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Abstract

We present a parallel approximation algorithm for a class of mixed packing and covering
semidefinite programs which generalize on the class of positive semidefinite programs as con-
sidered by Jain and Yao [6]. As a corollary we get a faster approximation algorithm for positive
semidefinite programs with better dependence of the parallel running time on the approxima-
tion factor, as compared to that of Jain and Yao [6]. Our algorithm and analysis is on similar
lines as that of Young [10] who considered analogous linear programs.

1 Introduction

Fast parallel approximation algorithms for semidefinite programs have been the focus of study
of many recent works (e.g. [1, 2, 7, 5, 4, 3]) and have resulted in many interesting applications
including the well known QIP = PSPACE [3] result. In many of the previous works, the run-
ning time of the algorithms had polylog dependence on the size of the input program but in
addition also had polynomial dependence of some width parameter (which varied for different
algorithms). Sometimes (for specific instances of input programs) the width parameter could
be as large as the size of the program making it an important bottleneck. Recently Jain and
Yao [6] presented a fast parallel approximation algorithm for an important subclass of semidef-
inite programs, called as positive semidefinite programs, and their algorithm had no dependence
on any width parameter. Their algorithm was inspired by an algorithm by Luby and Nisan [8]
for positive linear programs. In this work we consider a more general mixed packing and covering
optimization problem. We first consider the following feasibility task Q1.

Q1: Given n × n positive semidefinite matrices P1, . . . , Pm, P and non-negative diagonal ma-
trices C1, . . . , Cm, C and ε ∈ (0, 1), find an ε-approximate feasible vector x ≥ 0 such that (while
comparing matrices we let ≥,≤ represent the Löwner order),

m

∑
i=1

xiPi ≤ (1 + ε)P and
m

∑
i=1

xiCi ≥ C
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or show that the following is infeasible for all x ≥ 0

m

∑
i=1

xiPi ≤ P and
m

∑
i=1

xiCi ≥ C .

We present an algorithm for Q1 running in parallel time polylog(n, m) · 1
ε4 · log 1

ε . Using
this and standard binary search, a multiplicative (1− ε) approximate solution can be obtained
for the following optimization task Q2 in parallel time polylog(n, m) · 1

ε4 · log 1
ε .

Q2: Given n× n positive semidefinite matrices P1, . . . , Pm, P and non-negative diagonal matri-
ces C1, . . . , Cm, C,

maximize: γ

subject to:
m

∑
i=1

xiPi ≤ P

m

∑
i=1

xiCi ≥ γC

∀i ∈ [m] : xi ≥ 0.

The following special case of Q2 is referred to as a positive semidefinite program.

Q3: Given n×n positive semidefinite matrices P1, . . . , Pm, P and non-negative scalars c1, . . . , cm,

maximize:
m

∑
i=1

xici

subject to:
m

∑
i=1

xiPi ≤ P

∀i ∈ [m] : xi ≥ 0.

Our algorithm for Q1 and its analysis is on similar lines as the algorithm and analysis of
Young [10] who had considered analogous questions for linear programs. As a corollary we get
an algorithm for approximating positive semidefinite programs (Q3) with better dependence
of the parallel running time on ε as compared to that of Jain and Yao [6] (and arguably with
simpler analysis). Very recently, in an independent work, Peng and Tangwongsan [9] also pre-
sented a fast parallel algorithm for positive semidefinite programs. Their work is also inspired
by Young [10].

2 Algorithm and analysis

We mention without elaborating that using standard arguments the feasibility question Q1
can be easily transformed, in parallel time polylog(mn), to the special case when P and C are
identity matrices and we consider this special case from now on. Our algorithm is presented
in Figure 1 .

Idea of the algorithm

The algorithm starts with an initial value for x such that ∑m
i=1 xiPi ≤ 1. It makes increments

to the vector x such that with each increment, the increase in ‖∑m
i=1 xiPi‖ is not more than
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(1 + O(ε)) times the increase in the minimum eigenvalue of ∑m
i=1 xiCi. We argue that it is

always possible to increment x in this manner if the input instance is feasible, hence the algo-
rithm outputs infeasible if it cannot find such an increment to x. The algorithm stops when the
minimum eigenvalue of ∑m

i=1 xiCi has exceeded 1. Due to our condition on the increments, at
the end of the algorithm we also have ∑m

i=1 xiPi ≤ (1+O(ε))1. We obtain handle on the largest
and smallest eigenvalues of concerned matrices via their soft versions, which are more easily
handled functions of those matrices (see definition in the next section).

Input : n × n positive semidefinite matrices P1, . . . , Pm, non-negative diagonal matrices C1, . . . , Cm, and
error parameter ε ∈ (0, 1).

Output : Either infeasible, which means there is no x ≥ 0 such that (1 is the identity matrix),

m

∑
i=1

xiPi ≤ 1 and
m

∑
i=1

xiCi ≥ 1 .

OR an x∗ ≥ 0 such that
m

∑
i=1

x∗i Pi ≤ (1 + 9ε)1 and
m

∑
i=1

x∗i Ci ≥ 1 .

1. Set xj =
1

m‖Pj‖ .

2. Set N = 1
ε (‖∑m

i=1 xiPi‖+ 2 ln n + ln m).

3. While λmin(∑m
i=1 xiCi) < N (λmin represents minimum eigenvalue), do

(a) Set

localj(x) =
Tr(exp(∑m

i=1 xiPi) · Pj)

Tr(exp(−∑m
i=1 xiCi) · Cj)

and

global(x) =
Tr exp(∑m

i=1 xiPi)

Tr(exp(−∑m
i=1 xiCi))

.

(b) If g is not yet set or minj{localj(x)} > g(1 + ε), set g = global(x).
(c) If minj{localj(x)} > global(x) , return infeasible.
(d) For all j ∈ [m], set Cj = Πj · Cj ·Πj, where Πj is the projection onto the eigenspace of ∑m

i=1 xiCi
with eigenvalues at most N.

(e) Choose increment vector α ≥ 0 and scalar δ > 0 such that

∀j : αj = xjδ if localj(x) ≤ g(1 + ε), else αj = 0, and

max{
∥∥∥∥∥ m

∑
i=1

αiPi

∥∥∥∥∥ ,

∥∥∥∥∥ m

∑
i=1

αiCi

∥∥∥∥∥} = ε.

(f) Set x = x + α.

4. Return x∗ = x/N.

Figure 1: Algorithm
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Correctness analysis

We begin with the definitions of soft maximum and minimum eigenvalues of a positive semidef-
inite matrix A. They are inspired by analogous definitions made in Young [10] in the context
of vectors.

Definition 1. For positive semidefinite matrix A, define

Imax(A)
def
= ln Tr exp(A),

and
Imin(A)

def
= − ln Tr exp(−A).

Note that Imax(A) ≥ ‖A‖ and Imin(A) ≤ λmin(A), where λmin(A) is the minimum eigen-
value of A.

We show the following lemma in the appendix, which shows that if a small increment is
made in the vector x, then changes in Imax(∑m

j=1 xj Aj) and Imin(∑m
j=1 xj Aj) can be bounded

appropriately.

Lemma 2. Let A1, . . . , Am be positive semidefinite matrices and let x ≥ 0, α ≥ 0 be vectors in Rm. If
‖∑m

i=1 αi Ai‖ ≤ ε ≤ 1, then

Imax(
m

∑
j=1

(xj + αj)Aj)− Imax(
m

∑
j=1

xj Aj) ≤
(1 + ε)

Tr(exp(∑m
i=1 xi Ai))

m

∑
j=1

αj Tr(exp(
m

∑
i=1

xi Ai)Aj),

and

Imin(
m

∑
j=1

(xj + αj)Aj)− Imin(
m

∑
j=1

xj Aj) ≥
(1− ε/2)

Tr(exp(−∑m
i=1 xi Ai))

m

∑
j=1

αj Tr(exp(−
m

∑
i=1

xi Ai)Aj).

Lemma 3. At step 3(e) of the algorithm, for any j with αj > 0 we have,

Tr(exp(∑m
i=1 xiPi) · Pj)

Tr(exp(∑m
i=1 xiPi))

≤ (1 + ε)
Tr(exp(−∑m

i=1 xiCi) · Cj)

Tr(exp(−∑m
i=1 xiCi))

.

Proof. Consider any execution of step 3(e) of the algorithm. Fix j such αj > 0. Note that,

localj(x)
global(x)

=
Tr(exp(∑m

i=1 xiPi) · Pj) · Tr(exp(−∑m
i=1 xiCi))

Tr(exp(∑m
i=1 xiPi)) · Tr(exp(−∑m

i=1 xiCi) · Cj)
.

We will show that global(x) ≥ g throughout the algorithm and this will show the desired since
that localj(x) ≤ (1 + ε)g ≤ (1 + ε)global(x).

At step 3(b) of the algorithm, g can be equal to global(x). Since x never decreases during
the algorithm, at step 3(a), global(x) can only increase. At step 3(d), the modification of Cjs
only decreases Tr(exp(−∑m

i=1 xiCi)) and hence again global(x) can only increase.

Lemma 4. For each increment of x at step 3(f) of the algorithm,

Imax(
m

∑
j=1

(xj + αj)Pj)− Imax(
m

∑
j=1

xjPj) ≤ (1 + ε)3

(
Imin(

m

∑
j=1

(xj + αj)Cj)− Imin(
m

∑
j=1

xjCj)

)
.
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Proof. Consider,

Imax(
m

∑
j=1

(xj + αj)Pj)− Imax(
m

∑
j=1

xjPj)

≤ (1 + ε)

Tr(exp(∑m
i=1 xiPi))

m

∑
j=1

αj Tr(exp(
m

∑
i=1

xiPi)Pj) (from Lemma 2)

≤ (1 + ε)2

Tr(exp(−∑m
i=1 xiCi))

m

∑
j=1

αj Tr(exp(−
m

∑
i=1

xiCi)Cj) (from Lemma 3 and step 3(e) of the algorithm)

≤ (1 + ε)2

1− ε/2

(
Imin(

m

∑
j=1

(xj + αj)Cj)− Imin(
m

∑
j=1

xjCj)

)
(from Lemma 2).

This shows the desired.

Lemma 5. If the input instance P1, . . . , Pm, C1, . . . , Cm is feasible, that is there exists vector y ∈ Rm

such that
m

∑
i=1

yiPi ≤ 1 and
m

∑
i=1

yiCi ≥ 1 ,

then always at step 3(c) of the algorithm, minj{localj(x)} ≤ global(x). Hence the algorithm will
return some x∗.

If the algorithm outputs infeasible, then the input instance is not feasible.

Proof. Consider some execution of step 3(c) of the algorithm. Let C′1, . . . , C′m be the current
values of C1, . . . , Cm. Note that if the input is feasible with vector y, then we will also have

Tr(exp(∑m
i=1 xiPi)(∑m

j=1 yjPj))

Tr(exp(∑m
i=1 xiPi))

≤ 1 ≤
Tr(exp(−∑m

i=1 xiC′i)(∑
m
j=1 yjC′j))

Tr(exp(−∑m
i=1 xiC′i))

.

Therefore there exists j ∈ [m] such that

Tr(exp(∑m
i=1 xiPi)Pj)

Tr(exp(∑m
i=1 xiPi))

≤
Tr(exp(−∑m

i=1 xiC′i)C
′
j)

Tr(exp(−∑m
i=1 xiC′i))

,

and hence localj(x) ≤ global(x).
If the algorithm outputs infeasible, then at that point minj{localj(x)} > global(x) and

hence from the argument above P1, . . . , Pm, C′1, . . . , C′m is infeasible which in turn implies that
P1, . . . , Pm, C1, . . . , Cm is infeasible.

Lemma 6. If the algorithm returns some x∗, then

m

∑
i=1

x∗i Pi ≤ (1 + 9ε)1 and
m

∑
i=1

x∗i Ci ≥ 1.

Proof. Because of the condition of the while loop, it is clear that ∑m
i=1 x∗i Ci ≥ 1.

For x ∈ Rm, define

Φ(x) def
= Imax(

m

∑
j=1

xjPj)− (1 + ε)3 · Imin(
m

∑
j=1

xjCj).
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Note that the update of Cj’s at step 3(d) only increase Imin(∑m
j=1 xjCj). Hence using Lemma 4,

we conclude that Φ(x) is non-decreasing during the algorithm. At step 1 of the algorithm,

Φ(x) ≤ Imax(
m

∑
j=1

xjPj) = ln Tr(exp(
m

∑
i=1

xiPi))

≤ ln(n exp(

∥∥∥∥∥ m

∑
i=1

xiPi

∥∥∥∥∥)) ≤ ln(n exp(
m

∑
i=1
‖xiPi‖)) = ln n + 1.

Hence just before the last increment,∥∥∥∥∥ m

∑
i=1

xiPi

∥∥∥∥∥ ≤ Imax(
m

∑
j=1

xjPj) ≤ Φ(x) + (1 + ε)3 · Imin(
m

∑
j=1

xjCj)

≤ ln n + 1 + (1 + ε)3 · Imin(
m

∑
j=1

xjCj)

≤ ln n + 1 + (1 + ε)3 · λmin(
m

∑
j=1

xjCj)

≤ ln n + 1 + (1 + ε)3N ≤ (1 + 8ε)N .

In the last increment, because of the condition on step 3(e) of the algorithm, ‖∑m
i=1 xiPi‖ in-

crease by at most ε. Hence ∑m
i=1 x∗i Pi ≤ (1 + 9ε)1.

Running time analysis

Lemma 7. Assume that the algorithm does not return infeasible for some input instance. The number
of times g is increased at step 3(b) of the algorithm is O(N/ε).

Proof. At the beginning of the algorithm Tr(exp(−∑m
i=1 xiCi)) ≤ n since each eigenvalue of

exp(−∑m
i=1 xiCi) is at most 1. Also Tr exp(∑m

i=1 xiPi) ≥ 1. Hence

g = global(x) =
Tr exp(∑m

i=1 xiPi)

Tr(exp(−∑m
i=1 xiCi))

≥ 1
n
≥ 1

exp(N)
.

At the end of the algorithm λmin(∑m
i=1 xiCi) ≤ N + ε ≤ 2N. Hence

Tr(exp(−
m

∑
i=1

xiCi)) ≥
∥∥∥∥∥exp(−

m

∑
i=1

xiCi)

∥∥∥∥∥ = exp(−λmin(
m

∑
i=1

xiCi)) ≥ exp(−2N).

Also (using Lemma 6)

Tr(exp(
m

∑
i=1

xiPi)) ≤ n

∥∥∥∥∥exp(
m

∑
i=1

xiPi)

∥∥∥∥∥ ≤ n exp((1 + 9ε)N) ≤ exp(11N).

Hence g ≤ global(x) ≤ exp(13N).
Whenever g is updated at step 3(b) of the algorithm, we have

global(x) ≥ min
j
{localj(x)} > (1 + ε)g

just before the update and global(x) = g just after the update. Thus g increases by at least
(1 + ε) multiplicative factor. Hence the number of times g increases is O(N/ε).
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Lemma 8. Assume that the algorithm does not return infeasible for some input instance. The number
of iterations of the while loop in the algorithm for a fixed value of g is O(N log(mN)/ε).

Proof. From Lemma 6 and step 3(d) of the algorithm we have max{‖∑m
i=1 xiPi‖ , ‖∑m

i=1 xiCi‖} =
O(N) throughout the algorithm. On the other hand we have max{‖∑m

i=1 δxiPi‖ , ‖∑m
i=1 δxiCi‖} =

ε at step 3(e). Hence δ = Ω(ε/N) throughout the algorithm.
Let xj be increased in the last iteration of the while loop for a fixed value of g. Note that xj

is initially 1/(m
∥∥Pj
∥∥) and at the end xj is at most 10N/

∥∥Pj
∥∥ (since, using Lemma 6,

∥∥xjPj
∥∥ ≤∥∥∑m

i=1 xjPj
∥∥ ≤ 10N). Hence the algorithm makes at most O(log(mN)/δ) = O(N log(mN)/ε)

increments for each xj.
Note that localj(x) only increases throughout the algorithm (easily seen for steps 3(d) and

3(e) of the algorithm). Hence since the last iteration of the while loop (for this fixed g) increases
xj, it must be that each iteration of the while loop increases xj. Hence, the number of iterations
of the while loop (for this fixed g) is O(N log(mN)/ε).

We claim (without further justification) that each individual step in the algorithm can be
performed in parallel time polylog(mn). Hence combining the above lemmas and using N =

O( ln(mn)
ε ), we get

Corollary 9. The parallel running time of the algorithm is upper bounded by polylog(mn) · 1
ε4 · log 1

ε .
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A Deferred proofs

Proof of Lemma 2: We will use the following Golden-Thompson inequality.

Fact 10. For Hermitian matrices A, B : Tr(exp(A + B)) ≤ Tr exp(A) exp(B).

We will also need the following fact.

Fact 11. Let A be positive semidefinite with ‖A‖ ≤ ε ≤ 1. Then,

exp(A) ≤ 1 + (1 + ε)A and exp(−A) ≤ 1− (1− ε/2)A.

Consider,

Imax(
m

∑
j=1

(xj + αj)Aj)− Imax(
m

∑
j=1

xj Aj)

= ln
(

Tr exp(∑m
i=1(xi + αi)Ai)

Tr exp(∑m
i=1 xi Ai)

)
≤ ln

(
Tr exp(∑m

i=1 xi Ai) exp(∑m
j=1 αj Aj)

Tr exp(∑m
i=1 xi Ai)

)
(from Fact 10)

= ln

(
Tr exp(∑m

i=1 xi Ai)(1 + (1 + ε)(∑m
j=1 αj Aj))

Tr exp(∑m
i=1 xi Ai)

)
(from Fact 11)

= ln

(
1 +

(1 + ε)Tr exp(∑m
i=1 xi Ai)(∑m

j=1 αj Aj)

Tr exp(∑m
i=1 xi Ai)

)

≤
(1 + ε)Tr exp(∑m

i=1 xi Ai)(∑m
j=1 αj Aj)

Tr exp(∑m
i=1 xi Ai)

(since ln(1 + a) ≤ a for all real a)

The desired bound on Imin(∑m
j=1(xj + αj)Aj)− Imin(∑m

j=1 xj Aj) follows by analogous calcula-
tions.
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