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Short proofs of the Quantum Substate Theorem
Rahul Jain and Ashwin Nayak

Abstract—The Quantum Substate Theorem due to Jain, Rad-
hakrishnan, and Sen (2002) gives us a powerful operational
interpretation of relative entropy, in fact, of the observational
divergence of two quantum states, a quantity that is related
to their relative entropy. Informally, the theorem states that if
the observational divergence between two quantum states ρ, σ
is small, then there is a quantum state ρ′ close to ρ in trace
distance, such that ρ′ when scaled down by a small factor becomes
a substate of σ. We present new proofs of this theorem. The
resulting statement is optimal up to a constant factor in its
dependence on observational divergence. In addition, the proofs
are both conceptually simpler and significantly shorter than the
earlier proof.

Index Terms—Quantum information theory, observational di-
vergence, relative entropy, substate theorem, smooth relative min-
entropy.

I. THE QUANTUM SUBSTATE THEOREM

CONSIDER quantum states ρ, σ ∈ D(H), where H is a
finite dimensional Hilbert space H, and D(H) denotes

the set of all quantum states with support in H, i.e., the set of
unit trace positive semi-definite operators on H. We say that ρ
is a c-substate of σ if ρ � 2cσ, where � represents the Löwner
partial order on operators on H. We may equivalently express
this condition in terms of measurement outcomes (“POVM
elements”) as follows. Let

P(H)
def
= {M ∈ L(H) : O �M � I} ,

denote the set of POVM elements on H, where L(H) is the
space of linear operators and I is the identity operator on H.
The state ρ is a c-substate of σ iff for every measurement
outcome M ∈ P(H), the probability Tr(Mσ) of observing M
when σ is measured according to the POVM {M, I−M} is at
least Tr(Mρ)/2c, a 1/2c fraction of the probability of observ-
ing M when ρ is measured. Morally, the state σ may be de-
composed as σ = αρ+(1−α)σ̃, for some σ̃ ∈ D(H), with α ≥
1/2c. This in turn may be used to construct the state ρ
from σ through quantum analogues of rejection sampling. For
example, we may apply the quantum measurement specified

Centre for Quantum Technologies and Department of Computer Science,
National University of Singapore, Block S15, 3 Science Drive 2, Singapore
11754. Email: rahul@comp.nus.edu.sg. Work done in part while vis-
iting the Institute for Quantum Computing, University of Waterloo.

Department of Combinatorics and Optimization, and Institute for Quantum
Computing, University of Waterloo, 200 University Ave. W., Waterloo, ON,
N2L 3G1, Canada. Email: ashwin.nayak@uwaterloo.ca. Work done
in part at Center for Quantum Technologies, National University of Singapore,
and at Perimeter Institute for Theoretical Physics. Research supported in part
by NSERC Canada, CIFAR, an ERA (Ontario), QuantumWorks, MITACS,
and ARO (USA). Research at Perimeter Institute is supported in part by
the Government of Canada through Industry Canada and by the Province
of Ontario through MRI.

Copyright (c) 2011 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

by the Kraus operators
{√

αρ1/2σ−1/2,
√

1− α σ̃1/2σ−1/2
}

,
or go through a purification of σ [1], [2].

Given arbitrary quantum states ρ, σ ∈ D(H) we are inter-
ested in how well σ masquerades as ρ in the above sense.
In other words, we are interested in the least c such that ρ
is a c-substate of σ. We call this quantity the relative min-
entropy S∞(ρ‖σ) of the two states. A generalization of this
notion to bipartite states has been studied by Renner [3,
Chapter 3], and the notion itself has been studied by Datta [4]
as “max-relative entropy”. For typical applications, such as
privacy trade-offs in communication protocols [1], [2], it
suffices to construct an approximation ρ′ to ρ, with respect
to a metric on quantum states. This leads us to the notion of
the smooth relative min-entropy Sε∞(ρ‖σ) of the two states,
a quantity implicitly studied by Jain, Radhakrishnan, and
Sen [1], [2] and later explicitly by Renner [3, Chapter 3]
and Datta [4]. The metric initially used for the smoothness
parameter ε was the trace distance. The fidelity of quantum
states gives us a more natural metric in typical applications,
and we adopt this measure of closeness in the article.

Let ε ∈ (0, 1) and ρ, σ ∈ D(H) be such that
supp(ρ) ⊆ supp(σ). We may express the ε-smooth relative
min-entropy Sε∞(ρ‖σ) as the base 2 logarithm of the value
of following optimization problem with variables ρ′ ∈ D(H)
and κ ∈ R:

minimize: κ

subject to:
ρ′ � κσ

Tr ρ′ = 1 (P1)
F(ρ, ρ′) ≥ 1− ε
ρ′ ∈ L(H), ρ′ � 0

κ ∈ R, κ ≥ 0

Here F(ρ′, ρ)
def
=
∥∥√ρ′√ρ∥∥2

tr
, denotes the fidelity between the

two quantum states, and ‖M‖tr
def
= Tr

√
M†M denotes the

trace norm of the linear operator M ∈ L(H). The existence
of a pair ρ′, κ that are feasible for the problem (P1) means
that there is a quantum state ρ′ with fidelity F(ρ′, ρ) ≥ 1− ε
that is also a (log2 κ)-substate of σ. The substate constraint
implies that κ ≥ 1.

The program (P1) is feasible, as ρ′ def
= ρ and κ

def
= 1/λ,

where λ is the smallest non-zero eigenvalue of σ, satisfy all the
constraints. Therefore we may restrict the optimization to κ ∈
[0, 1/λ] and the compact set of quantum states with fidelity at
least 1−ε with ρ. The ε-smooth relative min-entropy between
the two states is thus always achieved.

If ρ is a c-substate of σ, i.e., their relative min-entropy is at
most c, their relative entropy S(ρ‖σ)

def
= Tr ρ(log2 ρ− log2 σ)
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is also at most c. Jain et al. [1], [2] gave a weak converse to
this relation via the Quantum Substate Theorem, which gives
a bound on the ε-smooth relative min-entropy in terms of the
more familiar notion of relative entropy. This theorem may
also be viewed as a handy operational interpretation of the
rather abstract notion of relative entropy.

The substate theorem (classical or quantum) lies at the heart
of a growing number of applications [2, Section 1]. These
include privacy trade-offs in communication protocols for
computing relations [5], message compression leading to direct
sum theorems in classical and quantum communication com-
plexity [5], impossibility results for bit-string commitment [6],
the communication complexity of remote state preparation [7],
and direct product theorems for classical communication com-
plexity [8], [9]. To highlight one of these examples, the Quan-
tum Substate Theorem enables (non-oblivious) compression
of an ensemble of mixed quantum states to within a constant
factor of the Holevo information of the ensemble, given access
to shared entanglement and classical communication, when we
are allowed a small loss of fidelity in the compression process.
In contrast, the compression of arbitrary ensembles of mixed
quantum states to the Holevo limit remains an open problem
in quantum information theory.

Jain et al. formulated their bound in terms of a new infor-
mation theoretic quantity, observational divergence D(ρ‖σ),
rather than relative entropy.

Definition 1 (Observational divergence). Let ρ, σ ∈ D(H).
Their observational divergence is defined as

D(ρ‖σ)
def
=

sup

{
(TrMρ) log2

TrMρ

TrMσ
: M ∈ P(H), TrMσ 6= 0

}
.

The supremum in the definition above is achieved if and
only if supp(ρ) ⊆ supp(σ). As is evident, this quantity is
a scaled measure of the maximum factor by which Tr(Mρ)
may exceed Tr(Mσ) for any measurement outcome M of
interest. Observational divergence is related to relative entropy.
In particular, D(ρ‖σ) ≤ S(ρ‖σ) + 1. However, it could be
smaller than relative entropy by a factor proportional to the
dimension [2, Proposition 4] (see also [10]).

We present alternative proofs of the Quantum Substate
Theorem, also strengthening it in the process.

Theorem 1. Let H be a Hilbert space, and let ρ, σ ∈ D(H)
be quantum states such that supp(ρ) ⊆ supp(σ). For any ε ∈
(0, 1), there is a quantum state ρ′ with fidelity F(ρ′, ρ) ≥ 1−ε
such that ρ′ � κσ, where

κ =
1

1− ε
2D(ρ‖σ)/ε .

Equivalently, for any ε ∈ (0, 1),

Sε∞(ρ‖σ) ≤ D(ρ‖σ)

ε
+ log2

1

1− ε
.

The proofs that we present are both shorter and conceptually
simpler than the original proof. The proof due to Jain et
al. consists of a number of technical steps, several of which
are bundled into a “divergence lifting” theorem that reduces

the problem to one in which ρ is a pure state (a rank
one quantum state). Finally, the pure state case is translated
into a problem in two dimensions which is solved by a
direct calculation. Divergence lifting involves going from a
construction of a suitable state ρ′ for a fixed POVM element
to one that is independent of the POVM element, by appealing
to a minimax theorem from Game Theory. We show that
this minimax theorem can be applied directly to establish
the Quantum Substate Theorem. The resulting statement is
stronger in its dependence on observational divergence. The
original bound read as Sε∞(ρ‖σ) ≤ d′/ε − log2(1 − ε),
where d′ def= d+4

√
d+ 2+2 log2(d+2)+6 with d def

= D(ρ‖σ).
The formulation in terms of fidelity also allows us to show that
the dependence on observational divergence in Theorem 1 is
optimal up to a constant factor.

Theorem 2. Let H be a Hilbert space, and let ρ, σ ∈ D(H) be
quantum states such that supp(ρ) ⊆ supp(σ). Suppose k ∈ R
is such that for any ε ∈ (0, 1), there is a quantum state ρ′

with fidelity F(ρ′, ρ) ≥ 1− ε such that ρ′ � κσ, where

κ =
1

1− ε
2k/ε ,

or equivalently,

Sε∞(ρ‖σ) ≤ k

ε
+ log2

1

1− ε
.

Then D(ρ‖σ) ≤ 4k + 3.

We thus settle two questions posed by Jain et al. [2,
Section 5].

For the first proof (Section II), we start by converting the
convex minimization problem (P1) into a min-max problem
through a simple duality argument. The minimax theorem now
applies and reduces the problem of construction of a suitable
state ρ′ to one that works for a fixed POVM element. The latter
task turns out to be similar to proving the Classical Substate
Theorem. This proof is thus shorter and conceptually simpler
than the original one, and also leads to a tighter dependence
on observational divergence. We present a second proof based
on semi-definite programming (SDP) duality (Section III).
We believe that both approaches have their own merits. The
first approach is more intuitive in that once the problem
is formulated as a min-max program, the subsequent steps
emerge naturally. The second approach has the appeal of
relying on the more standard SDP duality. These routes to the
theorem may prove useful in its burgeoning list of applications,
as also in the study of smooth relative min-entropy.

II. A PROOF BASED ON MIN-MAX DUALITY

In this section, we present an alternative proof of the
Quantum Substate Theorem. It hinges on a powerful minimax
theorem from game theory, which is a consequence of the
Kakutani fixed point theorem in real analysis [11, Proposi-
tions 20.3 and 22.2].

Theorem 3. Let A1, A2 be non-empty, convex and compact
subsets of Rn for some positive integer n. Let u : A1×A2 → R
be a continuous function such that
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• ∀a2 ∈ A2, the set {a1 ∈ A1 : (∀a′1 ∈ A1) u(a1, a2) ≥
u(a′1, a2)} is convex, i.e., for every a2 ∈ A2, the set of
points a1 ∈ A1 such that u(a1, a2) is maximum is a
convex set; and

• ∀a1 ∈ A1, the set {a2 ∈ A2 : (∀a′2 ∈ A2) u(a1, a2) ≤
u(a1, a

′
2)} is convex, i.e., for every a1 ∈ A1, the set of

points a2 ∈ A2, such that u(a1, a2) is minimum is a
convex set.

Then, there is an (a∗1, a
∗
2) ∈ A1 ×A2 such that

max
a1∈A1

min
a2∈A2

u(a1, a2) = u(a∗1, a
∗
2)

= min
a2∈A2

max
a1∈A1

u(a1, a2) .

We start with the following lemma which bounds the
distance between a quantum state and its normalized projection
onto a subspace in which it has “large” support. It is a variant
of the “gentle measurement lemma” due to Winter [12].

Lemma 4. Let ρ ∈ D(H) be a quantum state in the Hilbert
space H. Let Π be an orthogonal projection onto a subspace
of H such that Tr Πρ = δ < 1. Let ρ′′ = (I−Π)ρ(I−Π) be
the projection of ρ onto the orthogonal subspace, and let ρ′ =
ρ′′

Tr ρ′′ be this state normalized. Then F(ρ, ρ′) ≥ 1− δ.

Proof: Let K be a Hilbert space with dim(K) = dim(H).
Let |v〉 ∈ K⊗H be a purification of ρ [13]. Let |v′′〉 = (I⊗(I−
Π))|v〉. Let |v′〉 = |v′′〉/ ‖v′′‖. Observe that TrK |v′′〉〈v′′| =
ρ′′, so

‖v′′‖2 = Tr |v′′〉〈v′′|
= Tr ρ′′ = Tr ρ− Tr Πρ

= 1− δ ,

and TrK |v′〉〈v′| = ρ′. Now,

F(ρ, ρ′) ≥ F(|v〉〈v|, |v′〉〈v′|)
= |〈v|v′〉|2 = ‖v′′‖2

= 1− δ ,

where the first inequality follows from the monotonicity of
fidelity under completely positive trace preserving (CPTP)
operations [13].

The next lemma is an important step in the proof, and along
with the minimax theorem (Theorem 3) yields the Quantum
Substate Theorem. It mimics the proof of the Classical Sub-
state Theorem with respect to a particular operator M � 0,
which may be viewed as an unnormalized POVM element.
Namely, we decompose M into its diagonal basis, and imagine
measuring with respect to this basis. If the observational
divergence of ρ with respect to σ is small, then for most of the
basis elements, the probability of the outcome for ρ is not too
large relative to the probability for σ. Projecting ρ onto the
space spanned by these basis elements gives us a state ρ′, close
to ρ, for which TrMρ′ is correspondingly bounded, relative
to TrMσ.

Lemma 5. Suppose ρ, σ ∈ D(H) are quantum states in
the Hilbert space H such that supp(ρ) ⊆ supp(σ). Let
d = D(ρ‖σ), ε ∈ (0, 1), and M � 0 be an operator

on H. There exists a quantum state ρ′ ∈ D(H) such that
F(ρ′, ρ) ≥ 1− ε and

(1− ε) · TrMρ′ ≤ 2d/ε · TrMσ .

Proof: Consider M in its diagonal form M =∑dim(H)
i=1 pi|vi〉〈vi|, where the (pi) are the eigenvalues of M

corresponding to the orthonormal eigenvectors (|vi〉). Let

B
def
={

i : 〈vi|ρ|vi〉 > 2d/ε · 〈vi|σ|vi〉, 1 ≤ i ≤ dim(H)
}

.

Let Π =
∑
i∈B |vi〉〈vi| be the projector onto the space spanned

by vectors specified by B. Then Tr Πρ > 2d/ε · Tr Πσ and
hence,

d ≥ (Tr Πρ) log2

Tr Πρ

Tr Πσ
> (Tr Πρ) · d

ε
.

This implies that Tr Πρ < ε. Let ρ′′ = (I − Π)ρ(I − Π) and
ρ′ = ρ′′

Trρ′′ ≺
ρ′′

1−ε . From Lemma 4 we have F(ρ, ρ′) ≥ 1− ε.
Finally, by the definition of Π,

(1− ε) · TrMρ′ ≤ TrMρ′′

=
∑
i 6∈B

pi〈vi|ρ|vi〉

≤ 2d/ε
∑
i 6∈B

pi〈vi|σ|vi〉

≤ 2d/ε · TrMσ .

We now prove the main result, Theorem 1. For this, it
suffices to produce a state close to ρ that when scaled suitably
is a substate of σ. The condition ρ′ � κσ is equivalent
to TrMρ′ ≤ κ for all M � 0 with TrMσ ≤ 1. We use this
dual view of the substate condition to convert the minimization
problem (P1) into a min-max optimization problem. We then
use the minimax theorem, Theorem 3, to drastically simplify
the search for a suitable state ρ′. As a consequence, it suffices
to produce a state ρ′ close to ρ such that TrMρ′ ≤ κ for an
arbitrary but fixed M � 0 with TrMσ ≤ 1.

Proof of Theorem 1: We first massage the program (P1)
into a form to which Theorem 3 applies. If a pair ρ′, κ are
feasible for (P1), then supp(ρ′) ⊆ supp(σ). By taking H =
supp(σ) if necessary, we may therefore assume that σ � 0,
i.e., σ has full support. It is straightforward to check that for
any given ρ′ ∈ D(H),

min
κ : ρ′�κσ

κ = max
M�0 : TrMσ≤ 1

TrMρ′ .

Hence we may rewrite Sε∞(ρ‖σ) as the base 2 logarithm of

min
ρ′�0 : Tr ρ′=1,
F(ρ′,ρ)≥ 1−ε

max
M�0 : TrMσ≤ 1

TrMρ′ .

Viewing ρ′ and M as elements of the real vector space of
Hermitian operators in L(H), noting that fidelity is concave
in each of its arguments [13] and that the trace function is
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bilinear, we may apply Theorem 3 to the resulting optimization
problem. We get

2S
ε
∞(ρ‖σ)

= max
M � 0 : TrMσ≤ 1

min
ρ′� 0 : Tr ρ′ =1,
F(ρ′,ρ)≥ 1−ε

TrMρ′ .

By Lemma 5, for every M � 0 with TrMσ ≤ 1, there is
a quantum state ρ′, with F(ρ′, ρ) ≥ 1 − ε, such that (1 −
ε) TrMρ′ ≤ 2d/ε, where d = D(ρ‖σ). The desired result
now follows.

Combining Theorem 1 and the Uhlmann theorem [13]
immediately gives us the following statement. The Quantum
Substate Theorem is often used in this form in its applications.

Corollary 6. Let H,K be Hilbert spaces with dim(K) ≥
dim(H), and let ρ, σ ∈ D(H) be quantum states such
that supp(ρ) ⊆ supp(σ). Let d = D(ρ‖σ), ε ∈ (0, 1),
and |v〉 ∈ K ⊗ H be a purification of ρ. Then there is a
pure state |v′〉 ∈ K⊗H with F(|v〉〈v|, |v′〉〈v′|) ≥ 1− ε, and a
pure state |w′〉 ∈ K⊗H such that |w〉 ∈ C2⊗K⊗H defined
as

|w〉 =
√
α |0〉|v′〉+

√
1− α |1〉|w′〉 ,

with α = (1− ε)2−d/ε, is a purification of σ.

Proof: Let ρ′ be a state given by Theorem 1 such
that fidelity F(ρ′, ρ) ≥ 1 − ε and αρ′ � σ. Then we can
decompose σ as

σ = αρ′ + (1− α)θ ,

where θ ∈ D(H) is some quantum state. By the Uhlmann
theorem [13] there is a purification |v′〉 ∈ K ⊗ H of ρ′ such
that F(|v〉〈v|, |v′〉〈v′|) = F(ρ, ρ′) ≥ 1−ε. Let |w′〉 ∈ K⊗H be
any purification of θ. Then we may verify that |w〉 as defined
in the statement of the corollary is a purification of σ.

The dependence of the bound on the ε-smooth relative min-
entropy in Theorem 1 in terms of observational divergence is
optimal up to a constant factor, as stated in Theorem 2. We
start its proof with the following lemma.

Lemma 7. Let δ, δ′ ∈ [0, 1] and β ∈ [0, 1/4] such that(√
δ δ′ +

√
(1− δ)(1− δ′)

)2
≥ 1− βδ .

Then δ′ ≥
(
1−
√
β
)2
δ.

Proof: Let u =
(√

δ,
√

1− δ
)T

and u′ =(√
δ′,
√

1− δ′
)T

be vectors in R2. Let φ, φ′ ∈ [0, π/2] be the
angles u, u′ make with (1, 0)T, respectively. By hypothesis,
〈u|u′〉2 ≥ 1−βδ. Let θ ∈ [0, π/2] be the angle between u, u′,
so that cos2 θ ≥ 1− βδ.

We wish to bound δ′ = cos2 φ′ from below given
that |φ′ − φ| = θ. Observe that cos(φ + θ) ≥

√
δ(1− βδ) −√

(1− δ)βδ ≥ 0, so that φ+ θ ≤ π/2. Therefore, δ′ takes its
minimum value when φ′ = φ+ θ.

We may now bound δ′ as follows.

δ′ = cos2 φ′ ≥ cos2(φ+ θ)

≥
(√

δ(1− βδ)−
√

(1− δ)βδ
)2

= (1 + β)δ − 2βδ2

−2
√
β δ
(
1− (1 + β)δ + βδ2

)1/2
≥ (1 + β)δ − 2βδ2 − 2

√
β δ(1− δ)1/2

≥ (1 + β)δ − 2βδ2 − 2
√
β δ(1− δ/2)

=
(

1−
√
β
)2
δ + (

√
β − 2β)δ2

≥
(

1−
√
β
)2
δ ,

since β ≤ 1/4.
We are now ready to prove the optimality of Theorem 1.

Proof of Theorem 2: It suffices to prove that for any
POVM element M ∈ P(H) with Tr(Mρ) 6= 0,

Tr(Mρ) log
Tr(Mρ)

Tr(Mσ)

is bounded by 4k + 3 from above.
Fix such a POVM element M , let δ = Tr(Mρ), and ε =

βδ for some β ∈ (0, 1) to be specified later. By hypothesis,
there is a quantum state ρ′ ∈ D(H) with F(ρ′, ρ) ≥ 1 − ε
and ρ′ � κσ, where

κ =
2k/ε

1− ε
.

Let δ′ = Tr(Mρ′). By the monotonicity of fidelity under
CPTP operations [13], we have(√

δ δ′ +
√

(1− δ)(1− δ′)
)2

≥ F(ρ′, ρ)

≥ 1− ε = 1− βδ .

By Lemma 7, we have Tr(Mρ′) = δ′ ≥ (1 −
√
β )2δ if β ≤

1/4.
We set β = 1/4, so that Tr(Mρ′) ≥ δ/4. Furthermore,

Tr(Mσ) ≥ (1− ε)
2k/ε

Tr(Mρ′)

≥ (1− δ/4)

24k/δ
(δ/4) ≥ δ

23+4k/δ
,

as δ ≤ 1. So

Tr(Mρ) log
Tr(Mρ)

Tr(Mσ)
= δ log

δ

Tr(Mσ)
≤ 4k+3 .

III. A PROOF BASED ON SDP DUALITY

In this section we present a second alternative proof of the
Quantum Substate Theorem, Theorem 1. The proof is based
on a formulation of smooth relative min-entropy as a semi-
definite program.

The optimization problem (P1) in Section I is seen to be
an SDP once we express the fidelity constraint as a semi-
definite inequality. This is based on a formulation due to
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Watrous [14] of the fidelity of two quantum states as an SDP.
For completeness, we include a proof of its correctness.

Lemma 8 (Watrous). Suppose ρ, ρ′ ∈ D(H) are quantum
states in the Hilbert space H. The fidelity F(ρ, ρ′) of the two
states equals the square of the optimum of the following SDP
over the variable X ∈ L(H).

maximize:
1

2

(
TrX + TrX†

)
subject to:(

ρ′ X
X† ρ

)
� 0 (P2)

X ∈ L(H)

Proof: By Theorem IX.5.9 in the text [15], the matrix
inequality in the program (P2) holds iff there is an opera-
tor Y ∈ L(H) such that ‖Y ‖ ≤ 1 and X =

√
ρ′ Y
√
ρ.

Since F(ρ′, ρ) =
∥∥√ρ′√ρ∥∥2

tr
and we may characterize trace

norm as ‖M‖tr = max {|Tr(ZM)| : Z ∈ L(H), ‖Z‖ ≤ 1}
for any M ∈ L(H), the lemma follows.

The problem (P1) may now be formulated as the following
SDP with variables κ ∈ R, ρ′ ∈ L(H), X ∈ L(H) in the
primal problem, and variables Z1, Z2 ∈ L(H) and z3, z4 ∈ R
in the dual, where Z1, Z2 are Hermitian.

P3 Primal problem

minimize: κ

subject to:
ρ′ � κσ

Tr ρ′ = 1(
ρ′ X
X† ρ

)
� 0

TrX + TrX† ≥ 2
√

1− ε
ρ′ ∈ L(H), ρ′ � 0

κ ∈ R, κ ≥ 0

X ∈ L(H)

P3 Dual problem

maximize: z4 + 2z3
√

1− ε+ Tr(Z2ρ)

subject to:
Tr(Z1σ) ≤ 1(

z4I− Z1 z3I
z3I Z2

)
� 0

Z1 ∈ L(H), Z1 � 0

z3, z4 ∈ R, z3 ≥ 0

Z2 ∈ L(H), Z2 Hermitian

The equivalence of the problems (P1) and (P3) follows from
Lemma 8 and paves the way for the second proof.

Proof of Theorem 1: We may verify that strong duality
holds since the P3 primal program is feasible, and the dual
is strictly feasible [14], [16]. Therefore, it suffices to bound

the dual objective function for any set of dual feasible vari-
ables (Z1, Z2, z3, z4).

By Lemma 5, there is a quantum state ρ′, with F(ρ′, ρ) ≥
1 − ε, such that (1 − ε) Tr(Z1ρ

′) ≤ 2d/ε Tr(Z1σ) ≤ 2d/ε,
where d = D(ρ‖σ).

Since F(ρ′, ρ) ≥ 1 − ε, by Lemma 8, there is an opera-
tor X ∈ L(H) such that(

ρ′ X
X† ρ

)
� 0 ,

and TrX + TrX† ≥ 2
√

1− ε. Therefore,

Tr

(
ρ′ X
X† ρ

)(
z4I− Z1 z3I
z3I Z2

)
≤ 0 ,

In other words,

z4 − Tr(Z1ρ
′) + z3(TrX + TrX†) + Tr(Z2ρ) ≤ 0 ,

which implies that the dual objective function is bounded as

z4 + 2z3
√

1− ε+ Tr(Z2ρ) ≤ Tr(Z1ρ
′) ≤ 2d/ε

1− ε
.

This completes the proof.

IV. CONCLUSION

We presented two alternative proofs of the Quantum Sub-
state Theorem due to Jain, Radhakrishnan, and Sen [1], [2]. In
addition to giving bounds on the smooth relative min-entropy
of two quantum states, this gives us a powerful operational
interpretation of relative entropy and observational divergence.
In the process, we resolve two questions left open by Jain et
al..

The crucial insight here is that the we may express smooth
relative min-entropy as a convex or semi-definite program and
appeal to duality theory. In this respect, we join a growing
number of applications of convex and semi-definite program-
ming to quantum information processing. This approach can
be extended to the more general notion of smooth relative
min-entropy studied by Renner [3] to get similar bounds on
this quantity. This view of the quantity may shed light on its
numerous applications.

ACKNOWLEDGEMENT

For helpful discussions and pointers to the literature, we
thank Matthias Christandl, Rajat Mittal, Marco Piani, Renato
Renner, Pranab Sen, and John Watrous.

Our first attempt at this work involved an awkward formula-
tion of smooth relative min-entropy defined with trace distance
as a semi-definite program. We set aside this formulation in
favour of the min-max program, which we believe also leads
to a more intuitive proof. We thank John Watrous for sharing a
simple SDP formulation (with a bound on trace distance) and
the resulting proof. Our current presentation involving fidelity
supersedes this.

Finally, we thank the referees for their extensive feedback.
It lead not only to what we hope is a vastly improved
presentation of the work, but also to the discovery of a
tight connection between smooth relative min-entropy and
observational divergence.



6

REFERENCES

[1] R. Jain, J. Radhakrishnan, and P. Sen, “Privacy and interaction in
quantum communication complexity and a theorem about the relative
entropy of quantum states,” in Proceedings of the 43rd Annual IEEE
Symposium on Foundations of Computer Science, 2002, pp. 429–438.

[2] ——, “A new information-theoretic property about quantum states with
an application to privacy in quantum communication,” Journal of the
ACM, vol. 56, no. 6, Sep. 2009, article no. 33.

[3] R. Renner, “Security of quantum key distribution,” Ph.D. dissertation,
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