Distinguishing sets of quantum states

Rahul Jain
U.C. Berkeley
rahulj@cs.berkeley.edu

Abstract
Given two sets finite \(S_0 \) and \(S_1 \) of quantum states. We show necessary and sufficient conditions for distinguishing them by a measurement.

Let there be two finite sets of quantum states \(S_0 = \{\rho_i : 1 \leq i \leq l\} \) and \(S_1 = \{\sigma_i : 1 \leq i \leq l\} \). Please see [NC00] for a good introduction to information theory. By a \(\epsilon \)-separating measurement \(T \) we mean a POVM element \(T \) such that \(\forall \rho \in S_0 \) and \(\forall \sigma \in S_1 \) we have \(\text{Tr} T \rho - \text{Tr} T \sigma \geq \epsilon \) for some constant \(\epsilon \). For distributions \(\mu_0 \) on \(S_0 \) and \(\mu_1 \) on \(S_1 \), let \(\rho_{\mu_0} = E_{i \in \mu_0} [\rho_i] \) and \(\sigma_{\mu_1} = E_{i \in \mu_1} [\sigma_i] \).

We show the following:

Theorem 0.1 The following statements are equivalent:

1. There exists a \(\epsilon \)-separating measurement \(T \).
2. For all distributions \(\mu_0 \) on \(S_0 \) and \(\mu_1 \) on \(S_1 \), \(\| \rho_{\mu_0} - \sigma_{\mu_1} \|_{\text{tr}} \geq 2\epsilon \).

For our proof we will need the following facts.

Fact 0.1 ([NC00]) Given quantum states \(\rho, \sigma \),

\[
\max_{\text{Tr}} T: \text{a POVM element} \quad \text{Tr} T \rho - \text{Tr} T \sigma = \frac{1}{2} \| \rho - \sigma \|_{\text{tr}}
\]

We have the following minimax theorem from game theory (see [OR94]).

Fact 0.2 Let \(A_1, A_2 \) be non-empty, either finite or convex and compact subsets of \(\mathbb{R}^n \). Let \(u : A_1 \times A_2 \to \mathbb{R} \) be a continuous function. Let \(\mu_1, \mu_2 \) be distributions on \(A_1 \) and \(A_2 \) respectively. Then,

\[
\min_{\mu_1} \max_{a_2 \in A_2} E_{\mu_1} [u(a_1, a_2)] = \max_{\mu_2} \min_{a_1 \in A_1} E_{\mu_2} [u(a_1, a_2)]
\]

\(^*\)This work was supported by an Army Research Office (ARO), North California, grant number DAAD 19-03-1-00082.
Proof:

1) \Rightarrow 2): If T is a separating measurement then from linearity of Tr operation we see that for all distributions μ_0 on S_0 and μ_1 on S_1, $\text{Tr}T\rho_{\mu_0} - \text{Tr}T\sigma_{\mu_1} \geq \epsilon$. Fact 0.1 now implies $\|\rho_{\mu_0} - \sigma_{\mu_1}\|_{\text{tr}} \geq 2\epsilon$.

2) \Rightarrow 1): Let us define sets $A_1 = \{ T : T \text{ a POVM element} \}$ and $A_2 = \{ (\rho, \sigma) : \rho \in S_0, \sigma \in S_1 \}$. Let the function $u : A_1 \times A_2 \to \mathbb{R}$ be defined as $u(T, (\rho, \sigma)) = \text{Tr}T\rho - \text{Tr}T\sigma$. For a distribution μ on $S_0 \times S_1$, let μ_0 be the marginal distribution on S_0 and μ_1 be the marginal distribution on S_1. From fact 0.2 and the fact that a convex combination of POVM elements is also a POVM element and from linearity of Tr operation it follows:

\[
\max_T \min_{(\rho,\sigma)\in S_0\times S_1} \text{Tr}T\rho - \text{Tr}T\sigma = \min_\mu \max_T \text{Tr}T\rho_{\mu_0} - \text{Tr}T\sigma_{\mu_1}
\]

From above it is clear that 2) \Rightarrow 1).

Acknowledgment: We thank Julia Kempe, Rohit Khandekar and Oded Regev for useful discussions and patiently listening to an early proof.

References
