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Abstract

In this paper we present a new operational interpretation of relative-entropy between
quantum states in the form of the following protocol.

P: Alice gets to know the eigen-decomposition of a quantum state ρ. Bob gets to know
the eigen-decomposition of a quantum state σ. Both Alice and Bob know S (ρ‖σ) def=
Trρ log ρ − ρ log σ, the relative entropy between ρ and σ and an error parameter ε. Alice
and Bob use shared entanglement and after communication of O((S(ρ‖σ) + 1)/ε4) bits from
Alice to Bob, Bob ends up with a quantum state ρ̃ such that F(ρ, ρ̃) ≥ 1 − ε, where F(·)
represents fidelity.

This result can be considered as a non-commutative generalization of a result due to
Braverman and Rao [BR11] where they considered the special case when ρ and σ are classical
probability distributions. We use P to obtain an alternate proof of a direct-sum result for
entanglement assisted quantum one-way communication complexity for all relations, which
was first shown by Jain, Radhakrishnan and Sen [JRS05, JRS08].

Our second result provides a new operational meaning to trace distance between quantum
states in the form of a protocol which can be viewed as a quantum analogue of the classical
correlated-sampling protocol, which is widely used, for example by Holenstein [Hol07] in
his proof of a parallel-repetition theorem for two-player one-round games. Recently Dinur,
Steurer and Vidick [DSV14] have shown another version of a quantum correlated sampling
protocol different from our protocol, and used it in their proof of a parallel-repetition theorem
for two-prover one-round entangled projection games.
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1 Introduction
Relative entropy is a widely used quantity of central importance in both classical and quantum
information theory. In this paper we present a new operational meaning to quantum relative
entropy in the form of the following protocol.

P: Alice gets to know the eigen-decomposition of a quantum state ρ. Bob gets to know the eigen-
decomposition of a quantum state σ. Both Alice and Bob know S(ρ‖σ) def= Trρ log ρ − ρ log σ,
the relative entropy between ρ and σ and an error parameter ε. Alice and Bob use shared
entanglement and after communication of O((S(ρ‖σ) + 1)/ε4) bits from Alice to Bob, Bob ends
up with a quantum state ρ̃ such that F(ρ, ρ̃) ≥ 1− ε, where F(·) represents fidelity.

This result can be considered as a non-commutative generalization of a result due to Braver-
man and Rao [BR11] where they considered the special case when ρ and σ are classical probability
distributions. Their protocol, and slightly modified versions of it, were widely used to show
several direct sum and direct product results in communication complexity, for example a direct
sum theorem for all relations in the bounded-round public-coin communication model [BR11],
direct product theorems for all relations in the public-coin one-way and public-coin bounded-
round communication models [Jai13, JPY12, BRWY13]. A direct sum result for a relation f in
a model of communication (roughly) states that in order to compute k independent instances of
f simultaneously, if we provide communication less than k times the communication required
to compute f with the constant success probability p < 1, then the success probability for
computing all the k instances of f correctly is at most a constant q < 1. A direct product result,
which is a stronger result, states that in such a situation the success probability for computing
all the k instances of f correctly is at most p−Ω(k).

Protocol P allows for compressing the communication in one-way entanglement-assisted
quantum communication protocols to the internal information about the inputs carried by the
message. Using this we obtain a direct-sum result for entanglement assisted quantum one-way
communication complexity for all relations. This direct-sum result was shown previously by Jain,
Radhakrishnan and Sen [JRS05, JRS08] and they obtained this result via a protocol that allowed
them compression to external information carried in the message1. Their arguments were quite
specific to one-way protocols and do not seem to generalize to multi-round communication
protocols. Our proof however, is along the lines of a proof which has been generalized to
bounded-round classical protocols [BR11] and hence it presents hope that our direct-sum result
can also be generalized to bounded-round quantum protocols. The protocol of Braverman and
Rao [BR11] was also used by Jain [Jai13] to obtain a direct-product for all relations in the model
of one-way public-coin classical communication and later extended to multiple round public-coin
classical communication [JPY12, BRWY13]. Hence protocol P also presents a hope of obtaining
similar results for quantum communication protocols.

Our second result provides a new operational meaning to trace distance between quantum
states in the form of the following protocol.

P1 : Alice gets to know the eigen-decomposition of a quantum state ρ. Bob gets to know the
eigen-decomposition of a quantum state σ. Alice and Bob use shared entanglement, do local
measurements (no communication) and at the end Alice outputs registers AA1 and Bob outputs
registers BB1 such that the following holds:

1Compression to external and internal information can be thought of as one-shot communication analogues of
the celebrated results by Shannon [Sha48] and Slepian-Wolf [SW73] exhibiting compression of source to entropy
and conditional entropy respectively.
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1. The marginal state in A is ρ and the marginal state in B is σ.

2. For any projective measurement M = {M1, . . . ,Mw} in the support of the state in AA1,
the following holds. Let Alice perform M on AA1 and Bob perform M on BB1 and obtain
outcome I ∈ [w], J ∈ [w] respectively. Then,

Pr[I = J ] ≥
(

1−
√
‖ρ− σ‖1 −

1
4 ‖ρ− σ‖

2
1

)3

.

The protocol above can be viewed as a quantum analogue of the classical correlated-sampling
protocol, which is widely used for example by Holenstein [Hol07] in his proof of a parallel-
repetition theorem for two-player one-round games. Recently Dinur, Steurer and Vidick [DSV14]
have shown another version of a quantum correlated sampling protocol different from ours,
and used it in their proof of a parallel-repetition theorem for two-prover one-round entangled
projection games.

Our techniques

Our protocol P is inspired by the protocol of Braverman and Rao [BR11], which as we mentioned,
applies to the special case when inputs to Alice and Bob are classical probability distributions
P,Q respectively. Let us assume the simpler case first when Alice and Bob know c = S∞(P‖Q) def=
min{λ| P ≤ 2λQ}, the relative min-entropy between P and Q. In the protocol of [BR11], Alice
and Bob share (as public coins) {(Mi, Ri)| i ∈ N} where each (Mi, Ri) is independently and
identically distributed uniformly over U×[0, 1], where U is the support of P and Q. Alice accepts
index i iff Ri ≤ P (Mi) and Bob accepts index i iff Ri ≤ 2cQ(Mi). It is easily argued that for
the first index j accepted by Alice, Mj is distributed according to P . Braverman and Rao argue
that Alice can communicate this index j to Bob, with high probability, using communication
O(c) bits (for constant ε), using crucially the fact that P ≤ 2cQ.

In our protocol, Alice and Bob share infinite copies of the following quantum state

|ψ〉 def= 1√
NK

N∑
i=1
|i〉A |i〉B ⊗

(
K∑
m=1
|m〉A1 |m〉B1

)
,

where registers A,B serve to sample a maximally mixed state in the support of ρ, σ and the
registers A1, B1 serve to sample uniformly in the interval [0, 1] (in the limit K →∞). Again let
us assume the simpler case first when Alice and Bob know c = S∞(ρ‖σ) def= min{λ| ρ ≤ 2λσ} (here
≤ represent the Löwner order), the relative min-entropy between ρ and σ. Let ρ =

∑
i ai |ai〉 〈ai|

and σ =
∑
i bi |bi〉 〈bi|. Alice performs the following projection on registers AA1 on each copy of

|ψ〉 and accepts the index of a copy iff the projection succeeds.

PA =
∑
i

|ai〉 〈ai| ⊗

Kai∑
m=1
|m〉 〈m|

 .
Similarly Bob performs the following projection (for appropriately chosen δ) on registers BB1
on each copy of |ψ〉 and accepts the index of a copy iff the projection succeeds.

PB =
∑
i

|bi〉 〈bi| ⊗

K·min{2cbi/δ,1}∑
m=1

|m〉 〈m|

 .
Again it is easily argued that (in the limit K → ∞), the marginal state in B (and also in A)
in the first copy of |ψ〉, with index i, in which Alice succeeds is ρ. Using crucially the fact
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that ρ ≤ 2cσ, we argue that after Alice’s measurement succeeds in a copy, Bob’s measurement
also succeeds with high probability and hence (by the gentle measurement lemma) does not
disturb the state much in the register B, conditioned on success. We also argue that Alice can
communicate the index of this copy to Bob with communication of O(c) bits (for constant ε).

As can be seen, our protocol is a natural quantum analogue of the protocol of Braverman and
Rao [BR11]. However, since ρ and σ may not commute, our analysis deviates significantly from
the analysis of [BR11]. We are required to show several new facts related to the non-commuting
case while arguing that the protocol still works fine.

We then consider the case in which S(ρ‖σ) (instead of S∞ (ρ‖σ)) is known to Alice and
Bob. The quantum substate theorem [JRS02, JN12] implies that there exists a quantum state
ρ′, having high fidelity with ρ such that S∞(ρ′‖σ) = O(S(ρ‖σ)). We argue that our protocol is
robust with respect to small perturbations in Alice’s input and hence works well for the pair
(ρ, σ) as well, and uses communication O(S(ρ‖σ)) bits. Again this requires us to show new facts
related to the non-commuting case.

Related work

Much progress has been made in the last decade towards proving direct sum and direct product
conjectures in various models of communication complexity and information theory has played
a crucial role in these works. Most of the proofs have build upon elegant one-shot protocols for
interesting information theoretic tasks. For example, consider the following task.

T1: Alice gets to know the eigen-decomposition of a quantum state ρ. Alice and Bob get to know
the eigen-decomposition of a quantum state σ. They also know c

def= S(ρ‖σ), the relative entropy
between ρ and σ and an error parameter ε. They use shared entanglement and communication
and at the end of the protocol, Bob ends up with a quantum state ρ̃ such that F(ρ, ρ̃) ≥ 1− ε.

Jain, Radhakrishnan and Sen in [JRS05, JRS08], showed that this task (for constant ε) can
be achieved with communication O(S(ρ‖σ) + 1) bits, and this led to direct sum theorems for
all relations in entanglement-assisted quantum one-way and entanglement-assisted quantum
simultaneous message-passing communication models. They also considered the special case
when the inputs to Alice and Bob are probability distributions P,Q respectively and showed
that O(S(P‖Q) + 1)) bits of communication can achieve this task (for constant ε). Later an
improved result was obtained by Harsha, Jain, Mc. Allester and Radhakrishnan [HJMR10],
where they presented a protocol in which Bob is able to sample exactly from P with expected
communication S(P‖Q)+2 log S(P‖Q)+O(1). This led to direct sum theorems for all relations in
the public-coin randomized one-way, public-coin simultaneous message passing [JRS05, JRS08]
and public-coin randomized bounded-round communication models [HJMR10].

Now let us consider the following task.

T2: Alice gets to know functions oA, oB, eA : U → [0, 1] and Bob gets to know functions
oB, eB, eA : U → [0, 1], such that the following functions form probability distributions on U :
P (m) def= oA(m)eB(m), Q(m) def= oB(m)eB(m) and R(m) def= oA(m)eA(m). They also receive
error parameter ε > 0 as common input. They use shared randomness, communication and at
the end of the protocol Bob should sample from a distribution P ′ such that F(P, P ′) ≥ 1− ε.

Jain, Radhakrishnan and Sen in [JRS05, JRS08], showed that this task (for constant ε) can
be achieved with a single message from Alice to Bob consisting of O((S(P‖Q)+1)2(S(P‖R)+1)) bits.
This was used by them to provide a round-independent direct-sum theorem for the distributional
two-way communication complexity of all relations under product distributions. This result
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was strengthened by Braverman [Bra12] where they considered the case when oB is not known
to Alice and eA is not known to Bob. They showed that in this case as well the task can be
achieved using same communication. This helped in generalizing the round-independent direct-
sum result of [JRS05, JRS08] to non-product distributions. Modified versions of Braverman’s
protocol were later extensively used for example by Braverman and Weinstein [BW12] to show
that information complexity is lower bounded by the discrepancy bound; by Kerenidis, Laplante,
Lerays, Roland, and Xiao [KLL+12] to show that information complexity is lower bounded by
smooth-rectangle bound and by Jain and Yao [JY12] to show a direct-product result for all
relations in terms of the smooth-rectangle bound.

Jain, Radhakrishnan and Sen in [JRS05, JRS08] showed that the appropriate quantum
version of the task T2 can also be achieved using similar communication. This implied a
round-independent direct-sum result for the distributional two-way entanglement-assisted com-
munication complexity of all relations under product distributions. Recently, using a claim
obtained in their result, Jain, Pereszlényi and Yao [JPY14] showed a parallel repetition theorem
for two-player one-round entangled free-games.

Organization

In the next section we present some preliminaries that are needed for our proofs. In section 3
we present the operational interpretation of quantum relative entropy. In section 4 we present
our quantum correlated sampling result. We present our direct sum result in section A.

2 Preliminaries
In this section we present some notations, definitions, facts and lemmas that we will use later
in our proofs.

Information theory

For integer n ≥ 1, let [n] represent the set {1, 2, . . . , n}. We use log to represent log2. Let X
and Y be finite sets and k be a natural number. We let X k denote the set X ×· · ·×X , the cross
product of X , k times. Let µ be a probability distribution on X . We let µ(x) represent the
probability of x ∈ X according to µ. We use the same symbol to represent a random variable
and its distribution whenever it is clear from the context. The expectation value of function f
on X is defined as Ex←X [f(x)] def=

∑
x∈X Pr[X = x] · f(x), where x← X means that x is drawn

according to distribution X.
A quantum state (or just a state) ρ is a positive semi-definite matrix with trace equal to

1. It is called pure if and only if the rank is 1. Let |ψ〉 be a unit vector. With slight abuse of
notation, we use ψ to represent the state and also the density matrix |ψ〉〈ψ|, associated with |ψ〉.
Let |ψ〉 represent the complex conjugation of |ψ〉, taken in the computational basis. A classical
distribution µ can be viewed as a quantum state with diagonal entries µ(x) and non-diagonal
entries 0. For two quantum states ρ and σ, ρ ⊗ σ represents the tensor product (Kronecker
product) of ρ and σ. A quantum super-operator E(·) is a completely positive and trace preserving
(CPTP) linear map from states to states. Readers can refer to [CT91, NC00, Wat11] for more
details.
Definition 2.1. The `1-distance (a.k.a trace-distance) between quantum states ρ and σ is given
by ‖ρ− σ‖1, where ‖X‖1

def= Tr
√
X†X is the sum of the singular values of X. We say that ρ is

ε-close to σ in `1 if ‖ρ− σ‖1 ≤ ε. The `2-distance between them is given by ‖ρ− σ‖2, where
‖X‖2

def=
√

TrXX†.
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Definition 2.2. The fidelity between quantum states ρ and σ is given by F(ρ, σ) def=
∥∥√ρ√σ∥∥1 .

For two classical distributions P and Q on set X , F(P,Q) =
∑
x∈X

√
P (x)Q(x).

The following fact relates the `1-distance and the fidelity between two states.

Fact 2.3 ([NC00] page 416). For quantum states ρ and σ, it holds that

2(1− F(ρ, σ)) ≤ ‖ρ− σ‖1 ≤ 2
√

1− F(ρ, σ)2.

For two pure states |φ〉 and |ψ〉, we have

‖φ− ψ‖1 = 2
√

1− F(φ, ψ)2 = 2
√

1− |〈φ|ψ〉|2.

Let ρAB be a bipartite quantum state in registers AB. We sometimes use the same symbol
to represent a quantum register and the Hilbert space associated with it. We define

ρB
def= TrA

(
ρAB

) def=
∑
i

(〈i| ⊗ 1B)ρAB(|i〉 ⊗ 1B),

where {|i〉}i is an orthonormal basis for the Hilbert space A and 1B is the identity matrix in
space B. The state ρB is referred to as the marginal state of ρAB in register B.

The following proposition states that the distance between two states cannot be increased
by quantum operations.

Fact 2.4 ([NC00],page 406, 414). For states ρ, σ, and quantum operation E(·), it holds that

‖E(ρ)− E(σ)‖1 ≤ ‖ρ− σ‖1 and F(E(ρ),E(σ)) ≥ F(ρ, σ).

In particular, for bipartite states ρAB and σAB, it holds that∥∥∥ρAB − σAB∥∥∥
1
≥
∥∥∥ρA − σA∥∥∥

1
and F(ρAB, σAB) ≤ F(ρA, σA).

Fact 2.5 ([Wat11] Lemma 4.41.). Let A,B be two positive semidefinite operators on Hilbert
space X . Then

‖A−B‖1 ≥
∥∥∥√A−√B∥∥∥2

2
.

Fact 2.6. Given two quantum states ρ and σ,

Tr√ρ
√
σ ≥ 1− 1

2 ‖ρ− σ‖1 ≥ 1−
√

1− F(ρ, σ)2.

Proof. By Facts 2.5 and 2.3,

2
√

1− F(ρ, σ)2 ≥ ‖ρ− σ‖1 ≥
∥∥√ρ−√σ∥∥2

2 = 2− 2 · Tr
(√
ρ
√
σ
)
.

The entropy of a quantum state ρ (in register X) is defined as S(ρ) def= −Trρ log ρ. We also
let S (X)ρ represent S(ρ). The relative entropy between quantum states ρ and σ is defined as
S(ρ‖σ) def= Trρ log ρ−Trρ log σ. The relative min-entropy between them is defined as S∞(ρ‖σ) def=
min

{
λ : ρ ≤ 2λσ

}
. Since logarithm is operator-monotone, we have S(ρ‖σ) ≤ S∞(ρ‖σ).

Fact 2.7 ([JRS09, JN12]). (Quantum substate theorem) Suppose ρ and σ are two quantum
states in the same Hilbert space. Then for any ε > 0, there exists ρ′ such that

F(ρ, ρ′) ≥ 1− ε and S∞
(
ρ′
∥∥σ) ≤ S(ρ‖σ) + 1

ε
+ log 1

1− ε.
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Fact 2.8 ([Win99, ON02]). (Gentle measurement lemma) Let ρ be a density operator and
Π be a projector. Then,

F(ρ, ΠρΠ
TrΠρ) ≥

√
TrΠρ.

Proof. Let |φ〉 be a purification of ρ. Then (Π⊗ I) |φ〉 is a purification of ΠρΠ. Hence (using
Fact 2.4)

F(ρ, ΠρΠ
TrΠρ) ≥ |〈φ| (Π⊗ I) |φ〉|

‖(Π⊗ I) |φ〉‖ =
√

Tr(Πρ).

Communication complexity

Let f ⊆ X × Y × Z be a relation. In this work, we are concerned with quantum one-way
communication complexity. In this model, Alice holds input x ∈ X and Bob holds input y ∈ Y.
They may share a prior quantum state independent of the inputs. Alice makes an arbitrary
unitary transformation on her qubits and sends part of her qubits to Bob. Bob makes a unitary
operation and measures the last few qubits (answer registers) in the computational basis to get
the answer z ∈ Z. The answer is declared correct if (x, y, z) ∈ f . Let Qent,A→B

ε (f) represent
the quantum one-way communication complexity of f with worst case error ε, that is the
communication of the best such protocol computing f with error at most ε on any input (x, y).

Variants of the following lemma have appeared in many other works such as [BR11, KLL+12].

Lemma 2.9. Let N, r > 0, δ ∈ (0, 1). Let Alice and Bob perform multiple identical independent
trials such that for each trial,

1. Pr[Alice succeeds] = 1
N ; Pr[Bob succeeds] ≤ 2r

N ;

2. Pr[Bob succeeds | Alice succeeds] ≥ 1− δ.

There exists a protocol with dr+ 3 log 1
δ e bits of communication from Alice to Bob such that with

probability at least 1− 4δ, Alice and Bob choose the same trial.

Proof of this lemma and the description of protocol is deferred to Appendix B.

3 An operational interpretation of quantum relative entropy
Following is our main result in this section.

Theorem 3.1. Alice is given the spectral decomposition of ρ =
∑N
i=1 ai |ai〉〈ai| and Bob is given

the spectral decomposition of σ =
∑N
i=1 bi |bi〉〈bi|. Let S(ρ‖σ) and ε > 0 be known to Alice and

Bob. There exists a protocol, in which Alice and Bob use shared entanglement and Alice sends
O(S(ρ‖σ) + 1)/ε4) bits of communication to Bob such that with probability at least 1− 4ε, the
state ρ̃ that Bob gets at the end of the protocol satisfies F(ρ, ρ̃) ≥ 1− ε .

Proof. Follows immediately by combining Lemma 2.9 and Lemma 3.2 below.

Following is our key lemma.

Lemma 3.2. Fix ε > 0. Let δ = (ε/3)4. Let (ρ, σ) be the input for the trial in Figure 1 with
c = S(ρ‖σ). Let ρ′ be a state, guaranteed by the quantum substate theorem (Fact 2.7), such that
F(ρ′, ρ) = 1− δ and ρ′ ≤ 2c′σ, with c′ = c+2

δ ≥
c+1
δ + log 1

1−δ . Then,

1. Pr[Alice succeeds] = 1
N ; Pr[Bob succeeds] ≤ 2c′

δN ;
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Input: Alice is given the spectral decomposition of ρ =
∑N
i=1 ai |ai〉〈ai| and Bob is given the spectral

decomposition of σ =
∑N
i=1 bi |bi〉〈bi|. Let S(ρ‖σ) and ε > 0 be known to both Alice and Bob.

Let δ = (ε/3)4 and c′ = (c + 2)/δ. Let {|1〉 , |2〉 . . . |N〉} be an orthonormal basis for H, the support of
ρ, σ. We assume that a1, a2, . . . aN , 22c′

b1, 22c′
b2 . . . 22c′

bN are rounded to nearest multiple of 1/K. The
error due to this assumption goes to 0 as K →∞.

Alice and Bob share the following state where registers AA1 belong to Alice and registers BB1 belong to
Bob.

|S〉 = 1√
KN

N∑
i=1
|i, i〉AB ⊗

(
K∑
m=1
|m,m〉A1B1

)

1. Alice performs the measurement {PA, I − PA} on the registers AA1 where,

PA =
∑
i

|ai〉 〈ai| ⊗

(
Kai∑
m=1
|m〉 〈m|

)
.

She declares success if PA succeeds.

2. Bob performs the measurement {PB , I − PB} on the registers BB1, where

PB =
∑
i

|bi〉 〈bi| ⊗

K·min{ 1
δ 2c

′
bi,1}∑

m=1
|m〉 〈m|

 .

He declares success if PB succeeds.

Figure 1: Trial

2. Pr[Bob succeeds| Alice succeeds] ≥ 1− δ − 2δ1/4 ≥ 1− ε;

3. Given that both Alice and Bob succeed, fidelity between ρ and the state of the register B is
at least

√
1− δ − 2δ1/4 ≥ 1− ε .

Proof. 1. Easily verified by direct calculations.

2. We start with the following claim which is of independent interest as well.

Claim 3.3. Let ρ′ have the spectral decomposition ρ′ =
∑
i gi |gi〉 〈gi|. For any p > 0 and

every |gi〉 〈gi|, we have
∑
j| bj≤p·gi |〈bj |gi〉|

2 ≤ 2c′ · p.

Proof. Since ρ′ ≤ 2c′σ, it implies gi |gi〉 〈gi| ≤ 2c′σ. Let Π be the projection onto the
eigenspace of σ with eigenvalues less than or equal to p · gi. We have ΠσΠ ≤ p · gi · Π.
After applying Π on both sides of the equation gi |gi〉 〈gi| ≤ 2c′σ and taking operator norm
on both sides, we get gi

∑
j| bj≤p·gi |〈bj |gi〉|

2 ≤ 2c′ · p · gi. This implies the lemma.

Define

|SA(ρ)〉 = 1√
K

N∑
i=1
|ai〉 |ai〉 ⊗

Kai∑
m=1
|m,m〉

 ;
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∣∣SA(ρ′)
〉

= 1√
K

N∑
i=1
|gi〉 |gi〉 ⊗

Kgi∑
m=1
|m,m〉

 .
Here |ai〉 (similarly |gi〉) is the state obtained by taking complex conjugate of |ai〉, with
respect to the basis {|1〉 , |2〉 . . . |N〉}.
The following claim asserts that |SA(ρ)〉 and |SA(ρ′)〉 are close if ρ and ρ′ are close.

Claim 3.4. |〈SA(ρ)|SA(ρ′)〉| ≥ 1− 2(1− F(ρ, ρ′))1/4.

Proof. Define Rij
def= ai |〈ai|gj〉|2 and R′ij

def= gi |〈ai|gj〉|2. Note that both {Rij} and {R′ij}
form probability distributions over [N2]. Also note that F(R,R′) = Tr(√ρ

√
ρ′). Consider

(using Facts 2.6 and 2.3),∣∣〈SA(ρ)|SA(ρ′)〉
∣∣ =

∑
i,j

min(Rij , R′i,j) = 1− 1
2
∥∥R−R′∥∥1

≥ 1−
√

1− F(R,R′)2 = 1−
√

1− (Tr√ρ
√
ρ′)2

≥ 1−
√

2(1− Tr√ρ
√
ρ′) ≥ 1−

√
2
√

1− F(ρ, ρ′)2

≥ 1− 2(1− F(ρ, ρ′))1/4.

Consider,

(IA ⊗ PB)
∣∣SA(ρ′)

〉
= 1√

K

N∑
i,j=1
|gj〉 |bi〉 〈bi|gj〉

K·min{gj , 1
δ

2c′bi}∑
m=1

|m,m〉

 .
Therefore,

∥∥(IA ⊗ PB)
∣∣SA(ρ′)

〉∥∥2 =
N∑

i,j=1
|〈bi|gj〉|2 min{gj ,

1
δ

2c′bi}

≥
N∑
j=1

gj

 ∑
i| bi≥δ2−c′gj

|〈bi|gj〉|2
 ≥ N∑

j=1
gj(1− δ) = 1− δ. (using Claim 3.3) (1)

Using the above,

Pr[Bob succeeds| Alice succeeds] = Tr(IA ⊗ PB) |SA(ρ)〉〈SA(ρ)|

≥ Tr(IA ⊗ PB)
∣∣SA(ρ′)

〉〈
SA(ρ′)

∣∣− 1
2
∥∥SA(ρ)− SA(ρ′)

∥∥
1

= Tr(IA ⊗ PB)
∣∣SA(ρ′)

〉〈
SA(ρ′)

∣∣−√1− |〈SA(ρ)|SA(ρ′)〉|2 (Fact 2.3)

≥ 1− δ − 2
√

(1− F(ρ, ρ′))1/2. (Claim 3.4 and Eq. (1))

3. From Fact 2.8,

F(SA(ρ), (IA ⊗ PB) |SA(ρ)〉〈SA(ρ)| (IA ⊗ PB)
Tr(IA ⊗ PB) |SA(ρ)〉〈SA(ρ)| ) ≥

√
Tr(IA ⊗ PB) |SA(ρ)〉〈SA(ρ)|.

Since the marginal of |SA(ρ)〉 on register B is ρ and partial trace does not decrease fidelity
(Fact 2.4), using item 2. above, the desired follows.
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As a consequence of Theorem 3.1 we obtain the following direct sum result for all relations
in the model of entanglement-assisted one-way communication complexity. Its proof is deferred
to Appendix A.

Theorem 3.5. Let X ,Y,Z be finite sets, f ⊆ X ×Y ×Z be a relation, 0 < ε, δ < 1
10 and k > 1

be an integer. We have

Qent,A→B
ε

(
fk
)
≥ Ω

(
δ4 · k

(
Qent,A→B
ε+δ (f)− 1

))
.

4 Quantum correlated sampling
Theorem 4.1. Alice is given the spectral decomposition of ρ =

∑N
i=1 ai |ai〉〈ai| and Bob is given

the spectral decomposition of σ =
∑N
i=1 bi |bi〉〈bi|. There exists a zero-communication protocol

(Figure 2) satisfying the following.

1. Alice outputs registers A,A1 and and Bob outputs registers B,B1 respectively, such that
state in A is ρ and the state in B is σ.

2. Let M = {M1,M2 . . .Mw} be a projective measurement, in the support of AA1. Let M be
performed by Alice on the joint system AA1 with outcome I ∈ [w] and by Bob on the joint

system BB1 with outcome J ∈ [w]. Then Pr[I = J ] ≥
(

1−
√
‖ρ− σ‖1 −

1
4 ‖ρ− σ‖

2
1

)3
.

Input: Alice is given the spectral decomposition of ρ =
∑N
i=1 ai |ai〉〈ai| and Bob is given the spectral

decomposition of σ =
∑N
i=1 bi |bi〉〈bi|.

Let {|1〉 , |2〉 . . . |N〉} be an orthonormal basis for Hilbert space H, support of ρ, σ. We assume that
a1, . . . , aN , b1, . . . bN are rounded to nearest multiple of 1/K. The error due to this assumption goes to 0
as K →∞.

Alice and Bob share infinite copies of the following state:

|S〉 = 1√
KN

N∑
i=1
|i, i〉AB ⊗

(
K∑
m=1
|m,m〉A1B1

)

1. Alice performs the measurement {PA, I − PA} on the registers AA1 in each copy of |S〉 where,

PA =
∑
i

|ai〉 〈ai| ⊗

(
Kai∑
m=1
|m〉 〈m|

)

For the first copy in which PA succeeds, she outputs the registers AA1.

2. Bob performs the measurement {PB , I − PB} on the registers BB1 in each copy of |S〉 where,

PB =
∑
i

|bi〉 〈bi| ⊗

(
Kbi∑
m=1
|m〉 〈m|

)

For the first copy in which PB succeeds, he outputs the registers BB1.

Figure 2: Quantum correlated sampling
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Proof. Let the joint state in the registers output by Alice and Bob at the end of the protocol
be τ . The following claim shows the first part of the theorem.

Claim 4.2. TrA1BB1(τ) = ρ and TrB1AA1(τ) = σ.

Proof. It is easily seen that the state in register A in (PA ⊗ I) |S〉 is ρ. Similarly the state in
register B in (I ⊗ PB) |S〉 is σ.

Claim 4.3.
τ ≥ (PA ⊗ PB) |S〉 〈S| (PA ⊗ PB)

1− 〈S| (I − PA)⊗ (I − PB) |S〉 .

Proof. Consider the event that Alice and Bob succeed at the same index. The resulting state
in AA1BB1 is

(PA ⊗ PB) |S〉 〈S| (PA ⊗ PB)
〈S| (PA ⊗ PB) |S〉 ,

and this event occurs with probability
∞∑
i=0
〈S| (I − PA)⊗ (I − PB) |S〉i · 〈S| (PA ⊗ PB) |S〉 = 〈S| (PA ⊗ PB) |S〉

1− 〈S| (I − PA)⊗ (I − PB) |S〉 .

Since the cases of Bob succeeding before Alice and vice versa add positive operators to τ , we
get the desired.

Claim 4.4. Let |θ〉 def= (PA⊗PA)|S〉
‖(PA⊗PA)|S〉‖ . Then

〈θ| τ |θ〉 ≥

(
1−

√
‖ρ− σ‖1 −

1
4 ‖ρ− σ‖

2
1

)2

1 +
√
‖ρ− σ‖1 −

1
4 ‖ρ− σ‖

2
1

≥
(

1−
√
‖ρ− σ‖1 −

1
4 ‖ρ− σ‖

2
1

)3

.

Proof. Consider,

〈θ| τ |θ〉 ≥ |〈θ|PA ⊗ PB |S〉|2

1− 〈S| (I − PA)⊗ (I − PB) |S〉 (Claim 4.3)

= |〈θ|PA ⊗ PB |S〉|2

2/N − 〈S|PA ⊗ PB |S〉
(using 〈S|PA ⊗ I |S〉 = 〈S| I ⊗ PB |S〉 = 1/N).

By direct calculation, we get

(PA ⊗ PB) |S〉 = 1√
KN

∑
i,j

|ai〉 〈bj |ai〉 |bj〉
K min(ai,bj)∑

m=1
|m,m〉 ;

|θ〉 = 1√
K

∑
i

|ai〉 |ai〉
Kai∑
m=1
|m,m〉 .

Hence,

〈θ| τ |θ〉 ≥

(∑
i,j min(ai, bj) |〈ai|bj〉|2

)2

2−
∑
i,j min(ai, bj) |〈ai|bj〉|2

. (2)
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Define Rij
def= ai |〈ai|bj〉|2 and R′ij

def= bi |〈ai|bj〉|2. Note that both {Rij} and {R′ij} form
probability distributions over [N2]. Also note that F(R,R′) = Tr(√ρ

√
σ). Consider (using

Facts 2.6 and 2.3),

∑
i,j

min(Rij , R′i,j) = 1− 1
2
∥∥R−R′∥∥1 ≥ 1−

√
1− F(R,R′)2

= 1−
√

1− (Tr√ρ
√
σ)2 ≥ 1−

√
‖ρ− σ‖1 −

1
4 ‖ρ− σ‖

2
1. (3)

Combining Equations (2) and (3) we get the desired.

Claim 4.5. Let M = {M1,M2 . . .Mw} be a projective measurement in the support of AA1.
Let E =

∑w
i=1Mi ⊗Mi. Then TrE |θ〉〈θ| = 1.

Proof. Since Mi is a projector in the support of AA1, we have (Mi ⊗Mi) |θ〉 = (Mi ⊗ I) |θ〉.
Hence,

〈θ|E |θ〉 =
∑
i

〈θ|Mi ⊗Mi |θ〉 =
∑
i

〈θ|Mi ⊗ I |θ〉 = 1.

Finally using Fact 2.4 and Claim 4.4 we get the second part of the theorem as follows.

√
Tr(Eτ) ≥ F(τ, |θ〉〈θ|) =

√
〈θ| τ |θ〉 ≥

(
1−

√
‖ρ− σ‖1 −

1
4 ‖ρ− σ‖

2
1

)3/2

.

Open questions

Some interesting open questions related to this work are as follows.

1. Can we show a direct product result for all relations in the one-way entanglement assisted
communication model ?

2. Can we show a direct sum (and also possibly direct product) result for all relations in the
bounded-round entanglement assisted communication model ?

3. Can we find other interesting applications of the protocols appearing in this work ?

Acknowledgment

We thank Ashwin Nayak for helpful discussions. This work is supported by the internal grants
of the Center for Quantum Technologies (CQT), Singapore. Work of A.S. done while visiting
CQT, Singapore.

References
[BR11] Mark Braverman and Anup Rao. Information equals amortized communication. In

Proceedings of the 52nd Symposium on Foundations of Computer Science, FOCS
’11, pages 748–757, Washington, DC, USA, 2011. IEEE Computer Society.

[Bra12] Mark Braverman. Interactive information complexity. In Proceedings of the 44th
annual ACM Symposium on Theory of Computing, STOC ’12, pages 505–524, New
York, NY, USA, 2012. ACM.

11



[BRWY13] Mark Braverman, Anup Rao, Omri Weinstein, and Amir Yehudayoff. Direct product
via round-preserving compression. In Proceedings of the 40th international conference
on Automata, languages and programming, ICALP’13, Berlin, Heidelberg, 2013.
Springer-Verlag.

[BW12] Mark Braverman and Omri Weinstein. A discrepancy lower bound for information
complexity. In Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques, Lecture Notes in Computer Science, pages 459–470.
Springer Berlin Heidelberg, 2012.

[CT91] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory. Wiley
Series in Telecommunications. John Wiley & Sons, New York, NY, USA, 1991.

[DSV14] Irit Dinur, David Steurer, and Thomas Vidick. A parallel repetition theorem for
entangled projection games. In Proceedings of the 29th IEEE Annual Conference
on Computational Complexity, CCC ’14, to appear, Washington, DC, USA, 2014.
IEEE Computer Society.

[HJMR10] P. Harsha, R. Jain, D. McAllester, and J. Radhakrishnan. The communication
complexity of correlation. IEEE Transactions on Information Theory, 56(1):438–
449, Jan 2010.

[Hol07] Thomas Holenstein. Parallel repetition: simplifications and the no-signaling case.
In Proceedings of the thirty-ninth annual ACM Symposium on Theory of Computing,
STOC ’07, pages 411–419, New York, NY, USA, 2007.

[Jai13] Rahul Jain. New strong direct product results in communication complexity. Journal
of the ACM, to appear, 2013.

[JN12] Rahul Jain and Ashwin Nayak. Short proofs of the quantum substate theorem.
IEEE Transactions on Information Theory, 58(6):3664–3669, 2012.

[JPY12] Rahul Jain, Attila Pereszlényi, and Penghui Yao. A direct product theorem for the
two-party bounded-round public-coin communication complexity. In Proceedings
of the 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science,
FOCS ’12, pages 167–176, Washington, DC, USA, 2012.

[JPY14] Rahul Jain, Attila Pereszlényi, and Penghui Yao. A parallel repetition theorem for
entangled two-player one-round games under product distributions. In Proceedings
of the 29th IEEE Annual Conference on Computational Complexity, CCC ’14, to
appear, Washington, DC, USA, 2014. IEEE Computer Society.

[JRS02] Rahul Jain, Jaikumar Radhakrishnan, and Pranab Sen. Privacy and interaction in
quantum communication complexity and a theorem about the relative entropy of
quantum states. In Proceedings of the 43rd Symposium on Foundations of Computer
Science, FOCS ’02, pages 429–438, Washington, DC, USA, 2002. IEEE Computer
Society.

[JRS05] Rahul Jain, Jaikumar Radhakrishnan, and Pranab Sen. Prior entanglement, message
compression and privacy in quantum communication. In Proceedings of the 20th
Annual IEEE Conference on Computational Complexity, pages 285–296, Washington,
DC, USA, 2005. IEEE Computer Society.

12



[JRS08] Rahul Jain, Jaikumar Radhakrishnan, and Pranab Sen. Optimal direct sum and
privacy trade-off results for quantum and classical communication complexity. CoRR,
abs/0807.1267, 2008.

[JRS09] Rahul Jain, Jaikumar Radhakrishnan, and Pranab Sen. A new information-theoretic
property about quantum states with an application to privacy in quantum commu-
nication. Journal of the ACM, 56(6), September 2009. Article no. 33.

[JY12] Rahul Jain and Penghui Yao. A strong direct product theorem in terms of the
smooth rectangle bound. CoRR, abs/1209.0263, 2012.

[KLL+12] Iordanis Kerenidis, Sophie Laplante, Virginie Lerays, Jeremie Roland, and David
Xiao. Lower bounds on information complexity via zero-communication protocols
and applications. In Proceedings of the 2012 IEEE 53rd Annual Symposium on
Foundations of Computer Science, FOCS ’12, pages 500–509, Washington, DC,
USA, 2012. IEEE Computer Society.

[NC00] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum
Information. Cambridge University Press, Cambridge, UK, 2000.

[ON02] T. Ogawa and H. Nagaoka. A new proof of the channel coding theorem via hypothesis
testing in quantum information theory. In Information Theory, 2002. Proceedings.
2002 IEEE International Symposium on, pages 73–, 2002.

[Sha48] C. E. Shannon. A mathematical theory of communication. Bell System Technical
Journal, 27(3):379–423, 1948.

[SW73] David Slepian and Jack K. Wolf. Noiseless coding of correlated information sources.
IEEE Transactions on Information Theory, 19(4):471–480, 1973.

[Wat11] John Watrous. Theory of Quantum Information, lecture notes, https://cs.
uwaterloo.ca/~watrous/LectureNotes.html, 2011.

[Win99] Andreas Winter. Coding theorem and strong converse for quantum channels. IEEE
Transactions on Information Theory, 45(7):2481–2485, 1999.

[Yao79] Andrew C. Yao. Some complexity questions related to distributive computing
(preliminary report). In Proceedings of the eleventh annual ACM Symposium on
Theory of Computing, STOC ’79, pages 209–213, New York, NY, USA, 1979. ACM.

A A direct sum theorem for quantum one-way communication
complexity

We start with some preliminaries needed for our proof.
Let ρXY be a quantum state in space X⊗Y . The conditional entropy is defined as S(X|Y ) def=

S(ρXY )− S(ρY ). The mutual information between registers X and Y is defined as

I(X : Y )ρ
def= S(X)− S(X|Y ) = S (X)ρ + S (Y )ρ − S (XY )ρ .

It is easy to see that I (X : Y )ρ = S
(
ρ
∥∥∥ρX ⊗ ρY ). If X is a classical register, namely ρ =∑

x µ(x) |x〉〈x| ⊗ ρx, where µ is a probability distribution over X, then

I(X : Y )ρ = S (Y )ρ − S (Y |X)ρ = S
(∑

x

µ(x)ρx

)
−
∑
x

µ(x)S (ρx) ,
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where the conditional entropy is defined as S(Y |X)ρ
def= Ex←µ [S(ρx)] . Let ρXY Z be a quantum

state with Y being a classical register. The mutual information between X and Z, conditioned
on Y , is defined as

I(X : Z |Y )ρ
def= E

y←Y

[
I(X : Z |Y = y)ρ

]
= S (X|Y )ρ + S (Z|Y )ρ − S (XZ|Y )ρ .

The following chain rule for mutual information follows easily from the definitions, when Y is a
classical register.

I(X : Y Z)ρ = I(X : Y )ρ + I(X : Z |Y )ρ .

We will need the following basic facts.

Fact A.1 ([NC00], page 515). For any joint quantum system AB, it holds that |S(A)− S(B)| ≤
S(AB) ≤ S(A) + S(B). Hence

I(A : B) = S(A) + S(B)− S(AB) ≤ 2S(A).

We have the following chain rules for relative entropy and mutual information.

Fact A.2. Let ρ =
∑
x µ(x) |x〉〈x| ⊗ ρx and ρ1 =

∑
x µ

1(x) |x〉〈x| ⊗ ρ1
x. It holds that

S
(
ρ1
∥∥∥ρ) = S

(
µ1
∥∥∥µ)+ E

x←µ1

[
S
(
ρ1
x

∥∥∥ρx)] .
Fact A.3. Let XM be a joint system where X = X1 · · ·Xk are independent. Then,

I(X : M) ≥
k∑
i=1

I(Xi : M) .

Fact A.4. Relative entropy is non-increasing when subsystems are considered. Let ρXY and
σXY be quantum states, then S

(
ρXY

∥∥∥σXY ) ≥ S
(
ρX
∥∥∥σX) .

We let Qent,A→B,µ
ε (f) represent distributional quantum one-way communication complexity

of f under µ with distributional error at most ε, that is the communication of the best such
protocol computing f with error averaged over µ upper bounded by ε. Following is Yao’s
min-max theorem connecting the worst case error and the distributional error settings.

Fact A.5. [Yao79] Qent,A→B
ε (f) = maxµ Qent,A→B,µ

ε (f).

Proof of Theorem 3.5: Let µ be any distribution over X × Y. We show the following, which
combined with Fact A.5 implies the desired.

Qent,A→B,µk
ε

(
fk
)
≥ Ω

(
δ4 · k

(
Qent,A→B,µ
ε+δ (f)− 1

))
.

Let P be a quantum one-way protocol with communication c · k computing fk with overall
probability of success at least 1− ε under distribution µk. Let the following be the global state
after Alice sends the message to Bob and before Bob does any operation.

ρ
def=
∑
xy

µk(x, y) |xy〉〈xy|XY ⊗ |ψxy〉〈ψxy|AB .

Let D = D1 · · ·Dk be uniformly distributed over {0, 1}k and independent of the input XY . Let
Ui = Xi if Di = 0 and Ui = Yi if Di = 1. Note that B = MB′ where M represents the message
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Alice sends to Bob and B′ be the part Bob holds initially. It holds that |M | ≤ ck and B′ = |0〉〈0|
is independent of everything. Hence

I(XYDU : B)ρ = I
(
XYDU : B′

)
ρ + I

(
XYDU : M

∣∣B′)ρ ≤ 2S(M) ≤ 2ck,

where the last inequality is from Fact A.1. Applying the chain rule, we have (below −i represents
[k]− {i})

2c ≥ I(XY : B |DU)ρ ≥
k∑
i=1

I(XiYi : B |DU)ρ

= 1
2

(
k∑
i=1

(
I(Xi : B |YiD−iU−i)ρ + I(Yi : B |XiD−iU−i)

)
ρ

)
= 1

2

k∑
i=1

I(Xi : B |YiD−iU−i)ρ ,

where the first equality is from the definition of DU and the second equality is from the fact
that conditioned on Xi, Yi is independent of everything else.

Hence there exists j ∈ [k] such that

I(Xj : B |YjD−jU−j)ρ ≤ 4c. (4)

We also have
I(XjYj : D−jU−j)ρ = 0. ; I(Y : B |XjD−jU−j)ρ = 0. (5)

Above holds from definitions and because Y is independent of everything conditioned on
D−jU−jXj .

We exhibit an entanglement-assisted one-way protocol Q for f with communication less
than c and distributional error ε under distribution µ. Given input (x, y) ∼ µ, Alice and Bob
embed the input to the j-th coordinate XjYj . They share public coins according to distribution
D−jU−j , which are independent of the inputs by (5). From (5),

E
xjyjd−ju−j←XjYjD−jU−j

[
S
(
ρBxjyjd−ju−j

∥∥∥ρBxjd−ju−j)] = 0,

which implies ρBxjyjd−ju−j = ρBxjd−ju−j for all xj , yj , d−ju−j . From (4),

E
xjyjd−ju−j←XjYjD−jU−j

[
S
(
ρBxjyjd−ju−j

∥∥∥ρByjd−ju−j)] ≤ 4c.

Note that given input (xj , yj) and shared public coins d−ju−j , Alice knows the state ρBxjyjd−ju−j =
ρBxjd−ju−j , which is the actual state needed to transmit to Bob. Bob knows the state ρByjd−ju−j .
Let

G
def=
{

(xj , yj , d−j , u−j) : S
(
ρBxjyjd−ju−j

∥∥∥ρByjd−ju−j) ≤ 4c/δ
}
.

By Markov inequality,
Pr[XjYjD−jU−j ∈ G] ≥ 1− δ.

Using the protocol in Theorem 3.1, for all (xj , yj , d−j , u−j) ∈ G, Alice is able to transmit a state
δ-close in `1 distance to ρBxjyjd−ju−j with O(c+ 1)/δ2) communication. Here we use Fact 2.6 to
convert fidelity to trace distance. Bob then creates the pure state corresponding to remaining
Y and then acts as in P to output the answer. The overall distributional error in Q is therefore
at most 2δ + ε. Hence (resetting δ → 2δ)

Qent,A→B,µ
ε+δ (f) ≤ O((c+ 1)/δ4),

which implies
Qent,A→B,µk
ε

(
fk
)
≥ Ω

(
δ4 · k

(
Qent,A→B,µ
ε+δ (f)− 1

))
.
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B Proof of Lemma 2.9
Proof. The protocol is given in Figure 3. The communication cost is dlog log 1

δ e+ dr+ 2 log 1
δ e ≤

dr + 3 log 1
δ e. To prove the probability of success, let us define the following "bad" events.

Definition B.1. Let

• B1 represents the event that the length of the binary representation of k exceeds dlog log 1
δ e;

• B2 represents the event that i /∈ SB conditioning on ¬B1;

• B3 represents the event that j 6= i conditioning on ¬B1.

Alice and Bob share infinitely many random hash functions h1, h2, · · · , where each hl : {0, · · · , N − 1} →
{0, 1}.

1. Alice selects the first index i where she succeeds and sends to Bob the binary encoding of k = di/Ne
using dlog log 1

δ e bits (if k is too big, she send 0 meaning abort.) Alice outputs i.

2. Alice sends {hl(i mod N)| l ∈ [dr + 2 log 1
δ e]} to Bob.

3. Bob selects the first index j in SB
def= {t| Bob succeeds on index t}∩{(k− 1)N, · · · , kN − 1} such

that ∀l ∈ [dr + 2 log 1
δ e] : hl(j mod n) = hl(i mod n) and outputs j (if no such index exists, he

outputs 0).

Figure 3: Protocol

Claim B.2. It holds that: 1. Pr[B1] ≤ δ; 2. Pr[B2] ≤ δ; 3. Pr[B3] ≤ 3δ.

Proof. 1. Pr[B1] ≤
(
1− 1

N

)N ·2dlog log 1
δ
e

≤ exp−2dlog log 1
δ
e
≤ δ.

2. Follows from item 2 in Lemma 2.9.

3. For this argument we condition on ¬B1 for all events below. From item 1 in Lemma 2.9
and Markov’s inequality,

Pr
[
|SB| ≥

2r

δ

]
≤ δ

2r · E[|SB|] ≤ δ. (6)

Thus

Pr[B3] ≤ Pr[|SB| ≥ 2r/δ or i /∈ SB] + Pr[B3 | i ∈ SB and |SB| ≤ 2r/δ]
≤ 2δ + Pr[B3 | i ∈ SB and sB ≤ 2r/δ] (Eq. (6) and item 2. of this claim)

≤ 2δ + 2−dr+2 log 1
δ
e · 2r

δ
≤ 3δ.

We conclude the result using above and item 1. of this claim:

Pr[j 6= i] ≤ Pr[B1] + Pr[¬B1] · Pr[B3] ≤ 4δ.
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