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Abstract

We consider unidirectional data streams with restricted access, such as read-only and write-only
streams. For read-write streams, we also introduce a new complexity measure called expansion, the ratio
between the space used on the stream and the input size.

We give tight bounds for the complexity of reversing a stream of length n in several of the possible
models. In the read-only and write-only model, we show that p-pass algorithms need memory space
Θ(n/p). But if either the output stream or the input stream is read-write, then the complexity falls to
Θ(n/p2). It becomes polylog(n) if p = O(log n) and both streams are read-write.

We also study the complexity of sorting a stream and give two algorithms with small expansion. Our
main sorting algorithm is randomized and has O(1) expansion, O(log n) passes and O(log n) memory.

1 Introduction

Background and Motivations. Streaming algorithms have been studied for estimating statistics, checking
properties and computing functions (more often with sublinear outputs) on massive inputs for several years.
However, less is known on computing functions that also have a massive output, and therefore require two
data streams, one for the input and one for the output. The notion of reversal complexity on a multi-tape
machine, which can be related to streaming complexity with multiple streams, was first introduced in 1970
by Kameda and Vollmar [12] for decision problems. The model however was not explored again until
1991 when Chen and Yap [5] considered the computable functions in this model, and gave an algorithm for
sorting using two streams with O(log n) passes and (internal) memory space of size O(log n). This was a
significant improvement over the lower bound for the case of a single stream which requires Ω(n/s) passes,
where s is the size of the memory space, as proved by Munro and Paterson [15].

Recently the interest for complexity in models with multiple streams has been renewed. Indeed, streams
are now considered as a model of external storage allowing multiple sequential passes on them. Hernich and
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Schweikardt [10] gave reductions from classical complexity classes to the classes of problems decidable with
O(1) streams. Grohe, Koch, Hernich and Scwheikardt [9, 8] also gave several tight lower bounds for multi-
stream algorithms using o(log n) passes. Gagie [7] showed that two streams achieve perfect compression
in polylogarithmic memory space and a polylogarithmic number of passes. Beame, Hyunh, Jayram and
Rudra [3, 2] also proved several lower bounds on approximating frequency moments with multiple streams
and o(log n) passes. However, there is a distinct lack of lower bounds for multi-stream algorithms with
Ω(log n) passes. Indeed, most classical tools (such as reduction to communication complexity) for proving
lower bounds on streaming algorithms fail for multiple streams. One exception is Ruhl’s [17] W-Stream
and StreamSort models. In W-Stream each (unidirectional) stream is alternatively read-only and write-only,
and passes are synchronized; while this model seems similar to ours, it is actually much less powerful and
most lower bounds match the naive linear algorithms. StreamSort is the W-Stream model augmented with a
sorting oracle and yields more interesting results, but of course trivializes the problem we study in this paper.
Indeed, most classical tools (such as reduction to communication complexity) for proving lower bounds on
streaming algorithms fail for multiple streams.

We therefore take an opposite approach and restrict the number of streams to two, the input stream
and the output stream. This leads to our notion of input/output streaming algorithms. For many scenarios,
this model is in fact more realistic since, as an external storage, it comes at a cost to use several streams
simultaneously. In fact, the idea of using only input and output and constrained secondary storage can also
be found in other models, such as [1]. Additionally, we only allow passes in one direction on both streams.
This may looks too restrictive since bidirectional passes provide exponential speedup in several decision
problems, as exhibited by several works [14, 11, 4, 13, 6]. However, changing the direction of processing a
stream can have a higher cost: most hard drives spin in only one direction and reading them in the other is
not as practical. We also consider three types of stream accesses: read-only (for the input stream), write-only
(for the output stream) and read-write (for any or both streams). We emphasise that by write-only stream
we mean that once the algorithm has written in a cell, it can never overwrite it.

For read-write streams, we introduce the new complexity measure of expansion of a streaming algorithm,
i.e. the ratio between the maximal size of the stream during the computation and the size of the input (this
concept does not make sense for read-only and write-only stream, which cannot be used for intermediate
computations). While space on external storage is by definition not as constrained as memory space, in
the case of massive inputs requiring large hard drives, expanding them even by a factor O(log n) is not
reasonable. To the best of our knowledge, while it has sometimes been implicitely limited to 1 or O(1), this
measure of complexity has never been studied before for potential trade-offs with space or time.

We then study two problems, Reverse and Sort, in the model of input/output streaming algorithms.
Both problems consists in copying the content of the input stream to the output stream, in reverse order for
the first problem, and in sorted order for the second one. Because of its importance in real applications, Sort
has been extensively studied in many contexts. However, there is still a lot to say about this problem in face
of new models of computation that massive data arise. Reverse can be seen as the simplest instance of Sort.
It is natural to study its complexity since we forbid any reverse pass on streams. Moreover, any algorithm
for Reverse gives a way to implement each of the efficient bidirectional (and single stream) algorithms
of [14, 13, 6] in our model, thus giving another example of a speed-up with multiple streams.

Our results. In Section 3, we give tight bounds for the complexity of Reverse. We provide deterministic
algorithms that are optimal even against randomized ones. Using communication complexity to prove lower
bounds with multiple streams is inherently difficult as soon as there are multiple passes on both. Indeed,
it is possible to copy one stream on the other one, and since heads move separately, the algorithm can
access at any part of the second stream while processing the first one. In the read-only/write-only model, we
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instead skip communication complexity and prove directly with information theory that a p-pass algorithm
needs space Ω(n/p) (Theorem 1). In the read-only/read-write model, we similarly show that any p-pass
algorithm needs space Ω(n/p2) (Theorem 4). We provide an algorithm achieving that bound by copying
large (unreversed) blocks from the input, and then placing correctly one element from each of the blocks
during each pass (Theorem 2). Similar results hold in the read-write/write-only model (Theorems 3 and 6).
Last, we consider the read-write/read-write model and give a O(log n)-pass algorithm with polylogarithmic
memory space (Theorem 7). All our algorithms presented make extensive use of the ability to only write
part of a stream during a pass. In the more restrictive W-Stream model where this is not possible, as shown
by [17], a p-pass algorithm requires memory Ω(n/p).

In Section 4, we consider problem Sort. Even with two streams only, it appears to have a tight bound, as
the algorithm by Chen and Yap [5] matches the lower bound proved by Grohe, Hernich and Scwheikardt [8].
However, Chen and Yap’s algorithm was not designed with expansion in mind: it works by replicating the
input n times, thus using O(n2) cells on the input and output streams. In this context, linear expansion of
the input is not reasonable. We therefore give two algorithms with two streams that improve on it. The
first one is deterministic. Similarly to the former algorithm, it is based on Merge Sort, but has expansion
O(log n) instead of Ω(n). It also uses O(log n) passes and space O(log n) (Theorem 8). The second one
is randomized and based on Quick Sort. It has expansion O(1), O(log n) passes and memory O(log n)
(Theorem 9).

2 Preliminaries

In streaming algorithms (see [16] for an introduction), a pass on a string w ∈ Σn, for some finite alphabet
Σ, means that w is given as a stream w[1], w[2], . . . , w[n], which arrives sequentially, i.e., letter by letter
in this order. Depending on the model, w may or may not be modified. For simplicity, we always assume
|Σ| = O(n), except when explicitly stated. Otherwise, one should transpose our algorithms such that the
letters are also read sequentially, say bit by bit. We now fix in the rest of the paper such a finite alphabet Σ
equipped with a total order.

We consider input/output streaming algorithms with two data streams X and Y . Stream X initially
contains the input, and stream Y is initially empty and will contain the output at the end of the execution of
the algorithm. We denote by X[i] the i-th cell of stream X , and similarly for Y . The size of a stream is the
number of its cells containing some data. Our algorithms have also access to a random access memory M ,
usually of sublinear size in the input size.

We then parameterize such algorithms by the operations allowed on the input stream X (read-only or
read-write), on the output stream Y (write-only or read-write), the number of passes, the bit-size of the
memory M and the expansion of the streams with regard to the size of the input. Whenever we mention the
memory of an algorithm, we mean a random-access memory.

Definition 1 (Input/Output streaming algorithm). Let I be either RO or RW, and let O be either WO or RW.
Then a p(n)-pass I/O streaming algorithm with space s(n) is an algorithm that, given w ∈ Σn as a stream
X , produces its output on an initially empty stream Y and such that:

• It performs p(n) sequential passes in total on X and Y ;
• It maintains a memory M of size at most s(n) bits while processing X,Y ;
• If I is RO, X cannot be modified;
• If O is WO, Y cannot be read and each cell of Y can be written only once.
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Moreover, the algorithm has expansion λ(n) if streams X,Y have length (in number of cells) at most
λ(n)× n during its execution, for all input w ∈ Σn.

Observe that we do not mention any running time in our definition. Indeed, all our lower bounds will be
stated independently of it. Moreover, all our algorithms process each letter from each stream in polyloga-
rithmic time. They also have also polylogarithmic preprocessing and postprocessing times.

A usual way to get an algorithm with expansion> 1 consists in annotating streams with a larger alphabet
Σ′, while keeping (artificially) the same number of annotated cells. In that case, one can simulate one
annotated cell using (log |Σ′|)/log |Σ| non-annotated cells.

For simplicity, we assume further that the input length n is always given to the algorithm in advance.
Nonetheless, all our algorithms can be adapted to the case in which n is unknown until the end of a pass.
Moreover, this assumption only makes our lower bounds stronger.

We will use the two usual notions of randomized computing.

Monte Carlo: An algorithm computes a function f on Σn with error ε ≤ 1/3 if for all inputs w ∈ Σn, it
outputs f(x) with probability at least 1− ε.

Las Vegas: An algorithm computes a function f on Σn with failure ε ≤ 1/2 if for all inputs w ∈ Σn, it
outputs f(x) with probability at least 1− ε, otherwise it gives no output.

The two functions we study in this paper in term of streaming complexity are now formally defined.

Definition 2 (Reverse and Sort). For w = w[1]w[2] . . . w[n] ∈ Σn, let us define Reverse(w) as
w[n]w[n− 1] . . . w[1]. When Σ has a total order, also define Sort(w) as the sorted permutation of w.

For simplicity when proving lower bounds, for the proofs of Theorems 1, 4 and 6, instead of considering
algorithms for Reverse writing Reverse(X) on Y with passes from left to right, we will have them write
X on Y with passes from right to left, which is equivalent with a relabeling of Y . The algorithms presented
for upper bounds, however, read better in the model where we write Reverse(X) on Y using a pass from
left tor right.

When we describe a streaming algorithm using pseudo-code, a ‘For’ loop will always correspond to a
single pass on each stream, except when explicitly mentioned otherwise. Most algorithms will consist of a
‘While’ loop including a constant number of ‘For’ loops, i.e. passes. Therefore the number of iterations of
the ‘While’ loop will give us the number of passes.

Throughout the paper, we always give randomized lower bounds. While communication complexity
arguments fail in the context of mutliple streams, we use information theory arguments. They have recently
been proved to be a very powerful tool for proving lower bounds in communication complexity, and therefore
for streaming algorithms. Here we not only use them directly, but also there is no direct interpretation in
term of communication complexity.

Let us remind now the notions of entropy H and mutual information I. Let X,Y, Z be three random
variables. Then H(X) = −Ex←X log Pr(X = x), H(X|Y = y) = −Ey←Y log Pr(X = x|Y = y),
H(X|Y ) = Ey←Y H(X|Y = y), and I(X : Y |Z) = H(X|Z) − H(X|Y, Z). The entropy and the mutual
information are non negative and satisfy I(X : Y |Z) = I(Y : X|Z). For 0 ≤ ε ≤ 1, we denote by H(ε) the
entropy of the Bernoulli variable that takes value 1 with probability ε, and 0 with probability 1− ε.
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3 Reversal with two streams

3.1 Complexity in the Read-only/Write-only model

When Σ = {0, 1}, the naive algorithm, that copies at each pass s bits of the input in memory and then to
the output in reverse order, requires memory space s = n/p when performing p passes. When processing
each stream for the first time, it is in fact obvious that Y [i] cannot be written until X[n − i + 1] has been
read. In particular, for p = 2 we have s ≥ n for any algorithm. With multiple passes on each stream, the
proof gets more technical especially since the point where the streams cross, i.e. where we can write on
the second stream what was read on the first one during the current pass depends on the pass, the input and
the randomness. However the s ≥ O(n/p) bound still applies for all p, when the error probability of the
algorithm is O(1/p).

Observe that a constant error probability can be reduced to O(1/p) using O(log p) parallel repetitions,
leading to an O(log p) factor in the size of the memory space.

Theorem 1. Let 0 ≤ ε ≤ 1/10. Every p-pass randomized RO/WO algorithm for Reverse on {0, 1}n with
error ε requires space Ω(n/p).

Expansion is not mentionned in this theorem as it does not make sense on streams that are not read-
write: the algorithm either cannot modify the stream if it is read-only, or has no use for the extra data if it is
write-only.

Sketch of proof. We refer to Appendix B for the full proof. In this proof, we use the equivalent model of the
algorithm copying X (and not Reverse(X)) on Y , but processing Y only with passes from right to left.

Consider a p-pass randomized RO/WO algorithm for Reverse on {0, 1}n with error ε and space
s ≥ log n. For simplicity, we assume that passes are synchronized : whenever a pass on one stream ends,
the head on the other stream ends its own pass, and then eventually moves back to its original position. This
costs us at most a factor 2 in the number of passes.

Let the input streamX be uniformly distributed in {0, 1}n. For each pass 1 ≤ t ≤ p, let Zt ∈ {0, 1,⊥}n
be the data written on the output stream Y during that pass: if nothing is written at pass t and index i, then
Zt[i] = ⊥. Note that because the algorithm cannot overwrite a letter, for each i there is at most one t such
that Zt[i] 6= ⊥. Last, let Lt be the index where the reading head and the writing head meet (i.e. are on
the same index simultaneously) during pass t. Since passes are synchronized, Lt is unique, but possibly
depends on the input and random choices. For 1 ≤ i ≤ n, 1 ≤ t ≤ p, let M t

i be the state of the memory
after the algorithm reads X[i] on pass t.

If Lt did not depend on t, i.e. if the heads met in the same place every pass, the proof would be easy
as we could express it as a communication problem between Alice, who knows the prefix of X and needs
to write the suffix, and Bob, who knows the suffix and needs to write the prefix. However, because there
is no constant divide between the two, we cannot define properly two players that are able to simulate the
streaming algorithm.

We observe that Zt[1, Lt] is a function of Lt, M t
Lt , X[Lt + 1, n] and fresh random coins. Similarly,

Zt[Lt + 1, n] is a function of Lt, M t−1
n , X[1, Lt] and fresh random coins. Because s bounds the size of the

memory, this allows us to bound the mutual information between the X[i] and Zt[i] on each side of Lt has
to be small. We eventually get the bound 2s ≥ n−

∑n
i=1 H(X[i]|Zt[i], Lt)−O(log n).

We now have to show that for the algorithm to be correct, the mutual information betweenX[i] and Zt[i]
has to be high, which is equivalent to saying that the entropy if X[i] conditionned on Zt[i] is low. This will
give us a lower bound on s. We can in fact show that H(X[i]|Zt[i], Lt) ≤ 1− Pr(Zt[i] 6= ⊥)(1−O(ε)).
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Algorithm 1: RO/RW streaming algorithm for Reverse

1 p←
√

2n, t← 1, i1 ← p;
2 While {t ≤ p}
3 If t > 1 then (R, l)← (Y [n− it], n− it)
4 If it < n then
5 Y [n− it − (p− t), n− it]← X[it − (p− t), it] // Order is unchanged
6 it+1 ← it + p− t
7 For m = t− 1 to 1
8 Put R in the right place Y [l′] // l′ computed from l,m, p, n
9 (R, l)← (Y [l′], l′)

10 t← t+ 1

Combining the two inequalities and summing over all passes allows us to simplify the Pr(Zt[i] 6= ⊥)
term, which is only possible because we forbid the algorithm to write twice in the same cell in the write-only
model, and therefore those probabilities add up to 1−O(ε). We therefore get ps ≥ Ω(n).

3.2 Complexity of Read-only/Read-write and Read-Write/Write-Only

In this section, we prove tight bounds in the Read-only/Read-Write and Read-Write/Write-Only model.
These models are more complex than the previous one since an algorithm may now modify Y [i] or X[i]
several times, and use that as additional memory.

Algorithm. As a subroutine we use Algorithm 1, which performs O(
√
n) passes and uses space

O(log |Σ|). It works by copying blocks of size O(
√
n) from the input stream to the output stream with-

out reversing them (otherwise there would not be enough space in the memory), but putting them in the
correct order pairwise. In addition, during each pass on the output, it moves one element from each block
already copied to the correct place. Since blocks have as many elements as there are passes left after they
are copied, the output stream is in the correct order at the end of the execution .

Theorem 2. There is a deterministic algorithm such that, given n and
p ≤
√
n, it is a p-pass RO/RW streaming algorithm for Reverse on Σn with space O(log n+(n log |Σ|)/p2)

and expansion 1.

Proof. We wil prove that Algorithm 1 satisfies the theorem when p = 2
√
n. For the general case, the

algorithm treats groups of m = 2n/p2 letters as though they were just one letter of the new alphabet Σm,
and then uses Algorithm 1 as with space O(log(n/m)+(n/m)(log |Σm|)/p2) = O(log n+(n log |Σ|)/p2).

We now prove the theorem for p = 2
√
n. First, observe that every element of the input is copied on the

output, as
∑p

t=1(p− t) = p(p+ 1)/2 = n+
√
n ≥ n.

Let 1 ≤ t < p. The subword X[it − (p − t) − 1, it] is initially copied at line 5 on Y [n − it − (p −
t) − 1, n − it]. Therefore only Y [n − it] is correctly placed. Let Bt = {n − it − (p − t), n − it −
1} = {n − it+1 + 1, n − it − 1}. Then Bt denotes the indices (on Y ) of elements copied during the t-th
iteration of the While loop that are incorrectly placed. For each l ∈ Bt, the correct place for Y [l] is in
{n − it + 1, n − it + p − t} = {n − it + 1, n − (it−1 + 1)} = Bt−1, where by convention B0 is defined
with i0 = 0. Therefore, in the (t + 1)-th iteration of the while loop, the first Y [l] we place correctly goes
from l = n− it+1 = n− it − (p− t) ∈ Bt to some l′ ∈ Bt−1. Then recursively the previous value of Y [l′]
goes in Bt−2, and so on until we reach B0 where nothing was written initially.
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Thus, the For loop places correctly one element of each of Bt−1, Bt−2, . . . , B1. Observe that Bm has
at most p −m elements incorrectly placed. Moreover, there are (p −m) remaining iterations of the While
loop after Bm is written. Therfore all elements are places correctly when Algorithm 1 ends.

Now we prove that Algorithm 1 has the claimed complexity. It only starts a new pass when t increases,
at each execution of the While loop at line 2. Indeed, each execution of line 8 can be performed within the
current pass since Y [l] moves forward to a new index in Bm−1 as explained before. Therefore Algorithm 1
runs in p passes. Since it keeps at most two elements in memory at any time, and only needs to keep track
of the current position, n, p, t and m, it uses O(log n+ log |Σ|) memory.

Theorem 3. There is a deterministic algorithm such that, given n and
p ≤
√
n, it is a p-pass RW/WO streaming algorithm for Reverse on Σn with space O(log n+(n log |Σ|)/p2)

and expansion 1.

We omit the proof of this theorem, as the algorithm is extremely similar to the one used in the Read-
Only/Read-Write model. The main difference is that the For loop that moves one element of each block to
its correct place is applied before a block is copied on Y and not after like in Algorithm 1. Similarly, the new
algorithm starts with blocks of size s and ends with size Θ(

√
n/s) instead of having blocks of decreasing

size.

Lower bound.We employ techniques similar to the ones we used in the proof of Theorem 1. However,
here we will not consider individual cells on the stream but instead blocks of size k =

√
ns, where s is the

memory space. This allows us to easily bound the amount of information each block receives.

Theorem 4. Let 0 < ε ≤ 1/3. Every p-pass λ-expansion RO/RW streaming algorithm for Reverse on
{0, 1}n with error ε requires space Ω(n/p2).

Proof. Consider a p-pass λ-expansion randomized RO/RW algorithm for Reverse on {0, 1}n with error ε
and space s, with s ≥ log n. Like with Theorem 1, we consider the model where we want Y = X , but Y is
processed from right to left.

As in the proof of Theorem 1, we assume passes are synchronized at the cost of a factor at most 2 in
p. We also keep similar notations : X is the input stream uniformly distributed in {0, 1}n, and for each
1 ≤ t ≤ p, Y t ∈ {0, 1,⊥}n is the data currently on output stream Y at pass t. Unlike with Zt in the
previous section, this includes the data previously written, as in this model we can read it and modify it. Let
1 ≤ k ≤ n be some parameter. We now think on X,Y t as sequences of k blocks of size n/k, and consider
each block as a symbol. If λ > 1, then everything written on the output stream (the only one that can grow)
after the n-th bit is considered to be part of the Y t

k . For instance Xi denotes the i-th block of X , which is of
size n/k bits. We write X−i for X without its i-th block, and X>i (resp. X<i) for the last (k − i) blocks of
X (resp. the first (i− 1) blocks). For each 1 ≤ t ≤ p, let Lt ∈ {0, . . . , k − 1} be the block where the input
head and the output head meet during the t-th pass. Since passes are synchronised, Lt is unique and is the
only block where both heads can be simultaneously during the t-th pass. Let M t

i be the memory state as the
output head enters the i-th block during t-th pass.

Consider a pass t and a block i. We would like to have an upper bound on the amount of mutual
information between Y t

i and Xi that is gained during pass t (with regards to the information already known
at pass t− 1). Let ∆t

i,j = I(Xi : Y t
i |Lt = j,X−i)− I(Xi : Y t−1

i |Lt = j,X−i) for some i and j. Of course,
if i = j, without looking inside the block structure we only have the trivial bound ∆t

i,i ≤ H(Xi) = n/k.
It is however easier to bound other blocks. Assume without loss of generality that i < j. We use the data
processing inequality I(f(A) : B|C) ≤ I(A : B|C) with Y t

i as a function of M t
i and Y t−1

i . This gives
us ∆t

i,j ≤ I(Xi : X>i,M
t
i , Y

t−1
i |Lt = j,X−i) − I(Xi : Y t−1

i |Lt = j,X−i). We can remove X>i which
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Algorithm 2: RW/RW streaming algorithm for Reverse

1 W0 ← X; W1 ← Y ; α← 0; // Rename the streams
2 k ← n; // Size of current blocks
3 While k > 1
4 k ← k/2
5 For i = 1 to n/k
6 W1−α[(2i+ 1)k + 1, (2i+ 2)k]←Wα[2ik + 1, (2i+ 1)k] // One pass
7 For i = 1 to n/k
8 W1−α[2ik + 1, (2i+ 1)k]←Wα[(2i+ 1)k + 1, (2i+ 2)k] // Another pass
9 α← 1− α; Erase W1−α; // Exchange the roles of the streams

10 Y ←Wα // Copy the final result on output tape

is contained in the conditioning. Applying the chain rule, we cancel out the second term and are left with
∆t
i,j ≤ I(Xi : M t

i |Lt = j,X−i, Y
t−1
i ) ≤ H(M t

i ) ≤ s. The same holds if j < i instead. If j = i, then
∆t
i,j ≤ n/k because H(Xi) = n/k.

We fix j, sum over i and get
∑k−1

i=0 ∆t
i,j ≤ n/k + ks. The expectation over j follow-

ing the distribution of Lt is
∑k−1

i=0 I(Xi : Y t
i |Lt, X−i) − I(Xi : Y t−1

i |Lt, X−i) ≤ n/k + ks.
From Fact 5 we get I(Xi : Y t

i |Lt, X−i) ≥ I(Xi : Y t
i |X−i) − H(Lt) as well as

I(Xi : Y t−1
i |Lt, X−i) ≤ I(Xi : Y t−1

i |X−i) + H(Lt). Therefore, we have
∑k−1

i=0 I(Xi : Y t
i |X−i) − I(Xi :

Y t−1
i |X−i) ≤ n/k+ks+k log k. Summing over t yields

∑k−1
i=0 I(Xi : Y p

i |X−i) ≤ p(n/k+ks+k log k). By
hypothesis s ≥ log n, ε ≤ 1/3 and I(Xi : Y p

i |X−i) ≥ (1−H(ε))n/k. If k =
√
n/s, then s = Ω(n/p2).

Fact 5. Let A, B, C, D be random variables.
Then I(A : B|D)−H(C|D) ≤ I(A : B|C,D) ≤ I(A : B|D) + H(C|D).

Theorem 6. Let 0 < ε ≤ 1/3. Every p-pass λ-expansion RW/WO streaming algorithm for Reverse on
{0, 1}n with error ε requires space Ω(n/p2).

We defer the proof to Appendix C. It is mostly simiilar to the proof of Theorem 4.

3.3 Complexity of Read-write/Read-write

Algorithm 2 proceeds by dichotomy. For simplicity, we assume that n is a power of 2, but the algorithm can
easily be adapted while keeping λ = 1. At each step, it splits the input in two, copies one half to its correct
place on the stream, then makes another pass to copy the other half, effectively exchanging them.

Theorem 7. Algorithm 2 is a deterministic O(log n)-passes RW/RW streaming algorithm for Reverse on
Σn with space O(log n) and expansion 1.

Proof. Since the algorithm can read and write on both tapes, they perform very similar roles. We rename
the input stream W0 and the output stream W1. By a simple recursion, we see that whenever a block
W1−α[tk, (t+ 1)k] is moved, it is moved in the place that Reverse(W1−α[tk, (t+ 1)k]) will occupy. There-
fore, the algorithm is correct.

Now we prove the bounds on s and p. Algorithm 2 never needs to remember a value, only the current
index and current pass, so s = O(log n). Since the length of blocks copied is divided by 2 at each execution
of line 4, it ends after a logarithmic number of executions of the While loop. Each iteration of the While
loop requires two passes, one for each of the two For loops (lines 5 and 7). Therefore the total number of
passes is in O(log n).
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Algorithm 3: RW/RW streaming algorithm implementing Merge Sort
1 W0 ← X; W1 ← Y ; α← 0;
2 t← 1; k ← 1 // Size of the sorted blocks
3 Expand the input : each element has a label of size log n.
4 While k < n
5 For i = 1 to n/2k {Copy Bt2i on W1−α}
6 For i = 1 to n/2k {For each Wα[j] ∈ Bt2i−1 ∪Bt2i
7 {label(Wα[j]← index of Wα[j] in Bt+1

i }}
8 For i = 1 to n/2k {Copy Bt2i at the end of Wα}
9 For i = 1 to n/2k {For each Wα[j] ∈ Bt2i−1

10 {Write Wα[j] at its position on W1−α}}
11 For i = 1 to n/2k {For each Wα[j] ∈ Bt2i
12 {Write Wα[j] at its position on W1−α}}
13 α← 1− α; Erase W1−α; t← t+ 1; k ← 2k;
14 Y ←Wα

4 Sorting with two streams

Sort is generally more complex than Reverse. Even in the RW/RW model, we are not able to present a
deterministic algorithm as efficient as Algorithm 2 for Reverse. With three streams, the problem becomes
easy since we can Merge Sort two streams, and write the result of each step on the third one.

4.1 Merge Sort

We begin with an algorithm inspired from [5]. The algorithm works as a Merge Sort. We call Bt
i the i-th

sorted block at the t-th iteration of the While loop, consisting of the sorted values of X[2ti + 1, 2t(i + 1)].
Since there is no third stream to write on when two blocks Bt

2i−1 and Bt
2i are merged into Bt+1

i , we label
each element with its position in the new block. Then both halves are copied on the same stream again so
that they can be merged with the help of the labels. This improves the expansion of [5] from n to log n.
However it is somewhat unsatisfying because when Σ is of constant size, our algorithm still has Ω(log n)
expansion.

Theorem 8. Algorithm 3 is a deterministic O(log n)-pass RW/RW streaming algorithm for Sort on Σn with
space O(log n) and expansion O((log n)/log |Σ|).

Proof. Since it is an implementation of the Merge Sort algorithm, Algorithm 3 is correct. Each iteration
of the While loop corresponds to five passes on each tape, and therefore the total number of passes is in
O(log n). Since the algorithm only needs to remember the position of the heads, current elements and the
counters k, t, it only uses memory O(log n). Finally, since the label for each element is at most n, we only
use space log n on the stream to write it, and therefore the expansion is at most (log |Σ|+ log n)/log |Σ| =
O((log n)/log |Σ|).

4.2 Quick Sort

With a Quick Sort algorithm instead of a Merge Sort, we only need to store the current pivot (of size at most
log n), without labeling elements. However, Quick Sort comes with its own issues: the expected number of

9



Algorithm 4: RW/RW streaming algorithm implementing Quick Sort
1 W0 ← X; W1 ← Y ; α← 0;
2 t← 1; k ← n // Size of the unsorted blocks
3 While k > 1
4 Abort if the total number of passes is Ω((log n)/ε)
5 Expand W0 adding O(n) space for ] and pivots
6 For i = 1 to n/k
7 Find P ti at random
8 W1−α[i]← P ti
9 Replace P ti with a ⊥ on Wα

10 For i = 1 to n/k
11 Copy W1−α[i] = P ti at the start of Bti on Wα

12 For i = 1 to n/k
13 Write all elements in Bt+1

2i−1 on W1−α
14 Write ]Pi] on W1−α.
15 Leave space for the rest of Bt+1

2i

16 For i = 1 to n/k
17 Write all elements in Bt+1

2i in the space left on W1−α
18 α← 1− α; Erase W1−α; t← t+ 1
19 k ← minimum size of new blocks // using an additional pass
20 Y ←Wα

executions of the While loop is O(log n), but unless we can select a good pivot it is Ω(n) in the worst case.
For this reason, we use a randomized Las vegas algorithm.

A block in Algorithm 4 is a set of elements that are still pairwise unsorted, i.e. elements that have the
same relative positions to all pivots so far. The block Bt

i is the i-th lower one during the t-th iteration of
the While loop, and P ti is its pivot. The block Bt+1

2i−1 consists of all elements in Bt
i lower than P ti and

all elements equal P ti with a lower index. The block Bt+1
2i is the complementary. Algorithm 4 marks the

borders of blocks with the symbol ].
Algorithm 4 selects each pivot P ti at random among the elements of Bt

i . While it may not do so uni-
formly with only one pass because |Bt

i | is unknown, it has an upper bound k ≥ |Bt
i |. Algorithm 4 selects

l ∈ {1, . . . , k} uniformly at random, then picks li the remainder modulo 2dlog |B
t
i |e of l. This can be com-

puted in one pass with O(log n) space by updating li as the lower bound on |Bt
i | grows. It uses P ti = Bt

i [li].
P ti is selected uniformly at random from a subset of size at least half of Bt

i , which guarantees that with high
probability min(|Bt+1

2i−1|, |Bt
2i|) = Ω(|Bt

i |).

Theorem 9. For all 0 < ε ≤ 1/2, Algorithm 4 is a randomized O((log n)/ε)-pass RW/RW Las Vegas
streaming algorithm for Σn with failure ε, space O(log n) and expansion O(1).

Proof. Algorithm 4 is an implementation of the Quick Sort algorithm, and is therefore correct. Its cor-
rectness does not depend on the quality of the pivots. The bound on the memory and the expansion are
direct. While it uses additional symbols ⊥ and ], they can be easily replaced by an encoding with symbols
of Σ appearing in the input with only O(1) expansion. Because for each i and t, with high probability
min(|Bt+1

2i−1|, |Bt
2i|) = Ω(|Bt

i |), with high probability Algorithm 4 terminates in O(log n) passes.
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A Open problems

The first open problem is whether our lower bounds still hold if multiple rewrites are allowed in the read-
only/write-only model.

Another one is whether there exists a deterministic O(log n)-pass RW/RW streaming algorithm for
Sort with space O(log n) and expansion O(1). We can derandomize Algorithm 4 using any deterministic
algorithm that finds a good approximation of the median. The best algorithm we obtained that way has
O(α−1 log n) passes, O(nα) memory and O(1) expansion, for any α > 0. We conjecture that there is
no such algorithm and that having constant expansion algorithm for Sort requires a tradeoff in number of
passes, memory space, number of streams or determinism.

Last, combining the algorithm from Theorem 2 with the results in [14], we obtain a O(
√
n/ log n)-pass

RO/RW streaming algorithm with space O((log n)2) for recognizing well-parenthesized expressions with
two parentheses types. We do not know if this is optimal.

B Missing proofs for the RO/WO lower bound of Reverse

Before proving Theorem 1, we begin with two useful facts.

Fact 10. Let X be uniformly distributed over {0, 1}n, and let J be some random variable on {0, 1, . . . , n}
that may depend on X . Then H(X[1, J ]|J) ≤ E(J) and H(X[J + 1, n]|J) ≤ n − E(J). Moreover
H(X[1, J ]|X[J + 1, n]) ≥ E(J)−H(J) and H(X[J + 1, n]|X[1, J ]) ≥ n− E(J)−H(J).

Proof. H(X[1, J ]|J) ≤ E(J) and H(X[J + 1, n]|J) ≤ n− E(J) are direct. The second part uses the first
one as follows:

H(X[1, J ]|X[J + 1, n]) = H(X|J,X[J + 1, n])−H(X[J + 1, n]|J,X[J + 1, n])

= H(X|J)−H(X[J + 1, n]|J)

≥ H(X)−H(J)− n+ E(J)

= E(J)−H(J)

Fact 11 (Data processing inequality). Let X,Y, Z,R be random variables such that R is independent from
X,Y, Z. Then for every function f

H(X|Y,Z) ≤ H(f(X,R)|Y,Z) and I(X : Y |Z) ≥ I(f(X,R) : Y |Z).

Note that the previous property is usually stated with no variable R, then f is defined as a probabilistic
function.

of Theorem 1. Consider a p-pass randomized RO/WO algorithm for Reverse on {0, 1}n with error ε and
space s ≥ log n. For simplicity, we assume that passes are synchronized : whenever a pass on one stream
ends, the head on the other stream ends its own pass, and then eventually moves back to its original position.
This costs us at most a factor 2 in the number of passes.

Let the input streamX be uniformly distributed in {0, 1}n. For each pass 1 ≤ t ≤ p, let Zt ∈ {0, 1,⊥}n
be the reverse of the data written on the output stream Y : if nothing is written at pass t and index i, then
Zt[i] = ⊥. This model corresponds to writing the same string on the output stream as on the input stream,
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but going in different directions, an makes the notations simpler as we want X[i] = Zt[i]. Note that because
the algorithm cannot overwrite a letter, for each i there is at most one t such that Zt[i] 6= ⊥. Last, let Lt be
the index where the reading head and the writing head meet during pass t. Since passes are synchronized,
Lt is unique (but possibly depends on the input and random choices). For 1 ≤ i ≤ n, 1 ≤ t ≤ p, let M t

i be
the state of the memory after the algorithm reads X[i] on pass t.

For 1 ≤ t ≤ p, since s bound the size of memory, we have s ≥ I(X[1, Lt] : M t
Lt |X[Lt + 1, n])) =

H(X[1, Lt]|X[Lt+ 1, n])−H(X[1, Lt]|M t
Lt , X[Lt+ 1, n]), and similarly s ≥ H(X[Lt+ 1, n]|X[1, Lt])−

H(X[Lt + 1, n]|M t−1
n , X[1, Lt]).

Then let qti(l) = Pr(Zt[i] 6= ⊥|Lt = l) and εti(l) = Pr(Zt[i] 6= ⊥, Zt[i] 6= X[i]|Lt = l). Define

qti = El∼Lt(qti(l)) and εti = El∼Lt(εti(l)). Note that
p∑
t=1

εti = E(lt)1≤t≤p∼(Lt)1≤t≤p

(
p∑
t=1

εti(lt)

)
≤ ε

by hypothesis1. Then lemmas 12 and 13 imply that 2s ≥ n −
∑n

i=1 H(X[i]|Zt[i], Lt) − O(log n) and
H(X[i]|Zt[i], Lt) ≤ 1− qti

(
1−H(εi/q

t
i

)
). This yields 2s ≥

∑n
i=1 q

t
i

(
1−H

(
(εti/q

t
i)
))
−O(log n).

Let αi =
∑p

t=1 q
t
i . Then αi = Pr[Y [i] 6= ⊥] satisfies αi ≥ 1 − ε by hypothesis. Now summing the

previous inequality over all passes leads to

2ps ≥
n∑
i=1

αi

p∑
t=1

qti
αi

(
1−H

(
εti
qti

))
−O(p log n).

The concavity of H gives us
∑p

t=1(q
t
i/αi)H(εti/q

t
i) ≤ H(ε/(1− ε)). This means, replacing αi and εti

by their upper bounds, that 2ps ≥ n(1− ε)(1−H(ε/(1− ε)))−O(p log n). Since Theorem 1 has ε ≤ 0.1
as an hypothesis, our algorithm verifies ps ≥ Ω(n).

Lemma 12. Assuming the hypotheses of Theorem 1, at any given pass t

2s ≥ n−
n∑
i=1

H(X[i]|Zt[i], L)−O(log n).

Proof. In this proof, we write Z[i] for Zt[i] since there is generally no ambiguity. We similarly omit the t
on other notations.

The data processing inequality gives us H(X[1, L]|ML, X[L+1, n], L) ≤ H(X[1, L]|Z[1, L], L), which
we can rewrite as H(X[1, L]|ML, X[L+ 1, n], L) ≤ El∼L(H(X[1, l]|Z[1, l], L = l)). Using the chain rule
and removing conditioning, we get

H(X[1, L]|ML, X[L+ 1, n], L) ≤ El∼L

(
l∑

i=1

H(X[i]|Z[i], L = l)

)
.

Similarly,

H(X[L+ 1, n]|M t−1
n , X[1, L], L) ≤ El∼L

(
l∑

i=1

H(X[i]|Z[i], L = l)

)
.

Using that both ML (where ML = M t
Lt) and M t−1

n are of size at most s bits, we get

2s ≥ I(X[1, L] : M t
Lt |X[L+ 1, n]) + I(X[L+ 1, n] : M t−1

n |X[1, L]).

1Here we only need the hypothesis that each bit of Y is wrong with probability at most ε, and not the stronger hypothesis that
Y 6= Reverse(X) with probability at most ε.
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Then we conclude by combining the above inequalities and using Fact 10 as follows:

2s ≥ E(L)−H(L) + n− E(L)−H(L)

−H(X[1, L]|M t
L, X[L+ 1, n])−H(X[L+ 1, n]|M t−1

n , X[1, L])

≥ n− El∼L

(
l∑

i=1

H(X[i]|Z[i], L = l) +
n∑

i=l+1

H(X[i]|Z[i], L = l)

)
−O(log n)

= n−
n∑
i=1

H(X[i]|Z[i], L)−O(log n)

Lemma 13. Assuming the hypotheses of Theorem 1, for any pass t,

H(X[i]|Zt[i], Lt) ≤ 1− qti
(

1−H

(
εti
qti

))

Proof. As above, we omit the t in the proof, as there is no ambiguity.
The statement has some similarities with Fano’s inequality. Due to the specificities of our context, we

have to revisit its proof as follows. First we write

H(X[i]|Z[i], L) ≤ El∼L(H(X[i]|Z[i], L = l))

≤ El∼L(qi(l)H(X[i]|Z[i], L = l, Z[i] 6= ⊥)

+(1− qi(l))H(X[i]|L = l, Z[i] = ⊥)

≤ El∼L
(
qi(l)H

(
εi(l)

qi(l)

)
+ 1− qi(l)

)
= 1− qi + El∼L

(
qi(l)H

(
εi(l)

qi(l)

))
(1)

By replacing the entropy with its definition, we can see that for any 1 ≥ q ≥ ε > 0, we have

qH

(
ε

q

)
= H(q − ε, ε, 1− q)−H(q),

where H(x, y, z) is the entropy of a random variable R in {0, 1, 2} with Pr(R = 0) = x, Pr(R = 1) = y
and Pr(R = 2) = z. Let Ri be such that Ri = 0 if X[i] = Z[i], Ri = 2 if Z[i] = ⊥ and Ri = 1 otherwise.
Note that (Z[i] = ⊥) is a function of Ri. Therefore:

El∼L
(
qi(l)H

(
εi(l)

qi(l)

))
= El∼L(H(Ri|L = l)−H((Z[i] = ⊥)|L = l))

= H(Ri|L)−H((Z[i] = ⊥)|L)

= H(Ri)−H((Z[i] = ⊥)) + I((Z[i] = ⊥)|L)− I(Ri|L)

By the data processing inequality, I((Z[i] = ⊥) : L) ≤ I(Ri : L), so El∼L
(
qi(l)H

(
εi(l)

qi(l)

))
≤

qiH

(
εi
qi

)
. Combining this with inequality 1 gives us the lemma.
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C Proof of the RW/WO lower bound of Reverse

Proof of Theorem 6. Consider a p-pass λ-expansion randomized RW/WO algorithm for Reverse on {0, 1}n
with error ε and space s, with s ≥ log n. As before, we consider the model where the algorithm writes X
on Y , using passes from right to left.

We proceed as in the proof of Theorem 4: we assume passes are synchronized at the cost of a factor at
most 2 in p. We also keep similar notations : X is the input stream uniformly distributed in {0, 1}n, and
for each 1 ≤ t ≤ p, Xt ∈ {0, 1}n is the content of the input stream and Y t ∈ {0, 1,⊥}n is the content of
the output stream Y at pass t. Let 1 ≤ k ≤ n be some parameter. As before, whe think of X,Xt, Y t as
sequences of k blocks of size n/k, and Xi denotes the i-th block of X . If λ > 1, then everithing written on
the inpu stream after the n-th bit is considered part of Xt

k. We write X−i, X>i and X<i as before. We also
define X≤ti as the (t+ 1)-uple (Xi, X

1
i , . . . , X

t
i ), i.e. the history of the i-th block until pass t.

As in prevoius proofs, for each 1 ≤ t ≤ p, let Lt ∈ {0, . . . , k − 1} be the block where the input head
and the output head meet during the t-th pass. Lt is unique and is the only block where both heads can be
simultaneously during the t-th pass. Let M t

i be the memory state as the output head enters the i-th block
during t-th pass.

Consider a pass t and a block i. As with Theorem 4, we would like to have an upper bound on the amount
of mutual information between Y t

i and Xi that is gained during pass t, assuming Lt 6= i. Let ∆t
i,j = I(Xi :

Y t
i |Lt = j,X≤t−1−i ) − I(Xi : Y t−1

i |Lt = j,X≤t−1−i ) for some j > i. By the data processing inequality, we
have I(f(A) : B|C) ≤ I(A : B|C). Therefore, ∆t

i,j ≤ I(Xi : Xt−1
>i ,M

t
i , Y

t−1
i |Lt = j,X≤t−1−i ) − I(Xi :

Y t−1
i |Lt = j,X≤t−1−i ). We can remove Xt−1

>i which is contained in the conditioning. Applying the chain
rule, we cancel out the second term and are left with ∆t

i,j ≤ I(Xi : M t
i |Lt = j,X≤t−1−i , Y t−1

i ) ≤ H(M t
i ) ≤

s. The same holds if j < i instead. If j = i, then ∆t
i,j ≤ n/k because H(Xi) = n/k.

We fix j, sum over i and get
∑k−1

i=0 ∆t
i,j ≤ n/k + ks. As before, by taking the expectation over j ∼ Lt

and then using Fact 5, we can remove the condition Lt = j. This gives us
∑k−1

i=0 I(Xi : Y t
i |X

≤t−1
−i )− I(Xi :

Y t−1
i |X≤t−1−i ) ≤ n/k + ks+ k log k. We cannot sum over t yet because the conditionning X≤t−1−i depends

on t. However, applying Fact 5 again yields I(Xi : Y t
i |X

≤t
−i )− I(Xi : Y t

i |X
≤t−1
−i ) ≤ H(Xt

−i|X
≤t−1
−i ) ≤ 2s,

because Xt
−i is a function of Xt−1

−i , the memory state at the beginning of the pass and the memory as the
head on the input tape leaves the i-th block. This is a consequence of the output stream being write-only,
which we had not used until now.

Therefore
∑k−1

i=0 I(Xi : Y t
i |X

≤t−1
−i ) − I(Xi : Y t−1

i |X≤t−1−i ) ≤ n/k + 3ks + k log k. Summing over
t yields

∑k−1
i=0 I(Xi : Y p

i |X−i) ≤ p(n/k + 3ks + k log k). By hypothesis s ≥ log n, ε ≤ 1/3 and
I(Xi : Y p

i |X−i) ≥ (1−H(ε))n/k. If k =
√
n/s, then s = Ω(n/p2).

Note that the proof still works if we relax the write-only model by allowing the algorithm to rewrite over
dat that was previously written on the output stream.
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