈f−1−f−1(z)

ε · µx,y

= k ·

 ∑
(x,y)∈f−1(z)

(1− ε) · λx,y −
∑

(x,y)/∈f−1(z)

ε · λx,y


= k ·

 ∑
(x,y)∈f−1(z)

λx,y − ε


≥ k ·

(
1
2
− 1

2k
− ε
)

= (
1
2
− ε)k − 1

2
.

The last inequality follows since discλ(f) = k. �

Proof of Lemma 5: For a sign matrix A, let gA be the corresponding function given by gA(x, y) def=
(1− A(x, y))/2. For distribution λ on X × Y, let Pλ be the matrix defined by Pλ(x, y) def= λ(x, y).
For matrix B, define ||B||Σ

def=
∑

i,j |B(i, j)|. For matrices C,D, let C ◦ D denote the entry wise
Hadamard product of C,D. We have the following facts:

Fact 1 ([LS09]) For every sign matrix A,

γα2 (A) = max
B

1
2γ∗2(B)

((α+ 1) 〈A,B〉 − (α− 1)||B||Σ) .

Above, γ∗2(·) is the dual norm of γ2(·).

Fact 2 ([LS09]) Let A be a sign matrix and let λ be a distribution. Then,

1
8γ∗2(A ◦ Pλ)

≤ discλ(gA) ≤ 1
γ∗2(A ◦ Pλ)

.

Therefore we have,

γα2 (Af ) = max
B

1
2γ∗2(B)

((α+ 1) 〈Af , B〉 − (α− 1)||B||Σ)

= max
B:||B||Σ=1

1
2γ∗2(B)

((α+ 1) 〈Af , B〉 − (α− 1))

= max
g,λ

1
γ∗2(Ag ◦ Pλ)

(1− (α+ 1)λ(f 6= g))

≤ max
g,λ

8 · discλ(g) (1− (α+ 1)λ(f 6= g))

≤ max{8 · discλ(g) : g, λ such that λ(f 6= g) <
1

α+ 1
}

= 8 · s̃disc 1
α+1

(f) .
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Similarly,

γα2 (Af ) = max
g,λ

1
γ∗2(Ag ◦ Pλ)

(1− (α+ 1)λ(f 6= g))

≥ max
g,λ

discλ(g) (1− (α+ 1)λ(f 6= g))

≥ max{1
2
· discλ(g) : g, λ such that λ(f 6= g) <

1
2(α+ 1)

}

=
1
2
· s̃disc 1

2(α+1)
(f) .

�

Proof of Theorem 2:

1. The lower bound is from [Raz92], the upper bound follows from [AA05].

2. The function is described in [NW95].

3. The lower bound D(LNE) = n2 is shown in [KN97] where it was shown that log rank(LNE) =
n2. It is not hard to see that the Las-Vegas complexity of LNE is O(n) which is also shown
in [KN97].

In order to show log prt0(LNE) = O(n), we describe a solution to the primal program for
the partition bound for LNE. We will assign a positive weight wR, to every monochromatic
rectangle R such that the sum of weights is small. In this case one can set wz,R

def= wR where
z is the color of the monochromatic rectangle R (all other wz′,R are 0).

We present the analysis below assuming that none of x1 . . . xn, y1 . . . yn is 0n. The analysis
can be extended easily if such is the case.

First we consider the 1-inputs of LNE. Let Rz1,...,zn,s1,...,sn be the rectangle that contains all
inputs with

∑
j xi(j) · zi(j) = si mod 2 and

∑
j yi(j) · zi(j) 6= si mod 2 for all i. Note that

these are 1-chromatic rectangles. We give weight 2n/2n
2

to each such rectangle. For every
1-input x1, . . . , xn; y1, . . . , yn and all s1, . . . , sn

Pr
z1...zn

∑
j

xi(j) · zi(j) = si mod 2 ∧
∑
j

yi(j) · zi(j) 6= si mod 2 for all i

 = 1/4n

for uniform z1, . . . , zn. Hence

∑
wRz1,...,zn,s1,...,sn = 2n · 2n

2

4n
· 2n

2n2 = 1,

when the sum is over all Rz1,...,zn,s1,...,sn consistent with x1, . . . , xn; y1, . . . , yn . The sum of
the weights wRz1,...,zn,s1,...,sn of all such rectangles is exactly 22n.

Now we turn to the 0-inputs. For each of them there is a position k+1, where xk+1 = yk+1 but
xi 6= yi for all i ≤ k. Let Rz1,...,zk,s1,...,sk,u denote the rectangle that contains all inputs with∑

j xi(j)·zi(j) = si mod 2 and
∑

j yi(j)·zi(j) 6= si mod 2 for all i ≤ k and xk+1 = yk+1 = u.
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The rectangle Rz1,...,zk,s1,...,sk,u receives weight 2k/2nk. As before it can be argued that every
0-input lies in 2nk/2k such rectangles, so the constraints are satisfied. The overall sum of
rectangle weights is at most

n−1∑
k=0

2kn · 2k · 2n · 2k

2kn
≤ 2 · 23n.

Hence log prt0(LNE) ≤ log
∑

R∈RLNE
wR = O(n).

�

Proof of Theorem 3:

1. Let {wz,A} be an optimal solution to the primal of prtε(f). Let P be a randomized algorithm
which achieves Rε(f). Then P is a convex combination of deterministic algorithms where
each deterministic algorithm is a decision tree of depth at most Rε(f). As in the proof of
Part 1. of Theorem 1, we can argue that

∑
z

∑
Awz,A ≤ 2Rε(f). Now since for each A above

|A| ≤ Rε(f),

prtε(f) =
∑
z

∑
A

wz,A2|A| ≤ 2Rε(f)

 ∑
z∈{0,1}m

∑
A∈A

wz,A

 ≤ 22Rε(f) .

Hence our result.

2. Let {wz,A} be an optimal solution to the primal of prt0(f). It is easily observed that wz,A > 0
implies that A is a z-certificate. Fix x ∈ f−1, now

prt0(f) =
∑
z

∑
A

wz,A · 2|A| ≥
∑
A:x∈A

wf(x),A · 2|A| ≥ 2Cx(f) ·

( ∑
A:x∈A

wf(x),A

)
= 2Cx(f) .

Hence log prt0(f) ≥ maxx∈f−1{Cx(f)} = C(f).

3. Fix x ∈ f−1. Let b def= bsx(f) and let B1, . . . , Bb be the blocks for which f(x) 6= f(xBi).
Let µx

def= 2εb−1;φx
def= −(1 − ε)µx and for each i ∈ [b], let −φxBi = µxBi

def= 2εb−1

b ;. Let

φy = µy
def= 0 for y /∈ {x, xB1 , . . . , xBb}.

(a) Let |A| ≥ εb. It is clear that ∀z ∈ {0, 1}m :
∑

x′∈f−1(z)∩A µx′ +
∑

x′∈A φx′ ≤ 2εb ≤ 2|A|.

(b) Let |A| < εb. Let z 6= f(x) or x /∈ A. It is clear that
∑

x′∈f−1(z)∩A µx′ +
∑

x′∈A φx′ ≤
0 ≤ 2|A|.

(c) Let |A| < εb and z = f(x) and x ∈ A. Since at most εb blocks among B1, . . . , Bb can
have non-empty intersection with the subset S ⊆ [n] corresponding to A, at least (1−ε)b
among {xB1 , . . . , xBb} belong to A; therefore (since ε < 0.5)∑

x′∈f−1(z)∩A

µx′ +
∑
x′∈A

φx′ ≤ ε · 2εb−1 − (1− ε)b2εb−1

b
< 0 ≤ 2|A|.
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Therefore the constraints for prt ε
4
(f) are satisfied. Now,

prt ε
4
(f) ≥

∑
x

(1− ε

4
)µx + φx = (1− ε

4
)2εb − (2− ε)2εb−1 = ε2εb−2 .

Hence our result.

4. Let {wz,A} be an optimal solution to the primal of prtε(f). Let α def=
∑

z

∑
Awz,A · 2|A|. Let

A′ def= {A : |A| ≤ log α
ε }. Then

∑
z

∑
A/∈A′ wz,A ≤ ε. Fix x ∈ f−1. Let A′x

def= {A ∈ A′ : x ∈
A}. We know that

αx
def=

∑
A∈A′x

wf(x),A ≥
∑
A:x∈A

wf(x),A − ε ≥ 1− 2ε .

The verifier Vx for x acts as follows:

(a) Choose A ∈ A′x with probability wf(x),A

αx
.

(b) Query locations in A.

(c) Accept iff locations queried are consistent with A. Reject otherwise.

Now it is clear that if the input is x then Vx accepts with probability 1. Also the number
of queries of Vx are at most log α

ε on any input y. Let y be such that f(y) 6= f(x). Let

A′x,y
def= {A ∈ A′x : y ∈ A}. Then,∑

A∈A′x,y

wf(x),A ≤
∑

A∈A′:y∈A

∑
z 6=f(y)

wz,A ≤
∑

A∈A:y∈A

∑
z 6=f(y)

wz,A + ε ≤ 2ε .

Hence y would be accepted with probability at most 2ε
αx
≤ 2ε

1−2ε . Hence our result.

5. Let {wz,A} be an optimal solution to the primal of prtε(f). Let α def=
∑

z

∑
Awz,A · 2|A| and

k
def= log α

ε . Let A′ def= {A : |A| ≤ k}; then
∑

z

∑
A/∈A′ wz,A ≤ ε. We set p as in the definition

of cadv as follows. For all x ∈ f−1, let A′x
def= {A ∈ A′ : x ∈ A}. Define distributions px on

[n] as follows:

(a) Choose A ∈ A′x with probability q(x,A) def= wf(x),A∑
A′∈A′x

wf(x),A′
.

(b) Choose i uniformly from the set {i : i appears in A}.

It is easily seen that px is a distribution on [n]. We will show that

max
x,y:f(x)6=f(y)

1∑
i:xi 6=yi min{px(i), py(i)}

≤ k

1− 4ε
, (6)

which proves our main claim.

Take any x, y such that f(x) 6= f(y). Let’s define ∀i ∈ [n], qx(i) def=
∑

A∈A′x:i appears in A q(x,A);

similarly define qy(i). It is clear that ∀i ∈ [n] : px(i) ≥ qx(i)
k and py(i) ≥ qy(i)

k . We will show:∑
i:xi 6=yi

min{qx(i), qy(i)} ≥ 1− 4ε,
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which implies (6).

Now assume for a contradiction that
∑

i:xi 6=yi min{qx(i), qy(i)} < 1 − 4ε. Consider a hybrid

input r ∈ {0, 1}n constructed in the following way: if qx(i) ≥ qy(i) then ri
def= xi, otherwise

ri
def= yi. Now,∑
A:r∈A

∑
z

wz,A ≥
∑
A∈A′r

∑
z

wz,A

≥
∑
A∈A′x

wf(x),A −
∑

i:qx(i)<qy(i)

qx(i) +
∑
A∈A′y

wf(y),A −
∑

i:qy(i)≤qx(i)

qy(i)

≥
∑
A∈A′x

wf(x),A +
∑
A∈A′y

wf(y),A −
∑

i:xi 6=yi

min{qx(i), qy(i)}

≥
∑
A:x∈A

wf(x),A +
∑
A:y∈A

wf(y),A −
∑

i:xi 6=yi

min{qx(i), qy(i)} − 2ε

≥ 2(1− ε)− (1− 4ε)− 2ε > 1 .

This contradicts the assumption that {wz,A} is a feasible solution to the primal of prtε(f).

6. log prt2ε(f) ≥ log sdisc2ε(f) follows using similar arguments as before and hence proof skipped.

We turn to the second part. Let {wA, vA} be an optimal solution to the primal of sdisc2ε(f).
Let α def=

∑
A(wA + vA) · 2|A|. Let A′ def= {A : |A| ≤ log α

ε }; then
∑

A/∈A′ wA + vA ≤ ε. For
A ∈ A′, let mA(x) be the multilinear polynomial which is 1 iff x ∈ A (over the Boolean inputs
x). Note that the degree of mA is at most |A|. Let p(x) def=

∑
A∈A′(wA − vA) ·mA(x). Then

the degree of p(x) is at most log α
ε . Now since the constraints of the primal of sdisc2ε(f) are

satisfied by {wA, vA}, we get,

∀x ∈ f−1(1) : 1 + ε ≥ p(x) =
∑

A∈A′:x∈A
wA − vA ≥ 1− 3ε,

and
∀x ∈ f−1(0) : −1− ε ≤ p(x) =

∑
A∈A′:x∈A

wA − vA ≤ −1 + 3ε,

and
∀x : −1− ε ≤ p(x) ≤ 1 + ε .

Therefore (p(x)/(1 + ε) + 1)/2, 2ε-approximates f and hence our result.

7. Let p(x) be a polynomial that ε-approximates f and has degree k = d̃egε(f). Then q(x) =
2p(x)− 1 has the same degree. Write q(x) in the standard form q(x) =

∑
S⊆[n] cS ·mS , where

mS is the monomial
∏
i∈S xi and the cS are the coefficients. Now we define the solutions for

the program for sdisc2ε. We identify S ⊆ [n] with the partial assignment A(S) that sets the
variables in S to 1, and will set wA = vA = 0 for all other partial assignments A associated
with S. Otherwise if cS ≤ 0, we set wA(S) = 0 and vA(S) = −cS , if cS ≥ 0, we set vA(S) = 0
and wA(S) = cS . It is now easy to see that this yields a feasible solution to the primal program
of sdiscε(f).
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It remains to show that the cost of the solution is no more than exponential in O(k log n).
Note that q(x) contains at most

∑
i≤k
(
n
i

)
monomials of degree at most k, so it suffices to

show that every |cS | is bounded. We will show that any |cS | in q(x) is indeed bounded by
(2k + 1)!.

Consider S ⊆ [n]. Denote tS =
∑

S′:S′⊆S |cS′ | and tj = maxS:|S|=j tS . Then t0 ≤ 1, because
c∅ is the constant coefficient of q and equals q(0n). Similarly we can see that tj ≤ 2j · tj−1 +1:
For every S of size j we can write

tS ≤
∑

S′⊂S,|S′|=j−1

tS′ + |cS |,

and
|cS | ≤

∑
S′⊂S,|S′|=j−1

tS′ + 1,

because q(eS) =
∑

S′⊆S cS′ ∈ [−1, 1] for the string eS containing 1’s in S.

By induction this proves that |cS | ≤ (2j + 1)!, and hence the cost of our solution is bounded
by
∑

j≤k
(
n
j

)
· (2j + 1)! · 2j ≤ exp(O(k log n)).

8. For a Boolean function f , it is known that D(f) = O(C(f)bs(f)) and D(f) = O(bs(f)3) (refer
to [BW02]). The desired result is implied now using earlier parts of this theorem.

�

Proof of Theorem 4: We denote the Tribes function by f . We exhibit a solution to the dual of
the linear program for prtε(f). In fact we use a one-sided relaxation of the LP for prtε(f), similar
to the smooth rectangle bound. It is easily observed that the optimum of the LP below, denoted
optε(f) is at most prtε(f).

Primal

min:
∑
A

wA · 2|A|

∀x with f(x) = 1 :
∑
A:x∈A

wA ≥ 1− ε,

∀x with f(x) = 1 :
∑
A:x∈A

wA ≤ 1,

∀x with f(x) = 0 :
∑
A:x∈A

wA ≤ ε,

∀A : wA ≥ 0 .

Dual

max:
∑

x:f(x)=1

(1− ε)µx −
∑

x:f(x)=0

εµx +
∑
x

φx

∀A :
∑

x∈f−1(1)∩A

µx −
∑

x∈f−1(0)∩A

µx +
∑
x∈A

φx ≤ 2|A|,

∀x : µx ≥ 0, φx ≤ 0 .

We will work with the dual program and will assign nonzero values for (µx, φx) on three types
of inputs. Denote the set {(i, j) : j = 1, . . . ,

√
n} by Bi. This is a block of inputs that feeds into a

single OR. The first set of inputs has exactly one xi,j = 1 per block Bi. Clearly these are inputs
with f(x) = 1, and there are exactly

√
n
√
n such inputs. Denote the set of these inputs by T1.

Then we consider a set of inputs with f(x, y) = 0. Denote by T0 the set of inputs in which all but
one block Bi have exactly one 1, and one block Bi has no xi,j = 1. Again, there are

√
n
√
n such

inputs. Finally, T2 contains the set of inputs, in which all Bi except one have exactly one 1, and
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one block has two 1’s. There are (
√
n)
√
n(n−

√
n)/2 such inputs. Let δ def= 1

4 − 4ε and,

For all x ∈ T1 : µx =
2δn
√
n
√
n

; φx = 0,

For all x ∈ T0 : µx =
2δn

4ε ·
√
n
√
n

; φx = 0,

For all x ∈ T2 : φx =
−4 · 2δn

3(n−
√
n)
√
n
√
n

; µx = 0,

For all x /∈ T0 ∪ T1 ∪ T2 : µx = φx = 0 .

Claim 1 {µx, φx} as defined is feasible for the dual for optε(f).

Proof Clearly ∀x : µx ≥ 0, φx ≤ 0. Let A be an assignment with |A| ≥ δn; in this case,∑
x∈f−1(1)∩A

µx −
∑

x∈f−1(0)∩A

µx +
∑
x∈A

φx ≤
∑

x∈f−1(1)

µx ≤ 2δn ≤ 2|A|.

From now on |A| < δn. Let A fix at least two input positions to 1 in a single block Bi. In this case
clearly, ∑

x∈f−1(1)∩A

µx −
∑

x∈f−1(0)∩A

µx +
∑
x∈A

φx ≤ 0 ≤ 2|A|.

Hence from now on consider A which fixes at most a single input position to 1 in each block Bi.
For block i let αi denote the number of positions fixed to 0 in Bi; let βi ∈ {0, 1} denote the number
of positions fixed to 1 and let γi denote the number of free positions, i.e.,

√
n− αi − βi.

First consider the case when k def=
∑

i βi ≤ (1−4ε)
√
n and w.l.o.g. assume that the last k blocks

contain a 1. The number of inputs in T1 consistent with A is exactly
∏√n−k
i=1 γi. The number of

inputs in T0 consistent with A is
√
n−k∑
i=1

∏
j=1,...,

√
n−k;j 6=i

γj ≥
√
n− k√
n
·

√
n−k∏
i=1

γi ≥ 4ε

√
n−k∏
i=1

γi.

Hence, ∑
x∈f−1(1)∩A

µx −
∑

x∈f−1(0)∩A

µx +
∑
x∈A

φx ≤
2δn
√
n
√
n

(1− 4ε
4ε

)

√
n−k∏
i=1

γi ≤ 0.

Now assume that k =
∑

i βi ≥ (1− 4ε)
√
n. Again w.l.o.g. the last k blocks have βi = 1. There

are
∏√n−k
i=1 γi inputs in T1 ∩A. The number of inputs in T2 ∩A is at least√n−k∏

i=1

γi

 ·
 √

n∑
i=
√
n−k+1

γi

 ≥
√n−k∏

i=1

γi

 · n(1− δ − 4ε),
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because we can choose a single 1 for the first
√
n − k blocks, and a second 1 in any of the last k

blocks. Hence

∑
x∈A∩T2

φx ≤ −

√n−k∏
i=1

γi

 · n(1− δ − 4ε) · 4 · 2δn

3(n−
√
n)
√
n
√
n

= −

 ∑
x∈A∩T1

µx

 · n(1− δ − 4ε) · 4
3(n−

√
n)

≤ −

 ∑
x∈A∩T1

µx

 · (1− δ − 4ε) · 4
3

= −

 ∑
x∈A∩T1

µx

 .

Hence the constraints for dual of optε(f) are satisfied by all A. �

Finally we have,

prtε(f) ≥ optε(f) ≥
∑

x:f(x)=1

(1− ε)µx −
∑

x:f(x)=0

εµx +
∑
x

φx

= 2δn
(

1− ε− ε

4ε
− 2

3

)
= 2Ω(n) .

Hence our result.
The upper bound on C(Tribes) is obvious, and implies the bound on cadv. The remaining

bounds follow from the existence of efficient quantum query algorithms for the problem. �

Proof of Theorem 5: Let us define the weights for the dual of prt0(fh) in a recursive fashion.
We first define the weights for the inputs for f1 as follows µ00

def= −1, µ01 = µ10
def= 1.6, µ11

def=
1.2. Let x1, x2 be two inputs to fh−1, then define the weights for fh as follows (x1x2 represents
concatenation):

µx1x2

def= µx1 · µx2 iff fh−1(x1) = 1 or fh−1(x2) = 1; otherwise µx1x2

def= −µx1 · µx2 .

We have the following lemma:

Lemma 7 Let Afh represent the set of all monochromatic assignments of fh. For all h, we have
the following invariants.

1. ∀A ∈ Afh : |
∑

x∈A µx| ≤ 2|A|.

2. ∀A : |
∑

x∈A,fh(x)=1 µx −
∑

x∈A,fh(x)=0 µx| ≤ 2|A|.

Proof We prove the invariants using induction. For the base case (h = 1) they can be checked by
direct calculation. Assume that they are true for h− 1 and we need to show for h.

1. Let A = A1A2 be a 0-monochromatic assignment of fh, then A1, A2 need to be each a
1-monochromatic assignment of fh−1. Hence by induction,

|
∑
x∈A

µx| = |(
∑
x1∈A1

µx1) · (
∑
x2∈A2

µx2)| = |
∑
x1∈A1

µx1 | · |
∑
x2∈A2

µx2 | ≤ 2|A1|2|A2| = 2|A| .
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2. Let A = A1A2 be a 1-monochromatic assignment of fh, then either A1 or A2 needs to be
a 0-monochromatic assignment of fh−1. Let w.l.o.g A1 be a 0-monochromatic assignment.
Then we have by induction,

|
∑
x∈A

µx| = |
∑

x1∈A1,x2∈A2

µx1x2 |

= |(
∑
x1∈A1

µx1) · (
∑

x2∈A2,fh−1(x2)=1

µx2 −
∑

x2∈A2,fh−1(x2)=0

µx2)|

= |(
∑
x1∈A1

µx1)| · |(
∑

x2∈A2,fh−1(x2)=1

µx2 −
∑

x2∈A2,fh−1(x2)=0

µx2)|

≤ 2|A1| · 2|A2| = 2|A| .

3. Let A = A1, A2 be some assignment of fh. Then by induction we have,

|
∑

x∈A,fh(x)=1

µx −
∑

x∈A,fh(x)=0

µx|

= | −
∑

x1∈A1,fh−1(x1)=1,x2∈A2,fh−1(x2)=1

µx1µx2 −
∑

x1∈A1,fh−1(x1)=0,x2∈A2,fh−1(x2)=0

µx1µx2

+
∑

x1∈A1,fh−1(x1)=1,x2∈A2,fh−1(x2)=0

µx1µx2 +
∑

x1∈A1,fh−1(x1)=0,x2∈A2,fh−1(x2)=1

µx1µx2 |

= |(
∑

x1∈A1,fh−1(x1)=1

µx1 −
∑

x1∈A1,fh−1(x1)=0

µx1)(
∑

x2∈A2,fh−1(x2)=1

µx2 −
∑

x2∈A2,fh−1(x2)=0

µx2)|

≤ 2|A1|2|A2| = 2|A| .

�

Therefore {µx : x input of fh} satisfy the constraints for the dual of prt0(fh). Now define

αh1
def=

∑
x,fh(x)=1

µx ; αh0
def=

∑
x,fh(x)=0

µx .

Then we see
αh0 = (αh−1

1 )2 ; αh1 = 2αh−1
1 αh−1

0 − (αh−1
0 )2 .

This implies αh0 − αh1 = (αh−1
0 − αh−1

1 )2. Now since α1
1 = 2.2, α1

0 = 1.2 we have that αh0 − αh1 = 1
for all h ≥ 2. Hence for h ≥ 2,

αh1 = αh0 − 1 = (αh−1
1 )2 − 1 ≥ (αh−1

1 )2

2
.

Therefore αh1 ≥
(α1

1)2h−1

2h
. Since α1

1 = 2.2, we conclude log prt0(fh) = Ω(2h). �

Proof of Lemma 6:(Sketch) Examples of such functions are given in [NS94, NW95] with the best
construction attributed to Kushilevitz in the latter paper. �
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B Las-Vegas Partition Bound

Communication Complexity

In this section we consider the Las-Vegas communication complexity. Las-Vegas protocols use
randomness and for each input they are allowed to output ”don’t know” with probability 1/2,
however when they do give an answer then it is required to be correct. An equivalent way to view
is that these protocols are never allowed to err, but for each input we only count the expected
communication (over the coins), instead of the worst case communication (as in deterministic
protocols). Below we present a lower bound for Las-Vegas protocols via a linear program, which
we call the Las-Vegas partition bound.

Definition 21 (Las-Vegas Partition Bound) Let f : X × Y → Z be a partial function. The
Las-Vegas partition bound of f , denoted prtLV (f), is given by the optimal value of the following
linear program. Let Rf denote the set of monochromatic rectangles for f .

Primal

min:
∑
R∈Rf

wR +
∑
R∈R

vR

∀(x, y) ∈ f−1 :
∑

R∈Rf :(x,y)∈R

wR ≥
1

2
,

∀(x, y) :
∑

R∈Rf :(x,y)∈R

wR +
∑

R:(x,y)∈R

vR = 1,

∀R : wR, vR ≥ 0 .

Dual

max:
∑

(x,y)∈f−1

1

2
· µx,y +

∑
(x,y)

φx,y

∀R ∈ Rf :
∑

(x,y)∈f−1∩R

µx,y +
∑

(x,y)∈R

φx,y ≤ 1,

∀R ∈ R :
∑

(x,y)∈R

φx,y ≤ 1,

∀(x, y) : µx,y ≥ 0, φx,y ∈ R .

The constant above is arbitrary and can be any constant in (0, 1) and will give asymptotically
similar value for the bound. The following lemma follows easily using arguments as before. Below
R0(f) represents the Las-Vegas communication complexity of f ; please refer to [KN97] for explicit
definition of R0(f).

Lemma 8 Let f : X × Y → Z be a partial function. Then, R0(f) ≥ log prtLV .

Query Complexity

The Las-Vegas partition bound for query complexity is defined as follows.

Definition 22 (Las-Vegas Partition Bound) Let f : X → Z be a partial function. The Las-
Vegas partition bound of f , denoted prtLV (f), is given by the optimal value of the following linear
program. Let Af denote the set of monochromatic assignments for f .

Primal

min:
∑
A∈Af

wA · 2|A| +
∑
A∈A

vA · 2|A|

∀x ∈ f−1 :
∑

A∈Af :x∈A

wA ≥
1

2
,

∀x :
∑

A∈Af :x∈A

wA +
∑
A:x∈A

vA = 1,

∀A : wA, vA ≥ 0 .

Dual

max:
∑
x∈f−1

1

2
· µx +

∑
x

φx

∀A ∈ Af :
∑

x∈f−1∩A

µx +
∑
x∈A

φx ≤ 2|A|,

∀A ∈ A :
∑
x∈A

φx ≤ 2|A|,

∀x : µx ≥ 0, φx ∈ R .
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As before the constant above is arbitrary and can be any constant in (0, 1) and will give asymptot-
ically similar value for the bound. The following lemma follows easily using arguments as before.
Below R0(f) represents the Las-Vegas query complexity of f .

Lemma 9 Let f : X → Z be a partial function. Then R0(f) ≥ log prtLV .

Remark: For communication complexity let prt∗LV (f) be defined similarly to prtLV (f), except that
the constraints

∀(x, y) ∈ f−1 :
∑

R∈Rf :(x,y)∈R

wR ≥ 1/2

are replaced by
∀(x, y) ∈ f−1 :

∑
R∈Rf :(x,y)∈R

wR = 1/2 .

Then we can observe prt0(f) ≥ prt∗LV (f) ≥ 1
2prt0(f). Note that log prt∗LV (f) forms a lower bound

for R0(f) if there is a Las-Vegas protocol for f that has the probability of output ’don’t know’ for
all inputs. Similarly for query complexity.

C Partition bound for relations

Communication Complexity

Here we define the partition bound for relations.

Definition 23 (Partition Bound for relation) Let f ⊆ X×Y×Z be a relation. The ε-partition
bound of f , denoted prtε(f), is given by the optimal value of the following linear program.

Primal

min:
∑
z

∑
R

wz,R

∀(x, y) :
∑

R:(x,y)∈R

∑
z:(x,y,z)∈f

wz,R ≥ 1− ε,

∀(x, y) :
∑

R:(x,y)∈R

∑
z

wz,R = 1,

∀z, ∀R : wz,R ≥ 0 .

Dual

max:
∑
(x,y)

(1− ε)µx,y + φx,y

∀z, ∀R :
∑

(x,y):(x,y)∈R;(x,y,z)∈f

µx,y +
∑

(x,y)∈R

φx,y ≤ 1,

∀(x, y) : µx,y ≥ 0, φx,y ∈ R .

As in Theorem 1, we can show that partition bound is a lower bound on the communication
complexity. Its proof is skipped since it is very similar.

Lemma 10 Let f ⊆ X × Y × Z be a relation. Then, Rpub
ε (f) ≥ log prtε(f) .

Query Complexity

Here we define the partition bound for query complexity for relations.

Definition 24 (Partition Bound for relations) Let f ⊆ X × Z be a relation, let ε ≥ 0. The
ε-partition bound of f , denoted prtε(f), is given by the optimal value of the following linear program.
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Primal

min:
∑
z

∑
A

wz,A · 2|A|

∀x :
∑
A:x∈A

∑
z:(x,z)∈f

wz,A ≥ 1− ε,

∀x :
∑
A:x∈A

∑
z

wz,A = 1,

∀z, ∀A : wz,A ≥ 0 .

Dual

max:
∑
x

(1− ε)µx + φx

∀z, ∀A :
∑

x:x∈A;(x,z)∈f

µx +
∑
x∈A

φx ≤ 2|A|,

∀x : µx ≥ 0, φx ∈ R .

As in Theorem 3, we can show that partition bound is a lower bound on the randomized query
complexity of f . Its proof is skipped since it is very similar.

Theorem 6 Let f ⊆ X × Z be a relation, let ε > 0. Then, Rε(f) ≥ 1
2 log prtε(f) .
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