
An approach from classical information theory to

lower bounds for smooth codes

Abstract

Let C : {0, 1}n 7→ {0, 1}m be a code encoding an n-bit string into an m-bit string.
Such a code is called a (q, c, ε) smooth code if there exists a probabilistic decoding
algorithm which while decoding any bit of the input, makes at most q probes on the
code word, the probability with which it looks at any location is at most c/m and the
error made by the decoding algorithm is at most ε. Smooth codes were introduced by
Katz and Trevisan [KT00] in connection with locally decodable codes.

For 2-probe smooth codes Kerenidis and de Wolf [KdW03] have shown that m ≥
2Ω(n) in case c and ε are constants. Although the final result is about classical codes,
their proof goes through quantum information theoretic arguments. These arguments
do not seem to extend to codes with higher number of probes.

Using very different classical information theoretic arguments, we show that for 2-
probe codes if ε ≤ c2

8n2 , then m ≥ 2
n

320c2
−1. While we do not match the bounds shown by

Kerenidis and de Wolf we hope that the techniques used in this paper extend to match
the bounds shown using quantum arguments. More so, we hope that they extend to
show bounds for codes with greater number of probes for which the quantum arguments
of Kerenidis and de Wolf apparently break down.

Keywords: Codes, locally decodable, smooth, information theory, lower bounds, quan-
tum.
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1 Introduction

Error correcting codes encoding say an n-bit message x to an m-bit code-word C(x) are
primarily designed so as to recover the original message x even if there is some error in the
code-word C(x) during transmission. In many contexts we need to recover only part of the
initial encoded message while accessing only a limited number of bits of the corrupted code-
word (e.g. Probabilistically checkable proofs, self-correcting computations and extractors).
This was one of the motivations with which Katz and Trevisan [KT00] defined Locally
decodable codes (LDC). These codes are also closely connected to another important and well
studied problem: Private information retrieval (PIR) [CKGS98, Amb97, BIKR02, BFG06,
RS06]. Katz and Trevisan defined Smooth codes in the same context and showed that
existence of LDCs implies existence of smooth codes. The main difference between the two
is that instead of allowing for errors in the codeword C(x) as in LDCs, in smooth codes
a certain smoothness condition is forced on the decoding algorithm. Lower bounds for
smooth codes imply lower bounds for LDCs which in turn imply bounds on communication
for PIR schemes. LDCs and smooth codes have been extensively studied in the last few
years [KT00, DJT+02, GKST02, Oba02, KdW03, WdW05, Yek06].

Let us review the definition of smooth codes as in Katz and Trevisan [KT00].

Definition 1 Let c > 1, 0 ≤ ε < 1/2 and q be an integer. We call a code C : {0, 1}n 7→
{0, 1}m to be a (q, c, ε) smooth code if there exists a non-adaptive probabilistic decoding
algorithm A such that:

1. Local decoding: In every invocation A reads at most q indices of the code non-
adaptively.

2. Correctness: For every x ∈ {0, 1}n and every i ∈ [n], Pr[A(C(x), i) = xi] ≥ 1− ε.

3. Smoothness: For every i ∈ [n] and every j ∈ [m], Pr[A(., i) ’reads index’ j] ≤ c/m.

Remark: Here we consider only non-adaptive codes. For codes with constant number of
probes, bounds for non-adaptive codes also imply bounds for adaptive codes [KT00].

It has been quite hard to obtain matching upper and lower bounds for general LDCs and
smooth codes. Several special cases of interest have been studied and one such important
special case has been the 2-probe codes (q = 2). For 2-probe LDCs and smooth codes,
Kerenidis and de Wolf [KdW03], using quantum information theoretic arguments, showed
a lower bound on m that is exponential in n, where c, ε are constants. This is one of few
examples where quantum arguments lead to classical results. A matching upper bound is
provided by the Hadamard code [KT00]. However for codes with a higher number of probes
(q ≥ 3), there is a large gap in the existing upper and lower bounds [DJT+02, BIKR02,
Woo06, WY05, Yek06]. The quantum arguments of [KdW03] do not seem to imply lower
bounds that come close to the existing upper bounds for q ≥ 3.

In the wake of the above facts it is desirable to get different arguments for showing
lower bounds for 2-probe codes, which could potentially be extended to show stronger

1



bounds for codes with q ≥ 3. Prior to the work of [KdW03], Goldreich, Karloff, Schulman
and Trevisan [GKST02] studied the special case of 2-probe linear LDCs; codes in which
the encoding function is linear and showed a lower bound on m that is exponential in n.
More recently Beigel, Fortnow and Gasarch [BFG06] have shown tighter exponential lower
bounds on communication for 2-prover zero-error PIR schemes implying similar bounds for
2-probe zero-error LDCs (i.e. ε = 0).

We attempt here one such approach for obtaining alternative arguments for the result
of [KdW03] for general 2-probe smooth codes. We show the following:

Theorem 1.1 Let C : {0, 1}n 7→ {0, 1}m be a (2, c, ε) smooth code with ε ≤ c2

8n2 . Then,
m ≥ 2

n
320c2

−1.

Note: Usually bounds for smooth codes imply corresponding bounds for LDCs. However
such is not the case with our result since the error parameter that we are considering is
much smaller than the smoothness parameter which we are letting to be a constant. Lower
bounds for smooth codes when the error is allowed to be a constant do imply bounds for
corresponding LDCs.

Our techniques: Our techniques rely on classical information theory as opposed to
the quantum information theory arguments of [KdW03]. We avoid the use of the essentially
quantum concept of superpositions which was critically used by [KdW03] in their reduction
of classical 2-probe codes to quantum 1-probe codes. This 2 to 1 quantum reduction, we
believe is a critical bottleneck in the arguments of [KdW03] which prevents them from
extending to 3-probe codes and beyond. We instead give direct arguments for classical
2-probe codes.

We think of the n-bit message X
∆= X1, . . . , Xn (that is encoded) and the m-bit code-

word Y
∆= Y1, . . . , Ym as correlated random variables (where Xi represents the i-th bit of

X and similarly for Y ). For each index i ∈ {1, . . . , n}, let us now consider a graph Gi on
m vertices with edges being the pair of vertices that are possibly probed by the decoding
algorithm A on input i. Let the error parameter of A be ε (we let ε to be o(1/n2), the
reason for which we briefly mention a little later). It was noted by [KT00] that in each
Gi there exists a matching Mi of size Ω(m), of good edges such that for each edge in
Mi, the decoding algorithm on probing that edge, determines answer correctly with good
probability, say 1− 2ε. We first note that for a typical good edge say (j, k) ∈ Mi, Yj and Yk

get highly correlated after conditioning on Xi. We then make the central observation that
if Yj , Yk get highly correlated by conditioning on Xi1 and later Yj , Yl get highly correlated
by conditioning on Xi2 , then it implies that Yk, Yl get highly correlated on conditioning on
both Xi1 and Xi2 . We then finally observe that this way a lot of random variables in the set
{Y1, . . . , Ym} start to get correlated with each other fast and this process cannot continue
for long.

To make the calculations, we identify a subset GOOD of {1, . . . , n} such that |GOOD| =
Ω(n) and then successively condition on Xi, i ∈ GOOD one by one. For every j ∈ {1, . . . ,m}
and i ∈ GOOD we maintain a set Si

j of the random variables Yk, such that Yj and Yk are
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highly correlated conditioned on X1 . . . Xi. We then argue that if ε = o(1/n2) then for each
i ∈ GOOD, there exists Ω(m) values of j such that |Si

j | ≥ 2|Si−1
j |. This combined with the

fact that |GOOD| = Ω(n) and |Si
j | ≤ m, then finally implies m ≥ 2Ω(n).

Here the reason for ε = o(1/n2) is roughly that as we increase i, the correlation of
random variables Yk ∈ Si

j with Yj gets weaker with each successive conditioning of Xi’s.
The reason for this is roughly that as in the example above the derived correlation between
Yk, Yl could be slightly weaker than the correlations between Yk, Yj and Yj , Yl. Hence, in
order to progress till the last element in GOOD with the desired condition on Si

j ’s for every
i, we get such a requirement on ε.

We would like to point out that in the special case when ε = 0, our arguments might
appear to bear similarities with the arguments of [BFG06]. In this special case [BFG06]
could use counting and combinatorial arguments. However we have to resort to information
theory to handle the case of ε > 0.
Discussion and further work: Although our result here falls short of the optimum
bounds shown by [KdW03], we believe that it is a step in the direction of de-quantifying
their proof. We hope that the different approach that we take, might possibly be extended
to match their bounds. More importantly we hope that these arguments might extend to
derive stronger bounds for codes with 3-probes and beyond.

As of now, we do not present here a clean conjecture whose resolution would lead to the
extension of the bounds to constant error using classical arguments. However we believe
that it should be possible to extent the main intuition in this paper that each good edge
(or hyperedge in case of higher number of queries) leads to correlations in corresponding
random variables in the code word Y . Since (because of the smoothness of the code),
there are several disjoint good (hyper)edges for each i ∈ [n], several disjoint set of random
variables in the set {Y1, . . . , Ym} get affected due to conditioning on each Xi. This in general
collapses the entropy of the combined random variable Y fast and this process can continue
only till the entropy in Y lasts, at the end of which Y can no longer absorb conditioning of
further random variables Xi’s.

1.1 Organization

In the next section we present some classical information theoretic preliminaries and defi-
nitions which we will use in our proof of Theorem 1.1 which we present in the subsequent
Section 3.

2 Preliminaries

In this section we briefly review some of the information theory facts that will be useful for
us in our proofs in the next section. For an excellent introduction to classical information
theory, please refer to the book by Cover and Thomas [CT91]. Several of the facts mentioned
below which we state without a proof are taken from this book.
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For an integer n ≥ 1, we let [n] represent the set {1, . . . , n}. We let our random
variables to be finite valued. Let X, Y be random variables. We will let H(X),H(X|Y )
represent the entropy of X and the conditional entropy of X given Y . We let I(X : Y ) ∆=
H(X) + H(Y ) − H(XY ) = H(X) − H(X|Y ) represent the mutual information between
X and Y . We will use the fact I(X : Y ) ≥ 0, equivalently H(X) + H(Y ) ≥ H(XY ) and
H(X) ≥ H(X|Y ), several times without explicitly mentioning it. We will also use the
monotonicity of entropy i.e. H(XY ) ≥ H(X), equivalently H(Y ) ≥ I(X : Y ) several times
without explicitly mentioning it. Let X be an m valued random variable, then it follows
easily that H(X) ≤ log2 m (below we always take logarithm to the base 2).

For random variables X1, . . . , Xn, we have the following chain rule of entropy:

H(X1, . . . Xn) =
n∑

i=1

H(Xi|X1 . . . Xi−1) (1)

Similarly for random variables X1, . . . , Xn, Y , we have the following chain rule of mutual
information:

I(X1 . . . Xn : Y ) =
n∑

i=1

I(Xi : Y |X1 . . . Xi−1) (2)

Let X, Y, Z be random variables. Then we have the following important monotonicity
relation of mutual information:

I(XY : Z) ≥ I(X : Z) (3)

All the above mentioned relations also hold for conditional random variables for example,
for random variables X, Y, Z, I(X : Y |Z) ≥ 0,H(XY |Z) ≥ H(X|Z) and so on. Again we
may be using the conditional versions of the above relations several times without explicitly
mentioning it.

For correlated random variables X, Y , we have the following Fano’s inequality. Let
ε

∆= Pr[X 6= Y ] and let |X| represent the size of the range of X. Then

H(ε) + ε log(|X| − 1) ≥ H(X|Y ) (4)

For 0 ≤ p ≤ 1/2, we have the bound H(p) ≤ 2
√

p.

3 Proof of Theorem 1.1

Let X
∆= X1 . . . Xn be a random variable uniformly distributed in {0, 1}n (corresponding to

the input being encoded) and Xi correspond to the i-th bit of X. This implies that Xi’s are
distributed independently and uniformly in {0, 1}. Let Y

∆= Y1 . . . Ym be a random variable
(correlated with X) corresponding to the code, i.e Y = C(X). Here Yj , j ∈ [m] corresponds
to the j-th bit of the code.

Let A be as in Definition 1. Let 0 ≤ ε < 1/2, for i ∈ [n] let Eε
i be the graph on [m]

consisting of edges (j, k) such that,
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Pr[A(C(X), i) = Xi|A reads (Yj , Yk)] ≥ 1− ε (5)

Following interesting fact can be shown using arguments of Katz and Trevisan [KT00]:

Lemma 3.1 Let C : {0, 1}n 7→ {0, 1}m be a (2, c, ε) smooth code. Let E2ε
i be as described

above. Then for each i ∈ [n], E2ε
i has a matching Mi of size at least m

4c .

Proof: Using the definition of smooth code we have,

1− ε ≤ Pr[A(C(X), i) = Xi|A(C(X), i) reads E2ε
i ] Pr[A(C(X), i) reads E2ε

i ]
+ Pr[A(C(X), i) = Xi|A(C(X), i) reads complement of E2ε

i ]
·Pr[A(C(X), i) reads complement of E2ε

i ]
≤ Pr[A(C(X), i) reads E2ε

i ] + (1− 2ε)(1− Pr[A(C(X), i) reads E2ε
i ])

This implies Pr[A(C(X), i) reads E2ε
i ] ≥ 1/2. For an edge e ∈ E2ε

i , let Pe
∆= Pr[A(C(X), i) reads e].

This implies
∑

e∈E2ε
i

Pe ≥ 1/2. Furthermore since C is a (2, c, ε) smooth code, for every
j ∈ [m], it implies

∑
e∈E2ε

i |j∈e Pe ≤ c/m. Let V be a vertex cover of E2ε
i . Therefore,

1/2 ≤
∑

e∈E2ε
i |e∩V 6=∅

Pe ≤
∑
j∈V

∑
e∈E2ε

i |j∈e

Pe ≤ |V |c/m

This implies that minimum vertex cover of E2ε
i has size at least m/2c. This now implies

that E2ε
i has a matching of size at least m/4c.

We start with the following claim.

Claim 3.2 Let (j, k) ∈ Mi and ε′
∆=
√

8ε. Then, I(Xi : YjYk) ≥ 1− ε′.

Proof:

I(Xi : YjYk) = H(Xi)−H(Xi|YjYk)
≥ 1−H(2ε) (from(4) and (5))
≥ 1−

√
8ε (from the bound H(p) ≤ 2

√
p)

We make the following claim which roughly states that the information about various
Xis do not quite go into the individual bits of Y . For i ∈ [n] let, X̃i

∆= X1 . . . Xi−1.

Claim 3.3 ∑
i∈[n]

∑
(j,k)∈Mi

(I(Xi : Yj |X̃i) + I(Xi : Yk|X̃i)) ≤ m
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Proof:∑
i∈[n]

∑
(j,k)∈Mi

I(Xi : Yj |X̃i) + I(Xi : Yk|X̃i) ≤
∑
i∈[n]

∑
j∈[m]

I(Xi : Yj |X̃i) (since Mis are matchings)

=
∑

j∈[m]

∑
i∈[n]

I(Xi : Yj |X̃i)

=
∑

j∈[m]

I(X : Yj) (from (2))

≤ m (since ∀j ∈ [m], Yj is a binary random variable)

We now have the following claim which roughly states that for a typical edge (j, k) ∈ Mi

there is a substantial increase in correlation between Yj and Yk after conditioning on Xi.

Claim 3.4 Let ε′ ≤ c
n . Then,

Ei∈U [n],(j,k)∈UMi
[I(Yj : Yk|XiX̃i)− I(Yj : Yk|X̃i)] ≥ 1− 5c/n

Proof: Let (j, k) ∈ Mi. Since Xi and X̃i are independent random variables, this implies
I(Xi : X̃i) = 0 and we get:

I(Xi : YjYk) ≤ I(Xi : X̃iYjYk) (from (3))
= I(Xi : X̃i) + I(Xi : YjYk|X̃i) (from (2))
= I(Xi : YjYk|X̃i)
= I(Xi : Yj |X̃i) + I(Xi : Yk|X̃i) + I(Yj : Yk|XiX̃i)− I(Yj : Yk|X̃i) (from (2))

From Claim 3.2 we get,

(1− ε′)
∑

i

|Mi| ≤
∑

i

∑
(j,k)∈Mi

I(Xi : YjYk)

≤
∑

i

∑
(j,k)∈Mi

I(Xi : Yj |X̃i) + I(Xi : Yk|X̃i) + I(Yj : Yk|XiX̃i)− I(Yj : Yk|X̃i)

Claim 3.3 now implies:∑
i

∑
(j,k)∈Mi

I(Yj : Yk|XiX̃i)− I(Yj : Yk|X̃i) ≥ (1− ε′)
∑

i

|Mi| −m

≥ (
∑

i

|Mi|)(1− ε′ − m∑
i |Mi|

) ≥ (
∑

i

|Mi|)(1− c/n− 4c/n) (from Lemma 3.1)

Applying Markov’s inequality on the above claim we get:
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Claim 3.5 Let 0 < δ1, δ2 ≤ 1. There exists a set GOOD ⊆ [n] and sets GOODi ⊆ Mi such
that:

1. |GOOD| ≥ (1−δ1)n and i ∈ GOOD, E(j,k)∈Mi
[I(Yj : Yk|XiX̃i)−I(Yj : Yk|X̃i)] ≥ 1− 5c

δ1n

2. ∀i ∈ GOOD, |GOODi| ≥ (1− δ2)|Mi| and for (j, k) ∈ GOODi, I(Yj : Yk|XiX̃i)− I(Yj :
Yk|X̃i) ≥ 1− 5c

δ1δ2n

Let δ1 = δ2 = 1/2. Let ε̃
∆= 20c

n . Therefore for i ∈ GOOD and (j, k) ∈ GOODi we have
from above,

I(Yj : Yk|XiX̃i)− I(Yj : Yk|X̃i) ≥ 1− ε̃ (6)

We fix GOOD to have exactly 1
2ε̃ − 2 elements. For i ∈ GOOD, let ai be the index of i in

GOOD. For i /∈ GOOD, let ai be the index of largest i′ < i in GOOD. For j ∈ [m], i ∈ [n],
let Si

j
∆= {l ∈ [m] : H(Yj |YlXiX̃i) ≤ aiε̃}. Let S0

j
∆= {j}.

We show the following main lemma.

Lemma 3.6 Let i ∈ GOOD, (j, k) ∈ GOODi. Then,

1. Si−1
j ∩ Si−1

k = ∅

2. Si−1
j ∪ Si−1

k ⊆ Si
j ∩ Si

k.

Proof: Part 1: Let l ∈ Si−1
j ∩ Si−1

k . Using standard information theoretic relations it
follows:

H(YkYj |YlX̃i) ≤ H(Yk|YlX̃i) + H(Yj |YlX̃i) ≤ 2(ai − 1)ε̃

Since (j, k) ∈ GOODi and from(6),

H(Yk|X̃i) ≥ H(Yk|XiX̃i) ≥ I(Yk : Yj |XiX̃i) ≥ 1− ε̃

Similarly H(Yj |X̃i) ≥ 1− ε̃. Therefore again from(6),

H(YjYk|X̃i) = H(Yj |X̃i) + H(Yk|X̃i)− I(Yj : Yk|X̃i)
≥ 2− 2ε̃− ε̃ = 2− 3ε̃

Now,

I(Yl : YjYk|X̃i) = H(YjYk|X̃i)−H(YjYk|YlX̃i)
≥ 2− 3ε̃− 2(ai − 1)ε̃ ≥ 2− 2(ai + 1)ε̃ > 1 (since ai ≤ 1

2̃ε
− 2)

This is a contradiction since Yl is a binary random variable.

Part 2: We show Si−1
j ∪ Si−1

k ⊆ Si
j and Si−1

j ∪ Si−1
k ⊆ Si

k follows similarly. It is easily
seen that Si−1

j ⊆ Si
j . Let l ∈ Si−1

k . Since (j, k) ∈ GOODi, from(6),

H(Yj |YkXiX̃i) = H(Yj |XiX̃i)− I(Yj : Yk|XiX̃i) ≤ 1− (1− ε̃) = ε̃
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Now,

H(Yj |YlXiX̃i) ≤ H(YjYk|YlXiX̃i)
= H(Yk|YlXiX̃i) + H(Yj |YlYkXiX̃i) (from (1))
≤ H(Yk|YlX̃i) + H(Yj |YkXiX̃i)
≤ (ai − 1)ε̃ + ε̃ = aiε̃

Hence l ∈ Si
j and therefore Si−1

k ⊆ Si
j .

Our theorem now finally follows.

Proof: [Theorem 1.1] Let i ∈ GOOD. Since ε ≤ c2

8n2 , Claim 3.4 holds. Lemma 3.6
implies that for (j, k) ∈ GOODi, either |Si

j | = 2|Si−1
j | or |Si

k| = 2|Si−1
k |. Then,∑

j

log |Si−1
j |+ |GOODi| ≤

∑
j

log |Si
j | (7)

Let ĩ be the largest i ∈ GOOD. Now,

(
n

40c
− 2)

m

8c
≤

∑
i∈GOOD

|Mi|
2

(from Lemma 3.1)

≤
∑

i∈GOOD

|GOODi| (from Claim(3.5) and δ2 = 1/2)

≤
∑

j

log |S ĩ
j | (from(7))

≤ m log m

⇒ m ≥ 2( n
40c

−2) 1
8c ≥ 2

n
320c2

−1
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