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Abstract

In this work we consider source and message compression in various network communication scenarios and
present a unified approach to arrive at communication bounds. We present our communication bounds in the one-
shot setting which imply optimal bounds for these tasks in the asymptotic i.i.d setting. As applications of our results
we reproduce several known results in network communication theory both in the one-shot and i.i.d. settings, further
exhibiting the power of our unified framework.

There are two main techniques that we use to arrive at our results. First is the convex-split technique, which was
introduced in [1] for a related problem in the quantum domain. Convex-split technique is closely related to the well
known rejection sampling technique, used in various information theoretic tasks in several works [2, 3, 4, 5]. The
other technique that we use is position based decoding introduced in [6], which in turn uses hypothesis testing between
distributions. These two techniques used together allow us to construct all our protocols.

1 Introduction
Source compression is a fundamental task in information theory first studied by Shannon in his landmark paper [7].
This task was later extended to various network settings for example by Slepian and Wolf [8], Wyner [9] and Wyner
and Ziv [10]. These works considered the asymptotic, independent and identically distributed (i.i.d.) setting.

In this work we consider source and message compression in various network communication scenarios and
present a unified approach to arrive at communication bounds. Message compression is a task when a random variable
correlated with the source is sought to be sent with low communication. We start with a one-sender-one-receiver task.
We then consider a two-senders-one-receiver task followed by a one-sender-two-receivers task. We combine these
two to consider a two-senders-two-receivers task.

We present our communication bounds in the one-shot setting which imply optimal bounds for these tasks in the
asymptotic i.i.d setting. One-shot information theory has been studied extensively in the recent years both in the
classical and quantum models. Apart from being practically relevant (since there is no i.i.d. assumption) it often
provides interesting new insights and conceptual advances into the working and design of communication protocols,
as the complications and conveniences of the i.i.d assumption are not present. One-shot information theory has been
particularly useful in communication complexity while dealing with the important and consequential direct sum, direct
product and composition questions. Answering these questions has applications in computational complexity as well.

As applications of our results we reproduce several known results in network communication theory both in the
one-shot and i.i.d. settings, further exhibiting the power of our unified framework.

There are two main techniques that we use to arrive at our results. First is the convex-split technique, which was
introduced in [1] for a related problem in the quantum domain. Convex-split technique is closely related to the well
known rejection sampling technique, used in various information theoretic tasks in several works [2, 3, 4, 5]. The
other technique that we use is position based decoding introduced in [6], which in turn uses hypothesis testing between
distributions. These two techniques used together allow us to construct all our protocols.
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Our results
We start with the following one-sender-one-receiver task. For all our results in this section let ε > 0 be a sufficiently
small constant which represents an error parameter1.

Task 1: One-sender-one-receiver message compression with side information at the receiver. There are two
parties Alice and Bob. Alice possesses random variable X , taking values over a finite set X (all sets that we consider
in this paper are finite) and a random variable M , taking values over a set M. Bob possesses random variable Y ,
taking values over a set Y such that M and Y are independent given X represented by M − X − Y . Alice sends
a message to Bob and at the end Bob outputs random variable M̂ such that ‖pXYM − pXY M̂‖ ≤ O(

√
ε), where

‖.‖ is the `1 norm. They are allowed to use shared randomness between them which is independent of XYM at the
beginning of the protocol.

This task is particularly relevant from the point of view of communication complexity, where (X,Y ) can be
viewed as inputs given to Alice and Bob respectively from an priori distribution and M can be viewed as the message
Alice wants to send to Bob. It was studied in [2, 4] when the distribution of (X,Y ) is product and in [5] for general
(X,Y ). Here, we present a new protocol for this task using the aforementioned techniques of convex split and position
based decoding and show the following achievability result.

Theorem 1 (Achievability for Task 1). Let δ ≥ 0. Let R be a natural number such that,

R ≥ min
(X̃,Ỹ ,M̃,T,E):

‖pX̃Ỹ M̃−pXY M‖≤δ
Ỹ−X̃−M̃E

(
Dεs(pX̃M̃E‖pX̃ × pT )−DεH(pỸ M̃E‖pỸ × pT ) +O

(
log

1

ε

))
,

where E takes values over a set E and T takes values over set E ×M. There exists a shared randomness assisted
protocol in which Alice communicates R bits to Bob and Bob outputs random variable M̂ satisfying ‖pXYM −
pXY M̂‖ ≤ δ +O(

√
ε).

Please refer to Section 2 for the definitions of Dεs(·) and DεH(·). The minimization above over X̃, Ỹ , M̃ and E
(which we refer to as extension of M̃ ) and T (which is used in shared randomness) may potentially decrease the
amount of communication between Alice and Bob. In our converse result below, we show that this is indeed the case.

Theorem 2 (Converse for Task 1). Any communication protocol for Task 1 must satisfy:

R ≥ min
(X̃,Ỹ ,M̃,U,E):

‖pX̃Ỹ M̃−pXY M‖≤3
√
ε

Ỹ−X̃−M̃E

(
D3
√
ε

s (pX̃M̃E‖pX̃ × pU )−D
3
√
ε

H (pỸ M̃E‖pỸ × pU )−O
(
log

1

ε

))
,

where R is the communication (in bits) between Alice and Bob, E (taking values in E) is a specific extension (defined
subsequently in the proof of this result) of M̃ and U is uniformly distributed overM×E .

Next we consider the following two-senders one-receiver task.

Task 2: Two-senders-one-receiver message compression. There are three parties Alice, Bob and Charlie. Alice
holds a random variable pair (X,M) and Bob holds a random variable pair (Y,N) such that M −X − Y −N . Alice
wants to communicate M to Charlie and Bob wants to communicate N to Charlie. Alice and Bob send a message
each to Charlie and at the end Charlie outputs (M̂, N̂) such that ‖pXYMN−pXY M̂N̂‖ ≤ O(

√
ε). Shared randomness

is allowed between Alice and Charlie and between Bob and Charlie.

We show the following achievability result for this task.

Theorem 3 (Achievability for Task 2). Let RA, RB be natural numbers such that,

RA ≥ Dεs(pXM‖pX × pM )−DεH(pMN‖pM × pN ) +O

(
log

1

ε

)
,

RB ≥ Dεs(pY N‖pY × pN )−DεH(pMN‖pM × pN ) +O

(
log

1

ε

)
,

RA +RB ≥ Dεs(pXM‖pX × pM ) + Dεs(pY N‖pY × pN )−DεH(pMN‖pM × pN ) +O

(
log

1

ε

)
.

1We do not attempt to optimize constants appearing in this paper.
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There exists a shared randomness assisted protocol with communication RA bits from Alice to Charlie and RB bits
from Bob to Charlie, in which Charlie outputs random variable pair (M̂, N̂) such that ‖pXYMN − pXY M̂N̂‖ ≤
O(
√
ε).

Remark: In our result above we can optimize over (X̃, Ỹ , M̃ , Ñ , E, T ) as in Theorem 1. However we skip explicit
mention of this optimization for ease of exposition and for brevity, both in the statement above and in its proof. We
do the same for all the results later in this section.

Next we consider the same task but with side information with Charlie.

Task 3: Two-senders-one-receiver message compression with side information at the receiver. There are three
parties Alice, Bob and Charlie. Alice holds a random variable pair (X,M), Bob holds a random variable pair (Y,N)
and Charlie holds a random variable Z such that M − X − (Y,Z) and N − Y − (X,Z). Alice and Bob send a
message each to Charlie and at the end Charlie outputs (M̂, N̂) such that ‖pXY ZMN −pXY ZM̂N̂‖ ≤ O(

√
ε). Shared

randomness is allowed between Alice and Charlie and between Bob and Charlie.

We show the following achievability result for this task.

Theorem 4 (Achievability for Task 3). Let RA, RB be natural numbers such that,

RA ≥ Dεs(pXM‖pX × pM )−DεH(pMNZ‖pM × pNZ) +O

(
log

1

ε

)
,

RB ≥ Dεs(pY N‖pY × pN )−DεH(pMZN‖pMZ × pN ) +O

(
log

1

ε

)
,

RA +RB ≥ Dεs(pXM‖pX × pM ) + Dεs(pY N‖pY × pN )−DεH(pMNZ‖pM × pN × pZ) +O

(
log

1

ε

)
.

There exists a shared randomness assisted protocol with communication RA bits from Alice to Charlie and RB bits
from Bob to Charlie, in which Charlie outputs random variable pair (M̂, N̂) such that ‖pXY ZMN − pXY ZM̂N̂‖ ≤
O(
√
ε).

Next we consider the following one-sender-two-receivers task.

Task 4: One-sender-two-receivers message compression. There are three parties Alice, Bob and Charlie. Alice
holds correlated random variables (X,M,N). She sends a message to Bob and a message to Charlie. Bob and
Charlie after receiving their respective messages, output random variables M̂ and N̂ respectively such that ‖pXMN −
pXM̂N̂‖ ≤ O(

√
ε). Shared randomness is allowed between Alice and Charlie and between Alice and Bob.

We show the following achievability result for this task.

Theorem 5 (Achievability for Task 4). Let RB , RC be natural numbers such that,

RB ≥ Dεs(pXM‖pX × pM ) +O

(
log

1

ε

)
,

RC ≥ Dεs(pXN‖pX × pN ) +O

(
log

1

ε

)
,

RB +RC ≥ Dεs(pXMN‖pX × pM × pN ) +O

(
log

1

ε

)
.

There exists a shared randomness assisted protocol with communication RB bits from Alice to Bob and RC bits from
Alice to Charlie, in which Bob outputs M̂ and Charlie outputs N̂ such that ‖pXMN − pXM̂N̂‖ ≤ O(

√
ε).

Next we consider the same task but with side information at the receivers.

Task 5: One-sender-two-receivers message compression with side information at receivers. There are three
parties Alice, Bob and Charlie. Alice holds random variables (X,M,N), Bob holds random variable Y and Charlie
holds random variable Z such that (M,N) −X − (Y,Z). Alice sends a message to Bob and a message to Charlie.
Bob and Charlie after receiving their respective messages, output random variables M̂ and N̂ respectively such that
‖pXY ZMN − pXY ZM̂N̂‖ ≤ O(

√
ε). Shared randomness is allowed between Alice and Bob and between Alice and

Charlie.

We show the following achievability result for this task.
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Theorem 6 (Achievability for Task 5). Let RB , RC be natural numbers such that,

RB ≥ Dεs(pXM‖pX × pM )−DεH(pMY ‖pM × pY ) +O

(
log

1

ε

)
,

RC ≥ Dεs(pXN‖pX × pN )−DεH(pNZ‖pN × pZ) +O

(
log

1

ε

)
,

RB +RC ≥ Dεs(pXMN‖pX × pM × pN )−DεH(pMY ‖pM × pY )−DεH(pNZ‖pN × pZ) +O

(
log

1

ε

)
.

There exists a shared randomness assisted protocol with communication RB bits from Alice to Bob and RC bits from
Alice to Charlie, in which Bob outputs M̂ and Charlie outputs N̂ such that ‖pXY ZMN − pXY ZM̂N̂‖ ≤ O(

√
ε).

Finally we consider the following task with two senders and two receivers.

Task 6: Two-senders-two-receivers message compression with side information at the receivers. There are four
parties Alice, Dave, Bob and Charlie. Alice holds random variables (X1,M11,M12), Dave holds random variables
(X2,M21,M22), Bob holds random variable Y1 and Charlie holds random variable Y2 such that (M11,M12)−X1 −
(Y1, Y2, X2) and (M21,M22)−X2 − (Y1, Y2, X1). Alice sends a message each to Bob and Charlie and Dave sends a
message each to Bob and Charlie. At the end Bob outputs (M̂11, M̂21) and Charlie outputs (M̂12, M̂22) such that,

‖pX1M11M12X2M21M22Y1Y2
− pX1M̂11M̂12X2M̂21M̂22Y1Y2

‖ ≤ O(
√
ε).

Shared randomness is allowed between pairs (Alice, Bob), (Alice, Charlie), (Dave, Bob) and (Dave, Charlie).

We obtain the following achievability result for this task using arguments similar to the arguments used in obtaining
previous achievability results. We skip its proof for brevity.

Theorem 7 (Achievability for Task 6). Let R(1)
1 , R

(1)
2 , R

(2)
1 , R

(2)
2 be natural numbers such that for i, j ∈ {1, 2},

R
(i)
j ≥ Dεs(pXiMij

‖pXi
× pMij

)−DεH(pMijYj
‖pMij

× pYj
) +O

(
log

1

ε

)
,

for i, j, k, l ∈ {1, 2} such that i 6= k or j 6= l,

R
(i)
j +R

(k)
l ≥ Dεs(pXiMij‖pXi × pMij ) + Dεs(pXkMkl

‖pXk
× pMkl

)

−DεH(pMijYj‖pMij × pYj )−DεH(pMklYl
‖pMkl

××pYl
) +O

(
log

1

ε

)
,

for i, j, k, l ∈ {1, 2} such that i 6= k and j 6= l,

R
(i)
j +R

(i)
l +R

(k)
j ≥ Dεs(pXiMijMil

‖pXi
× pMij

× pMil
) + Dεs(pXkMkj

‖pXk
× pMkj

)

−DεH(pMijMkjYj
‖pMij

× pMkj
× pYj

)−DεH(pMilYl
‖pMil

× pYl
) +O

(
log

1

ε

)
,

and,

R
(1)
1 +R

(1)
2 +R

(2)
1 +R

(2)
2 ≥ Dεs(pX1M11M12

‖pX1
× pM11

× pM12
) + Dεs(pX2M21M22

‖pX2
× pM21

× pM22
)

−DεH(pM11M21Y1‖pM11 × pM21 × pY1)−DεH(pM12M22Y2‖pM12 × pM22 × pY2) +O

(
log

1

ε

)
.

There exists a shared randomness assisted protocol with communication R(1)
1 bits from Alice to Bob, R(1)

2 bits from
Alice to Charlie, R(2)

1 bits from Dave to Bob and R(2)
2 bits from Dave to Charlie such that Bob outputs (M̂11, M̂21)

and Charlie outputs (M̂12, M̂22) satisfying

‖pX1M11M12X2M21M22Y1Y2 − pX1M̂11M̂12X2M̂21M̂22Y1Y2
‖ ≤ O(

√
ε).

We state without giving further details, that the task above can be extended in a natural fashion to obtain an
analogous task for multiple senders and multiple receivers and analogous communication bounds can be obtained
using similar arguments.
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Applications of our results
Here we consider several tasks studied in previous works and show that our results imply the results shown in these
works. Consider the following task.

Task 7: Lossy source compression. Let k ≥ 0. There are two parties Alice and Bob. Alice holds a random variable
X and Bob holds a random variable Y . Alice sends a message to Bob and Bob outputs a random variable Z such that
Pr {d(X,Z) ≥ k} ≤ O(

√
ε), where d : X × Z → (0,∞) is a distortion measure. There is no shared randomness

allowed between Alice and Bob.

This problem was studied in the asymptotic i.i.d setting in [10] and in the non-i.i.d. setting in [11]. We show the
following achievability result which follows as a corollary of Theorem 1.

Corollary 1 (Achievability for Task 7). Let δ ≥ 0. Let R be a natural number such that,

R ≥ min
M,f

(
Dεs(pXM‖pX × pM )−DεH(pYM‖pY × pM ) +O

(
log

1

ε

))
, (1)

where M and f satisfy M −X − Y and Pr {d(X, f(Y,M)) ≥ k} ≤ δ. There exists a protocol with communication
R bits from Alice to Bob, in which Bob outputs a random variable Z such that Pr {d(X,Z) ≥ k} ≤ δ +O(

√
ε).

Proof. Let M and f be such that they achieve the minimum in Equation (1). Alice and Bob employ the protocol from
Theorem 1 in which Alice sendR bits to Bob and at the end Bob is able to generate M̂ such that ‖pXYM −pXY M̂‖ ≤
O(
√
ε). Bob then outputs Z = f(Y, M̂). Consider,

Pr
{
d(X, f(Y, M̂)) ≥ k

}
≤ Pr {d(X, f(Y,M)) ≥ k}+ ‖pXYM − pXY M̂‖

≤ δ +O(
√
ε).

This protocol uses shared randomness between Alice and Bob and Pr
{
d(X, f(Y, M̂)) ≥ k

}
≤ δ+O(

√
ε) averaged

over the shared randomness. Hence there exists a fixed shared string between Alice and Bob, conditioned on which
Pr
{
d(X, f(Y, M̂)) ≥ k

}
≤ δ + O(

√
ε) . Fixing this string finally gives us the desired protocol which does not use

shared randomness.

Next we consider the following problem which was first studied by Slepian-Wolf [8] in the asymptotic setting. Its
one-shot version was studied in [12, 13].

Task 8: Two-senders-one-receiver source compression. There are three parties Alice, Bob and Charlie. Alice
possesses a random variable X, Bob possesses a random variable Y . Alice and Bob both send a message each to
Charlie who at the end outputs random variables (X̂, Ŷ ) such that Pr

{
(X,Y ) 6= (X̂, Ŷ )

}
≤ O(

√
ε). There is no

shared randomness allowed between any parties.

We show the following achievability result for this task which follows as a corollary of Theorem 3.

Corollary 2 (Achievability for Task 8). Let XX represent two copies of X and Y Y represent two copies of Y . Let
RA, RB be natural numbers such that,

RA ≥ Dεs(pXX‖pX × pX)−DεH(pXY ‖pX × pY ) +O

(
log

1

ε

)
,

RB ≥ Dεs(pY Y ‖pY × pY )−DεH(pXY ‖pX × pY ) +O

(
log

1

ε

)
,

RA +RB ≥ Dεs(pXX‖pX × pX) + Dεs(pY Y ‖pY × pY )−DεH(pXY ‖pX × pY ) +O

(
log

1

ε

)
.

There exists a protocol with communication RA bits from Alice to Charlie and RB bits from Bob to Charlie, in which
Charlie outputs random variable pair (X̂, Ŷ ) such that Pr

{
(X,Y ) 6= (X̂, Ŷ )

}
≤ O(

√
ε).
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Proof. Alice, Bob and Charlie use the protocol in Theorem 3 where we set M ← X and N ← Y . Let (X̂, Ŷ ) be the
output of Charlie. We have, ‖pXYXY − pXY X̂Ŷ ‖ ≤ O(

√
ε) which implies Pr

{
(X,Y ) 6= (X̂, Ŷ )

}
≤ O(

√
ε). This

protocol uses shared randomness between Alice and Bob and Pr
{
(X,Y ) 6= (X̂, Ŷ )

}
≤ O(

√
ε) averaged over the

shared randomness. Hence there exists a fixed shared string conditioned on which Pr
{
(X,Y ) 6= (X̂, Ŷ )

}
≤ O(

√
ε).

Fixing this string gives us the desired protocol which does not use shared randomness.

Next we consider the following task which was first studied by Wyner [9] in the asymptotic and i.i.d. setting,
subsequently in the information-spectrum setting by Miyakaye and Kanaya [14] and in the one-shot case in [12, 15].

Task 9: Source compression with coded side information available at the decoder. There are three parties Alice,
Bob and Charlie. Alice possesses a random variable X, Bob possesses a random variable Y . Alice and Bob both send
a message each to Charlie who at the end outputs a random variable X̂ such that Pr

{
X 6= X̂

}
≤ O(

√
ε).

We show the following achievability result for this task which follows as a corollary from Theorem 3.

Corollary 3 (Achievability for Task 9). Let XX represent two copies of X . Let RA, RB be natural numbers such
that,

RA ≥ Dεs(pXX‖pX × pX)−DεH(pXN‖pX × pN ) +O

(
log

1

ε

)
,

RB ≥ Dεs(pY N‖pY × pN )−DεH(pXN‖pX × pN ) +O

(
log

1

ε

)
,

RA +RB ≥ Dεs(pXX‖pX × pX) + Dεs(pY N‖pY × pN )−DεH(pXN‖pX × pN ) +O

(
log

1

ε

)
,

where X − Y −N. There exists a protocol with communication RA bits from Alice to Charlie and RB bits from Bob
to Charlie, in which Charlie outputs random variable X̂ such that Pr

{
X 6= X̂

}
≤ O(

√
ε).

Proof. Alice, Bob and Charlie use the protocol in Theorem 3 where we set M ← X and N ← N . Let (X̂, N̂) be the
output of Charlie. We have, ‖pXYXN − pXY X̂N̂‖ ≤ O(

√
ε) which implies Pr

{
X 6= X̂

}
≤ O(

√
ε). This protocol

uses shared randomness between Alice and Bob and Pr
{
X 6= X̂

}
≤ O(

√
ε) averaged over the shared randomness.

Hence there exists a fixed shared string conditioned on which Pr
{
X 6= X̂

}
≤ O(

√
ε). Fixing this string gives us the

desired protocol which does not use shared randomness.

We note that all our results above imply the corresponding known results in the asymptotic settings [8, 9, 10, 14].
Our results also imply the results of [12, 13] in the one-shot setting (by changing shared randomness to be uniform in
Task 2). The one-shot bounds in Corollary 3 asymptotically yield a rate region which a priori appears to be a superset
of the rate region obtained by [9], however the two are the same due to the optimality of the latter.

Organization
In the next section we present a few information theoretic preliminaries. In Section 3 we present proofs of our results.
In Appendix A we present some deferred proofs.

2 Preliminaries
In this section we set our notations, make the definitions and state the facts that we will need later for our proofs.

For a natural number n, let [n] denote the set {1, 2, . . . , n}. Let random variable X take values in a finite set X
(all sets we consider in this paper are finite). We let pX represent the distribution of X , that is for each x ∈ X we let
pX(x) := Pr(X = x). Let random variable Y take values in the set Y . We say X and Y are independent iff for each
x ∈ X , y ∈ Y : pXY (x, y) = pX(x) · pY (y) and denote pX × pY := pXY . We say random variables (X,Y, Z) form
a Markov chain, represented as X − Y − Z, iff for each x ∈ X , Y |(X = x) and Z|(X = x) are independent. We
define various information theoretic quantities below.
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Definition 1. Let ε > 0. Let random variables X and X ′ take values in X . Define,

• `1 distance: ‖pX − pX′‖ :=
∑
x |pX(x)− pX′(x)|.

• Relative entropy: D(pX‖pX′) :=
∑
x∈X pX(x) log pX(x)

pX′ (x)
.

• Max divergence: D∞(pX‖pX′) := maxx log
pX(x)
pX′ (x)

.

• Smooth max divergence: Dε∞(pX‖pX′) := min‖pX′′−pX‖≤εD∞(pX′′‖pX′).

• Max information spectrum divergence: Dεs(pX‖pX′) := min
{
a : Prx←pX

{
pX(x)
pX′ (x)

> 2a
}
< ε
}

.

• Smooth hypothesis testing divergence: DεH(pX‖pX′) := max
{
− log(PrpX′ {A}) | A ⊆ X ,PrpX {A} ≥ 1− ε

}
.

We will use the following facts.

Fact 1 ([16], Proposition 13). Let X,X ′ be random variables over X . It holds that,

Dε∞(pX‖pX′) ≥ D2ε
s (pX‖pX′)− 2 log

2

ε
.

Fact 2 ([1]). Let P and Q be two distributions over the set X , where P =
∑
i λiPi is a convex combination of

distributions {Pi}i. It holds that,

D(P‖Q) =
∑
i

λi (D(Pi‖Q)−D(Pi‖P )) .

Fact 3 (Monotonicity of relative entropy [17]). Let (X,Y, Z) be jointly distributed random variables. It holds that,

D(pXY Z‖pX × pY × pZ) ≥ D(pXY ‖pX × pY ).

Fact 4 (Pinsker’s inequality [17]). Let P and Q be two distributions over the set X . It holds that,

‖P −Q‖ ≤ 2 ·
√

D(P‖Q).

Fact 5 (Monotonicity under maps [17]). Let X be a random variable distributed over the set X . Let f : X → Z be a
function. Let random variable Z, distributed over Z be defined as,

Pr{Z = z} := Pr{X ∈ f−1(z)}∑
z′ Pr{X ∈ f−1(z′)}

.

Similarly define random variable Z ′ from random variable X ′. It holds that,

‖pX − pX′‖ ≥ ‖pZ − pZ′‖.

Following convex-split lemma from [1] is a main tool that we use. [1] provided a proof for a quantum version
of this lemma and the proof of the classical version that we consider follows on similar lines. We defer the proof to
Appendix.

Fact 6 (Convex-split lemma [1]). Let ε ∈ (0, 14 ). Let (X,M) (jointly distributed over X ×M) and W (distributed
overM) be random variables. Let R be a natural number such that,

R ≥ Dεs(pXM‖pX × pW ) + 4 log
1

ε
.

Let J be uniformly distributed in [2R] and joint random variables (J,X,M1, . . . ,M2R) be distributed as follows:

Pr {(X,M1, . . . ,M2R) = (x,m1, . . . ,m2R) | J = j}
= pXM (x,mj) · pW (m1) · · · pW (mj−1) · pW (mj+1) · · · pW (m2R).

Then (below for each j ∈ [2R], pWj = pW ),

‖pXM1...M2R
− pX × pW1 × . . .× pW2R

‖ ≤ 6
√
ε.
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We also need the following extension of this lemma whose quantum version was shown in [18]. The proof of the
classical version that we consider follows on similar lines and is deferred to Appendix.

Fact 7 (Bipartite convex-split lemma). Let ε ∈ (0, 1
16 ). Let (X,M,N) (jointly distributed over X ×M × N ), U

(distributed overM) and V (distributed over N ) be random variables. Let R1, R2 be natural numbers such that,

R1 ≥ Dεs(pXM‖pX × pU ) + 8 log
1

ε
,

R2 ≥ Dεs(pXN‖pX × pV ) + 8 log
1

ε
,

R1 +R2 ≥ Dεs(pXMN‖pX × pU × pV ) + 8 log
1

ε
.

Let J be uniformly distributed in [2R1 ], K be independent of J and be uniformly distributed in [2R2 ] and joint random
variables (J,K,X,M1, . . . ,M2R1 , N1, . . . , N2R2 ) be distributed as follows:

Pr {(X,M1, . . . ,M2R1 , N1, . . . , N2R2 ) = (x,m1, . . . ,m2R1 , n1, . . . , n2R2 ) | J = j,K = k}
= pXMN (x,mj , nk) · pU (m1) · · · pU (mj−1) · pU (mj+1) · · · pU (m2R1 )·

pV (n1) · · · pV (nk−1) · pV (nk+1) · · · pV (n2R2 ).

Then (below for each j ∈ [2R1 ], pUj = pU and for each k ∈ [2R2 ], pVk
= pV ),

‖pXM1...M2R1
N1...N2R2

− pX × pU1
× . . .× pU

2R1
× pV1

× . . .× pV
2R2
‖ ≤ 15

√
ε.

The other main tool that we use is the position based decoding from [6] where a quantum version was shown. The
proof of the classical version that we consider follows on similar lines and is deferred to Appendix.

Fact 8 (Position based decoding [6]). Let ε ∈ (0, 14 ). Let (Y,M) (jointly distributed over Y×M) andW (distributed
overM) be random variables. Let R be a natural number such that,

R ≤ max

{
DεH(pYM‖pY × pW )− log

1

ε
, 0

}
.

Let joint random variables (J, Y,M1,M2, . . . ,M2R) be distributed as follows. Let J be uniformly distributed in [2R]
and

Pr {(Y,M1,M2, . . . ,M2R) = (y,m1, . . . ,m2R) | J = j}
= pYM (y,mj) · pW (m1) · · · pW (mj−1) · pW (mj+1) · · · pW (m2R).

There is a procedure to produce a random variable J ′ from (Y,M1,M2, . . . ,M2R) such that Pr{J 6= J ′} ≤ 2ε.

We will also need the following extension of this decoding strategy shown in [18] where a (more general) quantum
version was shown. The proof of the classical version that we consider follows on similar lines and is deferred to
Appendix.

Fact 9 (Bipartite position based decoding [18]). Let ε ∈ (0, 1
16 ). Let (M,N) (jointly distributed overM×N ). Let

R1, R2 be natural numbers such that,

R1 +R2 ≤ max

{
DεH(pMN‖pM × pN )− log

1

ε
, 0

}
.

Let joint random variables (J,K,M1, . . . ,M2R1 , N1, . . . , N2R2 ) be distributed as follows. Let J be uniformly dis-
tributed in [2R1 ]. Let K be independent of J and be uniformly distributed in [2R2 ]. Let,

Pr {(M1 . . .M2R1N1 . . . N2R2 ) = (m1, . . . ,m2R1 , n1, . . . , n2R2 ) | J = j,K = k}
= pMN (mj , nk) · pM (m1) · · · pM (mj−1) · pM (mj+1) · · · pM (m2R1 )·

pN (n1) · · · pN (nk−1) · pN (nk+1) · · · pN (n2R2 ).

There is a procedure to produce random variables (J ′,K ′) from (M1, . . . ,M2R1 , N1, . . . , N2R2 ) such that Pr{(J,K) 6=
(J ′,K ′)} ≤ 2ε.
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3 Proofs of our results
In this section we present proofs of our results mentioned in the Introduction 1.
Proof of Theorem 1: Let (X̃, Ỹ , M̃ , T, E) be such that ‖pX̃Ỹ M̃ − pXYM‖ ≤ δ and Ỹ − X̃ − (M̃,E). Let R, r be
natural numbers such that,

r ≤ max

{
DεH(pỸ M̃E‖pỸ × pT )− log

1

ε
, 0

}
,

R+ r ≥ Dεs(pX̃M̃E‖pX̃ × pT ) + 2 log
1

ε
.

Let us divide [2R+r] into 2R subsets, each of size 2r. This division is known to both Alice and Bob. For j ∈ [2R+r],
let B(j) denote the subset corresponding to j. Let us invoke convex-split lemma (Fact 6) with X ← X̃,M ←
(M̃,E),W ← T and R ← R + r to obtain joint random variables (J, X̃, M̃1, . . . , M̃2R+r ). Let us first consider a
fictitious protocol P ′ as follows.

Fictitious protocol P ′: Alice possesses random variables (X̃, M̃), Bob possesses random variable Ỹ and they share
(M̃1, . . . , M̃2R+r ) as public randomness (from the joint random variables (X̃, M̃1, . . . , M̃2R+r ) above).

Alice’s operations: Alice generates J from (X̃, M̃1, . . . , M̃2R+r ), using the conditional distribution of J given
(X̃, M̃1, . . . , M̃2R+r ), and communicates B(J) to Bob. This can be done using R bits of communication.

Bob’s operations: Bob performs position based decoding as in Fact 8 using Ỹ and the subset B(J), by letting
Y ← Ỹ ,M ← (M̃,E),W ← T and R← r, and determines J ′. Let (M ′, E′) := M̃J′ . Bob outputs M ′.

From Fact 8 we have Pr{J 6= J ′} ≤ 2ε and hence,

‖pX̃Ỹ M̃ − pX̃Ỹ M ′‖ ≤ Pr{J = J ′}‖pX̃Ỹ M̃ | J=J′ − pX̃Ỹ M ′ | J=J′‖

+ Pr{J 6= J ′}‖pX̃Ỹ M̃ | J 6=J′ − pX̃Ỹ M ′ | J 6=J′‖

≤ 0 + 4ε = 4ε. (2)

Now consider the another fictitious protocol P ′′.

Fictitious protocol P ′′: Alice possesses random variables (X̃, M̃) and Bob possesses random variable Ỹ . Alice and
Bob share 2R+r i.i.d. copies of the random variable T , denoted

{
T1, T2, . . . , T2R+r

}
. Alice and Bob proceed as in

P ′. Therefore the only difference in P ′′ and P ′ is shared randomness. Let M ′′ be the output of Bob in P ′′.

Consider,

‖pX̃Ỹ M̃ − pX̃Ỹ M ′′‖
a
≤ ‖pX̃M̃1...M̃2R+r

− pX̃ × pT1
× . . .× pT2R+r

‖+ ‖pX̃Ỹ M̃ − pX̃Ỹ M ′‖
b
≤ 6
√
ε+ ‖pX̃Ỹ M̃ − pX̃Ỹ M ′‖

c
≤ 10

√
ε,

where (a) follows from triangle inequality and the property M̃ − X̃ − Ỹ ; (b) follows from convex-split lemma and (c)
follows from Equation (2). Now consider the actual protocol P .

Actual protocol P: Alice possesses random variables (X,M) and Bob possesses random variable Y . Alice and Bob
share 2R+r i.i.d. copies of the random variable T , denoted

{
T1, T2, . . . , T2R+r

}
. Alice and Bob proceed as in P ′′.

Therefore the only difference in P and P ′′ is the inputs of Alice and Bob. Let M̂ be the output of Bob in P .

Consider,

‖pXYM − pXY M̂‖
a
≤ ‖pX̃Ỹ M̃ − pXYM‖+ ‖pX̃Ỹ M̃ − pX̃Ỹ M ′′‖
≤ δ + 10

√
ε,

where (a) follows from Fact 5 and triangle inequality. This shows the desired.
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Proof of Theorem 3: Let RA, rA, RB , rb be natural numbers such that (existence of these numbers is guaranteed by
the Fourier-Motzkin elimination technique [19, Appendix D] and the constraints in the statement of the Theorem),

RA + rA ≥ Dεs(pXM‖pX × pM ) + 2 log
1

ε
,

RB + rB ≥ Dεs(pY N‖pY × pN ) + 2 log
1

ε
,

rA + rB ≤ max{DεH(pMN‖pM × pN )− log
1

ε
, 0}.

Let us divide [2RA+rA ] into 2RA subsets, each of size 2rA . This division is known to both Alice and Charlie. For
j ∈ [2RA+rA ], let B(j) denote the subset corresponding to j. Similarly let us divide [2RB+rB ] into 2RB subsets,
each of size 2rB . This division is known to both Bob and Charlie. For k ∈ [2RB+rB ], let B(k) denote the subset
corresponding to k.

Let us invoke bipartite convex-split lemma (Lemma 7) with X ← (X,Y ),M ← M,N ← N,U ← M,V ←
N,R1 ← RA+rA andR2 ← RB+rB to obtain joint random variables (J,K,X, Y,M1, . . . ,M2RA+rA , N1, . . . , N2RB+rB ).

Let us first consider a fictitious protocol P ′ as follows.

Fictitious protocol P ′: Let Alice and Charlie share (M1, . . . ,M2RA+rA ) as public randomness. Let Bob and Charlie
share (N1, . . . , N2RB+rB ) as public randomness.

Alice’s operations: Alice generates J from (X,M1, . . . ,M2RA+rA ), using the conditional distribution of J given
(X,M1, . . . ,M2RA+rA ), and communicates B(J) to Charlie. This can be done using RA bits of communication.

Bob’s operations: Bob generates K from (Y,N1, . . . , N2RB+rB ), using the conditional distribution of K given
(Y,N1, . . . , N2RB+rB ), and communicates B(K) to Charlie. This can be done using RB bits of communication.

Charlie’s operations: Charlie performs bipartite position based decoding as in Fact 9 inside the subset B(J)×B(K),
by letting M ← M,N ← N,RA ← rA and RB ← rB , and determines (J ′,K ′). Charlie outputs (M ′, N ′) :=
(MJ′ , NK′).

Note that Alice and Bob’s operation produce the right joint distribution (J,K,X, Y,M1, . . . ,M2RA+rA , N1, . . . , N2RB+rB )
since M −X − Y −N . Therefore from Fact 9 we have,

‖pXYMN − pXYM ′N ′‖ ≤ 2 · Pr{(J,K) 6= (J ′,K ′)} ≤ 4ε. (3)

Now consider the actual protocol P .

Actual protocolP: Alice and Charlie share 2RA+rA i.i.d. copies of the random variableM , denoted
{
M1,M2, . . . ,M2RA+rA

}
.

Bob and Charlie share 2RB+rB i.i.d. copies of the random variable N , denoted
{
N1, N2, . . . , N2RB+rB

}
. Alice, Bob

and Charlie proceed as in P ′. Therefore the only difference in P and P ′ is shared randomness. Let (M̂, N̂) represent
Charlie’s outputs in P .

From convex-split lemma

‖pXYM1...M2RA+rA
N1...N2RB+rB

− pX × pY × pM1 × . . .× pM2RA+rA
× pN1 × . . .× pN2RB+rB

‖ ≤ 12
√
ε.

From Fact 5, triangle inequality for `1 norm and Equation (3) we have,

‖pXYMN − pXY M̂N̂‖ ≤ 4ε+ 12
√
ε ≤ 16

√
ε.

This shows the desired.

Proof of Theorem 4: The proof follows on similar lines as the proof of Theorem 3 and we provide a proof sketch here.
Let (RA, RB , rA, rB) be natural numbers such that (existence of these numbers is guaranteed by the Fourier-Motzkin

10



elimination technique [19, Appendix D] and the constraints in the statement of the Theorem),

RA + rA ≥ Dεs(pXM‖pX × pM ) +O

(
log

1

ε

)
,

RB + rB ≥ Dεs(pY N‖pY × pN ) +O

(
log

1

ε

)
,

rA ≤ max

{
DεH(pMNZ‖pM × pNZ)−O

(
log

1

ε

)
, 0

}
,

rB ≤ max

{
DεH(pMZN‖pMZ × pN )−O

(
log

1

ε

)
, 0

}
,

rA + rB ≤ max

{
DεH(pMNZ‖pM × pN × pZ)−O

(
log

1

ε

)
, 0

}
.

Let A1,A2,A3 ⊆M×N ×Z be such that PrpMNZ
{Ai} ≥ 1− ε for all i ∈ {1, 2, 3} and

DεH(pMNZ‖pM × pNZ) = − log Pr
pM×pNZ

{A1} ;

DεH(pMZN‖pMZ × pN ) = − log Pr
pMZ×pN

{A2} ;

DεH(pMNZ‖pM × pN × pZ)− log Pr
pM×pN×pZ

{A3} .

Define A := A1 ∩ A2 ∩ A3.

Protocol P: Shared randomness and Alice and Bob’s operations remain same as in the actual protocol P of the proof
of Theorem 3.

Charlie’s operations: Charlie on receiving B(J) and B(K) from Alice and Bob respectively, performs bipartite
position based decoding (similar to Fact 9) involving Z and the random variables in the subset B(J)×B(K). He finds
the first pair (J ′,K ′) (in lexicographic order) such that (Z,MJ′ , NK′) ∈ A and outputs (M̂, N̂) := (MJ′ , NK′).

Using arguments as in the proof of Fact 9 we get Pr{(J,K) 6= (J ′,K ′)} = O(ε). Now using Fact 5 and triangle
inequality for `1 norm it can be argued that ‖pXYMN − pXY M̂N̂‖ = O(

√
ε).

Proof of Theorem 5: Let us invoke bipartite convex-split lemma (Lemma 7) with X ← X,M ←M,N ← N,U ←
M,V ← N,R1 ← RB and R2 ← RC to obtain joint random variables (J,K,X,M1, . . . ,M2RB , N1, . . . , N2RC ).

Let us first consider a fictitious protocol P ′ as follows.

Fictitious protocol P ′: Let Alice and Bob share (M1, . . . ,M2RB ) as public randomness. Let Alice and Charlie share
(N1, . . . , N2RC ) as public randomness.

Alice’s operations: Alice generates (J,K) from (X,M1, . . . ,M2RB , N1, . . . , N2RC ), using the conditional distri-
bution of (J,K) given (X,M1, . . . ,M2RB , N1, . . . , N2RC ). She communicates J to Bob (using RB bits) and K to
Charlie (using RC bits).

Bob’s operations: Bob performs position based decoding as in Fact 8, by letting Y ← Y,M ← M and R ← RB
and determines J ′. Bob outputs M ′ :=MJ′ .

Charlie’s operations: Charlie performs position based decoding as in Fact 8, by letting Y ← Z,M ← N and
R← RC and determines K ′. Bob outputs N ′ := NK′ .

From Fact 8 we have,

‖pXMN − pXM ′N ′‖ ≤ 2(Pr{J 6= J ′}+ Pr{K 6= K ′}) ≤ 8ε.

Now consider the actual protocol P .

Actual protocol P: Alice and Bob share 2RB i.i.d. copies of the random variableM , denoted
{
M1,M2, . . . ,M2RB

}
.

Alice and Charlie share 2RC i.i.d. copies of the random variable N , denoted
{
N1, N2, . . . , N2RC

}
. Alice, Bob and
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Charlie proceed as in P ′. Therefore the only difference in P and P ′ is shared randomness. Let (M̂, N̂) represent Bob
and Charlie’s outputs respectively in P .

From bipartite convex-split lemma (Lemma 7),

‖pXM1...M2RB
N1...N2RC

− pX × pM1 × . . .× pM2RB
× pN1 × . . .× pN2RC

‖ ≤ 15
√
ε. (4)

From Fact 5, triangle inequality for `1 norm and Equation (4) we have,

‖pXMN − pXM̂N̂‖ ≤ 8ε+ 15
√
ε ≤ 23

√
ε.

Proof of Theorem 6: The proof follows on similar lines as the proof of Theorem 5 and we provide a proof sketch
here. Let (RB , RC , rB , rC) be natural numbers such that,

RB + rb ≥ Dεs(pXM‖pX × pM ) +O

(
log

1

ε

)
,

rb ≤ max

{
DεH(pMY ‖pM × pY )−O

(
log

1

ε

)
, 0

}
,

RC + rc ≥ Dεs(pXN‖pX × pN ) +O

(
log

1

ε

)
,

rc ≤ max

{
DεH(pNZ‖pN × pZ)−O

(
log

1

ε

)
, 0

}
,

RB +RC + rb + rc ≥ Dεs(pXMN‖pX × pM × pN ) +O

(
log

1

ε

)
.

Let A1 ⊆ Y ×M and A2 ⊆ Z ×N be such that PrpY M
{A1} ≥ 1− ε and PrpZN

{A2} ≥ 1− ε and,

DεH(pMY ‖pM × pY ) = − log Pr
pM×pY

{A1} ,

DεH(pNZ‖pN × pZ) = − log Pr
pN×pZ

{A2} .

Let us divide [2RB+rB ] into 2RB subsets, each of size 2rB . This division is known to both Alice and Bob. For
j ∈ [2RB+rB ], let B(j) denote the subset corresponding to j. Similarly let us divide [2RC+rC ] into 2RC subsets,
each of size 2rC . This division is known to both Alice and Charlie. For k ∈ [2RC+rC ], let B(k) denote the subset
corresponding to k.

Protocol P: Alice and Bob share 2RB+rb i.i.d. copies of the random variable M , denoted
{
M1,M2, . . . ,M2RB+rb

}
.

Alice and Charlie share 2RC+rc i.i.d. copies of the random variable N , denoted
{
N1, N2, . . . , N2RC+rc

}
.

Alice’s operations: Alice generates (J,K) as in protocol P in the proof of Theorem 5. She communicates B(J) to
Bob (using RB bits) and B(K) to Charlie (using RC bits).

Bob’s operations: Bob performs position based decoding as in Fact 8, by letting Y ← Y,M ← M and R ← RB
and determines J ′. Bob outputs M̂ :=MJ′ .

Charlie’s operations: Charlie performs position based decoding as in Fact 8, by letting Y ← Z,M ← N and
R← RC and determines K ′. Charlie outputs N̂ := NK′ .

Using arguments as in the proof of Fact 8 we get Pr{(J,K) 6= (J ′,K ′)} = O(
√
ε). Now using Fact 5 and triangle

inequality for `1 norm it can be argued that ‖pXY ZMN − pXY ZM̂N̂‖ = O(
√
ε).

4 Optimality of the protocol for Task 1
The aim of this section is to relate our achievability result 1 with the result of Braverman and Rao [5]. Towards this,
we first discuss the result of Braverman and Rao [5]. We start with the lemma below, which is a rephrased version
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of Theorem 2.1 in [5]. It may be noted that Braverman and Rao were considering expected communication cost,
whereas we are considering the worst case communication cost. Thus, we have stated the lemma below accordingly.

Lemma 1 ([5], Theorem 2.1). Let Alice possess a random variable M and Bob possess a random variable N , where
M andN take values over the same set. Suppose Alice and Bob know an upper bound c on the value of D∞(pM‖pN ).
Then for every ε > 0, there exists a randomness assisted protocol (with uniform shared randomness) in which Bob
outputs the random variable M̂ such that ‖pM̂ − pM‖ ≤ ε, if the amount of communication from Alice to Bob is
c+ log( 1ε ).

An immediate corollary to this is the following, which is a smooth version of Lemma 1.

Corollary 4. Let Alice possess a random variable M and Bob possess a random variable N , where M and N
take values over the same set. Fix an ε ∈ (0, 12 ). Suppose Alice and Bob know an upper bound c on the value of
Dεs(pM‖pN ). Then there exists a randomness-assisted protocol (with uniform shared randomness) where Bob outputs
a random variable M̂ such that ‖pM̂ − pM‖ ≤ 5ε, if the amount of communication from Alice to Bob is c+ log( 2ε ).

Proof. From the definition of Dεs(pM‖pN ), it holds that Prm←pM {
pM (m)
pN (m) ≥ 2c} ≤ ε. Let us define the following set

Good :=

{
m :

pM (m)

pN (m)
< 2c

}
.

Let M ′ be a random variable taking values over the set Good, formally defined as

pM ′(m) =

{
pM (m)

Pr{Good} if m ∈ Good;

0 otherwise.

It holds that ‖pM ′ − pM‖ ≤ 2ε and Pr {Good} ≥ 1− ε. This implies

2D∞(pM′‖pN ) =
1

Pr {Good}
· max
m∈Good

pM (m)

pN (m)
≤ 2c

1− ε
.

Suppose Alice possesses the random variable M ′ and Bob possesses the random variable N . Alice and Bob execute
the protocol used in the proof of Lemma 1. Then Bob outputs the random variable M ′′ such that ‖pM ′′ − pM ′‖ ≤ ε.
The same protocol when now executed on the random variable M produces a random variable M̂ . It holds that

‖pM̂ − pM‖
a
≤ ‖pM̂ − pM ′′‖+ ‖pM ′′ − pM ′‖+ ‖pM ′ − pM‖
b
≤ ‖pM − pM ′‖+ ‖pM ′′ − pM ′‖+ ‖pM ′ − pM‖
≤ 2ε+ ε+ 2ε = 5ε,

where (a) follows from triangle inequality and (b) follows from Fact 5. The amount of communication from Alice to
Bob is at most c+ log( 1ε ) + log( 1

1−ε ) ≤ c+ log( 2ε ). This proves the corollary.

Using this, the following achievability result is obtained for Task 1.

Theorem 8 (Braverman and Rao protocol, [5]). Let ε ≥ 0. Let R be a natural number such that,

R ≥ min
(X̃,Ỹ ,M̃)

max
y∈supp(pỸ )

inf
pN|Ỹ =y

Dεs(pX̃M̃ |Ỹ=y‖pX̃|Ỹ=y × pN |Ỹ=y) +O

(
log

1

ε

)
,

where (X̃, Ỹ , M̃) satisfies M̃ − X̃ − Ỹ and ‖pX̃Ỹ M̃ − pXYM‖ ≤ ε and (Ỹ , N) ∼ pỸ N . There exists a shared ran-
domness assisted protocol in which Alice communicates R bits to Bob and Bob outputs random variable M̂ satisfying
‖pXYM − pXY M̂‖ ≤ 8ε.

Proof. Let (X̃, Ỹ , M̃) and (Ỹ , N) be the random variables that achieve the optimization in the definition ofR. Define
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c := max
y∈supp(pỸ )

Dεs(pX̃M̃ |Ỹ=y‖pX̃|Ỹ=y × pN |Ỹ=y)

= max
y∈supp(pỸ )

min

(
ay : Pr

(x,m)←pX̃M̃|Ỹ =y

{
pX̃M̃ |Ỹ=y(x,m)

pX̃|Ỹ=y(x) · pN |Ỹ=y(m)
> 2ay

}
≤ ε

)

= max
y∈supp(pỸ )

min

(
ay : Pr

(x,m)←pX̃M̃|Ỹ =y

{
pM̃ |X̃=x,Ỹ=y(m)

pN |Ỹ=y(m)
> 2ay

}
≤ ε

)

= max
y∈supp(pỸ )

min

(
ay : Pr

(x,m)←pX̃M̃|Ỹ =y

{
pM̃ |X̃=x(m)

pN |Ỹ=y(m)
> 2ay

}
≤ ε

)
(5)

where the last equality follows because M̃ − X̃ − Ỹ . From Equation (5), we conclude that for all y ∈ supp(pỸ ),

Pr
x←pX̃|Ỹ =y

{
Dεs(pM |X̃=x‖pN |Ỹ=y) > c

}
≤ ε (6)

Fictitious protocol P ′: Alice possesses random variables (X̃, M̃) and Bob possess random variable Ỹ . They also
share uniform shared randomness as required for the protocol in Corollary 4. Alice, upon seeing a realization x of
X̃ and Bob, upon seeing a realization y of Ỹ , run the protocol as defined in Corollary 4 with M ← M̃ | (X̃ = x),
N ← N | (Ỹ = y) and c as defined in Equation 5. At the end of the protocol, let M ′ be the random variable output
by Bob. From Equation (6) and Corollary 4, we conclude that for all y ∈ supp(pỸ ),

Pr
x←pX̃|Ỹ =y

{
‖pM ′|X̃=x,Ỹ=y − pM̃ |X̃=x‖ ≥ 5ε

}
≤ ε.

This implies that ‖pX̃Ỹ M ′ − pX̃Ỹ M̃‖ ≤ 6ε.
Actual protocol P: Alice and Bob possess the random variable (X,Y,M). They run the protocol P ′ which outputs
the random variable triplet (X,Y, M̂). Since ‖pX̃Ỹ M̃ − pXYM‖ ≤ ε, it holds by triangle inequality and Fact 5 that

‖pXY M̂ − pXYM‖ ≤ ‖pXY M̂ − pX̃Ỹ M ′‖+ ‖pX̃Ỹ M ′ − pX̃Ỹ M̃‖+ ‖pX̃Ỹ M̃ − pXYM‖ ≤ ε+ 6ε+ ε.

The communication cost is R = c+O
(
log 1

ε

)
. This completes the proof.

We now compare our result (Theorem 1) with Theorem 8. To accomplish this, we first define a series of new
quantities and relate them to each other. In what follows, we will use P to represent a protocol for the Task1 discussed
in Section 1.

• Optε: Let P be any shared randomness assisted communication protocol in which Alice and Bob work on
their respective inputs (X,Y ), and Bob outputs a random variable M̂ correlated with XY . Let P(X,Y ) :=
(X,Y, M̂) represent the output of the protocol. We define err(P) := ‖pXY M̂ − pXYM‖ as the error incurred
by the protocol and C(P) as the communication cost of the protocol. Define

Optε := min
P:err(P)≤ε

C(P).

• Optε1: Let S be the shared randomness in a protocol P . Note that S is independent of (X,Y ). Let V be a
random variable such that Y − (X,S)−V , X− (Y, V, S)− M̂ and ‖pXY M̂ −pXYM‖ ≤ ε, where M̂ is output
by Bob (as discussed above). The random variable V represents the message generated by Alice to Bob in P .
Define

Optε1 := min
(X,Y,U,S,M̂,V )

D∞(pXSV ‖pXS × pU ),

where U is the uniformly distributed random variable taking values over same set as V .

• BRε: The amount of communication needed by the protocol of Braverman and Rao for Task 1 is denoted by
BRε and formally defined below (see also Theorem 8). Let (X̃, Ỹ , M̃) be a joint random variable such that
Ỹ − X̃ − M̃ and ‖pX̃Ỹ M̃ − pXYM‖ ≤ ε. Further, let (Ỹ , N) ∼ pỸ N . Define

BRε := min
(X̃,Ỹ ,M̃)

max
y∈supp(pỸ )

inf
pN|Ỹ =y

Dεs(pX̃M̃ |Ỹ=y‖pX̃|Ỹ=y × pN |Ỹ=y).
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• Extε: This is the quantity obtained in the result of Theorem 1 by setting T as uniform random variable U . Let
(X̃, Ỹ , M̃ , E) be a joint random variable such that Ỹ − X̃ − (M̃,E) and ‖pX̃Ỹ M̃ − pXYM‖ ≤ ε. Define

Extε := min
(X̃,Ỹ ,M̃,E)

(
Dεs(pX̃M̃E‖pX̃ × pU )−DεH(pỸ M̃E‖pỸ × pU )

)
.

The following theorem relates all the quantities defined above to each other. This in turn allows us to prove the
optimality of our protocol (see Theorem 2) along with the protocol of Braverman and Rao (Theorem 8).

Theorem 9. Let M −X − Y . Then it holds that

1. Optε ≥ Optε1.

2. Optε1 ≥ BR3
√
ε − log( 4ε ).

3. BRε +O(log( 1ε )) ≥ Opt8ε.

4. Extε +O(log( 1ε )) ≥ OptO(
√
ε)

5. BRε > Extε.

Proof. We will prove the inequalities in the order they appear in the Theorem.

1. In any one-way communication protocol P with a shared randomness S, Alice produces a message V ∈ V
using (X,S), and communicates this to Bob. Notice that for this choice of V we have Y − (X,S)− V . Using
the message V , shared randomness S and his input Y , Bob outputs M̂ such that ‖pXY M̂ − pXYM‖ ≤ ε and
X − (Y, V, S)− M̂ . The total number of bits communicated by Alice to Bob is C(P) = log |V|. The inequality
now follows from the relation D∞(pXSV ‖pXS × pU ) ≤ log |V| and the definition of Optε1.

2. Let M̂ be the output of the protocol P such that ‖pXY M̂ − pXYM‖ ≤ ε. Define the following set

Good :=
{
y : ‖pXM̂ |Y=y − pXM |Y=y‖ ≤

√
ε
}
. (7)

Using the fact that ‖pXY M̂ − pXYM‖ ≤ ε and Markov’s inequality we have that Pr {Good} ≥ 1−
√
ε.

A closeby Markov chain distribution: We now construct a random variable triplet (X1, Y1,M1) distributed
as follows:

pX1Y1M1
(x, y,m) :=

{
pY (y)

Pr{Good}pXM̂ |Y=y(x,m) if y ∈ Good;

0 otherwise.
(8)

Further, define the random variable triplet (X2, Y2,M2) distributed as follows

pX2Y2M2
(x, y,m) := pX1Y1

(x, y)pM |X=x(m). (9)

We observe that M2 −X2 − Y2 holds. Moreover, we have the following:

‖pX2Y2M2 − pXYM‖ ≤ ‖pX2Y2M2 − pX1Y1M1‖+ ‖pX1Y1M1 − pXYM‖
a
≤ ‖pX2Y2M2 − pX1Y1M1‖+ 2

√
ε

b
≤
√
ε+ 2

√
ε = 3

√
ε, (10)

where (a) follows from ‖pX1Y1M1 − pXYM‖ ≤ 2 (1− Pr {Good}) ≤ 2
√
ε; and (b) follows from the following

set of inequalities:

‖pX2Y2M2 − pX1Y1M1‖
a
=

∑
y

pY1(y)‖pX2M2|Y2=y − pX1M1|Y1=y‖

b
=

∑
y

pY1
(y)‖pXM |Y=y − pXM̂ |Y1=y

‖

c
≤
√
ε,
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where (a) follows from Definition (9); (b) follows from Definitions (8) and (9); (c) follows from the definition
of the set Good (Definition (7)).
Lower bound: For the random variables (X,Y, V, S, U) as defined in Optε1, we prove the following:

D∞(pXSV ‖pX × pS × pU )
a
= D∞(pY XSV ‖pY X × pS × pU )
= max
y∈supp(pY )

D∞(pXSV |Y=y‖pX|Y=y × pS|Y=y × pU )

b
≥ max
y∈supp(pY )

min
S′V ′

D∞(pXSV |Y=y‖pX|Y=y × pS′V ′)

c
≥ max
y∈supp(pY )

min
pN|Y =y

D∞(pXM̂ |Y=y‖pX|Y=y × pN |Y=y)

d
≥ max
y∈supp(pY1

)
min

pN|Y =y

D∞(pXM̂ |Y=y‖pX|Y=y × pN |Y=y)

e
≥ max
y∈supp(pY1

)
min

pN|Y =y

D
√
ε
∞ (pX2M2|Y=y‖pX|Y=y × pN |Y=y)

f
= max
y∈supp(pY2

)
min

pN|Y =y

D
√
ε
∞ (pX2M2|Y=y‖pX2|Y=y × pN |Y=y)

g

≥ max
y∈supp(pY2

)
min

pN|Y =y

D3
√
ε

s (pX2M2|Y=y‖pX2|Y=y × pN |Y=y)− log

(
4

ε

)
.

Above, (a) follows from the fact that Y − X − (S, V ); (b) follows by minimizing over all random variables
(S′, V ′); (c) follows from Fact 5 ; (d) follows from the fact that supp(pY1

) ⊆ supp(pY ); (e) follows from the
definition of smooth max divergence and the fact that for all y ∈ supp(pY1

) = Good, we have:

‖pX2M2|Y=y − pXM̂ |Y=y‖ =
∑
x

pX|Y=y(x)‖pM2|X=x − pM̂ |X=x,Y=y‖

=
∑
x

pX|Y=y(x)‖pM |X=x − pM̂ |X=x,Y=y‖

= ‖pXM |Y=y − pXM̂ |Y=y‖ ≤
√
ε;

(f) follows from the fact that supp(pY2
) = Good and for all y ∈ Good, pX2|Y2=y = pX|Y=y; and (g) follows

from Fact 1.
Thus,

max
y∈supp(pY2

)
min

pN|Y =y

D3
√
ε

s (pX2M2|Y=y‖pX2|Y=y × pN |Y=y) ≥ BR3
√
ε,

where the inequality above follows because M2 −X2 − Y2 and ‖pX2Y2M2 − pXYM‖ ≤ 3
√
ε (Equation (10))

and from the definition of BR3
√
ε. This proves the item.

3. This is a direct consequence of Theorem 8.

4. This is a direct consequence of Theorem 1 .

5. Let (X̃, Ỹ , M̃) and (Ỹ , N) be as obtained from the definition of BRε. From Theorem 10 below, it holds that
there exists a random variable E such that (X̃, Ỹ , M̃ , E) satisfies Ỹ − X̃ − (M̃,E) and

maxyD
ε
s(pX̃M̃ |Ỹ=y‖pX̃|Ỹ=y × pN |Ỹ=y) ≥ Dεs(pX̃M̃E‖pX̃ × pU )−DεH(pỸ M̃E‖pỸ × pU ).

The item follows by observing that Extε is obtained by minimizing right hand side over all (X̃, Ỹ , M̃ , E) and
U , such that Ỹ − X̃ − (M̃,E) and ‖pX̃Ỹ M̃ − pXYM‖ ≤ ε.

The following theorem shows that the information theoretic quantity obtained in Theorem 1 is upper bounded by
the information theoretic quantity obtained in Theorem 8.
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Theorem 10. Let (X̃, Ỹ , M̃) and (Ỹ , N) be the optimal random variables appearing in the definition of BRε. Then
there exists a random variable E such that Ỹ − X̃ − (M̃,E) and

maxyD
ε
s(pX̃M̃ |Ỹ=y‖pX̃|Ỹ=y × pN |Ỹ=y) ≥ Dεs(pX̃M̃E‖pX̃ × pU )−DεH(pỸ M̃E‖pỸ × pU ),

where U is uniformly distributed over the set over which the random variable pair (M̃,E) take values.

Proof. The proof is divided in the following steps.
Construction of appropriate extension: Let K be the smallest integer such that KpM̃ |X̃=x(m) is an integer. This
can be assumed to hold with arbitrarily small error. Further, let E be a random variable taking values over the set
K := {1, · · · ,K} and jointly distributed with (X̃, M̃) as follows: for every (m, e, x) ∈M×K×X ,

pX̃M̃E(x,m, e) :=

{
pX̃(x)

K if e ≤ KpM̃ |X̃=x(m),

0 otherwise.
(11)

It can be seen that the property Ỹ − X̃ − (M̃,E) holds. Let U be a uniform random variable distributed over the set
M×K. Now we can establish the following:

Ds(pX̃M̃E‖pX̃ × pU )
a
= max
m,x,e

log
pX̃M̃E(x,m, e)

pX̃(x)pU (u)

b
= log

|M|K
K

= log |M|, (12)

where (a) follows from the definition of Ds(pX̃M̃E‖pX̃ × pU ); (b) follows from Equation (11) and the fact that U is
uniform over the setM×K.
Lower bounding hypothesis testing relative entropy: For brevity, let

D∗∞ := maxyD
ε
s(pX̃M̃ |Ỹ=y‖pX̃|Ỹ=y × pN |Ỹ=y).

Define the following set

A :=
{
(y,m, e) ∈ Y ×M×K : e ≤ K2D

∗
∞pN |Ỹ=y(m)

}
. (13)

We will prove the following

Pr
pỸ ×pU

{A} = 2−(log |M|−D
∗
∞)); (14)

Pr
pM̃Ỹ E

{A} ≥ 1− ε. (15)

The theorem now follows from the definition of DεH(pỸ M̃E‖pỸ × pU ) and Equations (12),(14),(15) as follows:

DεH(pỸ M̃E‖pỸ × pU ) ≥ log |M| −D∗∞
= Ds(pX̃M̃E‖pX̃ × pU )−D

∗
∞

≥ Dεs(pX̃M̃E‖pX̃ × pU )−D
∗
∞,

which leads to
D∗∞ ≥ Dεs(pX̃M̃E‖pX̃ × pU )−DεH(pỸ M̃E‖pỸ × pU ).
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Proof of Equation (14): Towards this notice the following

Pr
pỸ ×pU

{A} =
∑

(y,m,e)∈A

pỸ (y)pU (m, e)

=
∑
y∈Y

pỸ (y)
∑

(m,e):(y,m,e)∈A

1

|M|K

=
∑

(y,m)∈Y×M

pỸ (y)pN |Ỹ=y(m)
K2D

∗
∞

|M|K

=
2D
∗
∞

|M|
= 2−(log |M|−D

∗
∞).

Proof of Equation (15). Towards this we have the following:

Pr
pỸ M̃E

{A} =
∑
x

pX̃(x)
∑

(y,m,e)∈A

pỸ |X̃=x(y)pM̃E|X̃=x(m, e)

a
=
∑
x

pX̃(x)
∑
y

pỸ |X̃=x(y)
∑
m

∑
e:e≤KpM̃|X̃=x(m)

(y,m,e)∈A

1

K

b
≥
∑
(x,y)

pX̃Ỹ (x, y)
∑

m:pM̃|X̃=x(m)≤2D∗∞pN|Ỹ =y(m)

pM̃ |X̃=x(m)

c
≥ 1− ε,

where a follows from Definition (11), b follows because for every x{
(y,m, e) : pM̃ |X̃=x(m) ≤ 2D

∗
∞pN |Ỹ=y(m) and e ≤ KpM̃ |X̃=x(m)

}
⊆ A,

and c follows from the definition of D∗∞. This completes the proof.
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A Deferred proofs
Proof of Fact 6: Let c := Dεs(pXM‖pX × pW ). Define,

Good :=

{
(x,m) :

pXM (x,m)

pX(x)pW (m)
≤ 2c

}
.

This implies (from definition of c) that p := Pr{(X,M) ∈ Good} ≥ 1 − ε. Let us define joint random variables
(X ′,M ′) as follows:

pX′M ′(x,m) =

{
pXM (x,m)

p if (x,m) ∈ Good,

0 otherwise.

We note that,

∀(x,m) :
pX′M ′(x,m)

pX(x)pW (m)
≤ 2c

p
and pX′(x) ≤

pX(x)

p
. (16)

Let us construct joint random variables (J ′, X ′,M ′1, . . . ,M
′
2R) from (X ′,M ′) in a similar fashion as we constructed

joint random variables (J,X,M1, . . . ,M2R) from (X,M). We note that,

‖pX′M ′1...M ′2R − pXM1...M2R
‖ = ‖pXM − pX′M ′‖ ≤ 4ε. (17)
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Consider,

D
(
pX′M ′1...M ′2R

‖pX × pW1
× . . .× pW2R

)
a
=

1

2R

2R∑
j=1

(
D
(
pX′M ′j‖pX × pWj

)
− D

(
pX′M ′j × pW1

× . . .× pWj−1
× pWj+1

× . . .× pW2R
‖pX′M ′1...M ′2R

))
b
≤ 1

2R

2R∑
j=1

(
D
(
pX′M ′j‖pX × pWj

)
− D

(
pX′M ′j‖

1

2R
pX′M ′j +

(
1− 1

2R

)
pX′ × pWj

))
c
≤ log

(
1 +

2c

2R

)
+ log

1

p

d
≤ 4ε,

where (a) follows from Fact 2; (b) follows from Fact 3 and (c) follows from Equation (16) and (d) follows since
log(1 + x) ≤ x for all real x and from choice of R. From Fact 4 we get,

‖pX′M ′1...M ′2R − pX × pW1
× . . . pW2R

‖ ≤ 2
√
ε.

This along with Equation (17) and the triangle inequality for `1 distance gives us the desired.

Proof of Lemma 7: Define,

c1 := Dεs(pXMN‖pX × pU × pV ), c2 := Dεs(pXM‖pX × pU ), c3 := Dεs(pXN‖pX × pV ),

Good1 :=

{
(x,m, n) :

pXMN (x,m, n)

pX(x)pU (m)pV (n)
≤ 2c1

}
,

Good2 :=

{
(x,m, n) :

pXM (x,m)

pX(x)pU (m)
≤ 2c2

}
,

Good3 :=

{
(x,m, n) :

pXN (x, n)

pX(x)pV (n)
≤ 2c3

}
,

Good := Good1 ∩Good2 ∩Good3.

This implies (from definitions of c1, c2, c3) that p := Pr {(X,M,N) ∈ Good} ≥ 1− 3ε. Let us define joint random
variables (X ′,M ′, N ′) as follows:

pX′M ′N ′(x,m, n) =

{
pXMN (x,m,n)

p if (x,m, n) ∈ Good,

0 otherwise.

We note that ∀(x,m, n) :

pX′M ′N ′(x,m, n)

pX(x)pU (m)pV (n)
≤ 2c1

p
,

pX′M ′(x,m)

pX(x)pU (m)
≤ 2c2

p
,

pX′N ′(x, n)

pX(x)pV (n)
≤ 2c3

p
, pX′(x) ≤

pX(x)

p
. (18)

Let us construct joint random variables
(
J ′,K ′, X ′,M ′1, . . . ,M

′
2R1

, N ′1, . . . , N
′
2R2

)
from (X ′,M ′, N ′) in the same

way as we constructed (J,K,X,M1, . . . ,M2R1 , N1, . . . , N2R2 ) from (X,M,N). We note that,

‖pX′M ′1...M ′2R1
N ′1...N

′
2R2
− pXM1...M2R1

N1...N2R2
‖ = ‖pXMN − pX′M ′N ′‖ ≤ 12ε. (19)

For notational convenience lets define,

∀j ∈ [2R1 ] : pU−j
:= pU1

× . . .× pUj−1
× pUj+1

× . . .× pU
2R1

,

∀k ∈ [2R2 ] : pV−k
:= pV1

× . . .× pVk−1
× pVk+1

× . . .× pV
2R2

,

qX′M ′N ′ :=
1

2R1+R2
pX′M ′jN ′k +

1

2R1

(
1− 1

2R2

)
pX′M ′j × pVk

+
1

2R2

(
1− 1

2R1

)
pX′N ′k × pUj

+

(
1− 2R1 + 2R2 − 1

2R1+R2

)
pX′ × pUj

× pVk
.
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Consider,

D
(
pX′M ′1...M ′2R1

N ′1...N
′
2R2
‖pX × pU1 × . . .× pU2R1

× pV1 × . . .× pV2R2

)
a
=

1

2R1+R2

∑
j,k

(
D
(
pX′M ′jN ′k‖pX × pUj × pVk

)
− D

(
pX′M ′jN ′k × pU−j × pV−k

‖pX′M ′1...M ′2R1
N ′1...N

′
2R2

))
b
≤ 1

2R1+R2

∑
j,l

(
D
(
pX′M ′jN ′k‖pX × pUj × pVk

)
− D

(
pX′M ′jN ′k‖qX′M ′N ′

))
c
≤ log

(
1 +

2c1

2R1+R2
+

2c2

2R1
+

2c3

2R2

)
+ log

1

p

d
≤ 9ε,

where (a) follows from Fact 2; (b) follows from Fact 3; (c) follows from Equation (18) and (d) follows since log(1 +
x) ≤ x for all real x and from choice of parameters. From Fact 4 this implies

‖pX′M ′1...M ′2R1
N ′1...N

′
2R2
− pX × pU1

× . . .× pU
2R1
× pV1

× . . .× pV
2R2
‖ ≤ 3

√
ε.

This along with Equation (19) and the triangle inequality for `1 distance gives us the desired.

Proof of Fact 8: Let A ⊆ Y ×M be such that PrpY M
{A} ≥ 1− ε, and

c := DεH(pYM‖pY × pW ) = − log Pr
pY ×pW

{A} .

Define J ′ to be the first index in [2R] such that (Y,MJ′) ∈ A. For the arguments below, let us condition on the event
J = j for some fixed j ∈ [2R]. Consider,

Pr{J ′ 6= j} ≤ Pr {(Y,Mj) /∈ A}+ Pr {(Y,Mj′) ∈ A for some j′ 6= j}
≤ ε+ 2R · 2−c ≤ 2ε.

Therefore,
Pr{J 6= J ′} =

∑
j∈[2R]

Pr{J = j} · Pr{J ′ 6= j | J = j} ≤ 2ε.

Proof of Fact 9: Let A ⊆M×N be such that PrpMN
{A} ≥ 1− ε, and

c := DεH(pMN‖pM × pN ) = − log Pr
pM×pN

{A} .

Define (J ′,K ′) to be the first pair of indices (in lexicographic order) in [2R1 ]× [2R2 ] such that (MJ′ , NK′) ∈ A. For
the arguments below, let us condition on the event (J,K) = (j, k) for some fixed (j, k) ∈ [2R1 ]× [2R2 ] . Consider,

Pr{(J ′,K ′) 6= (j, k)} ≤ Pr {(Mj , Nk) /∈ A}+ Pr
{
(Mj̃ , Nk̃) ∈ A for some (j̃, k̃) 6= (j, k)

}
≤ ε+ 2R1+R2 · 2−c ≤ 2ε.

Therefore,

Pr{(J,K) 6= (J ′,K ′)} =
∑

(j,k)∈[2R1 ]×[2R2 ]

Pr{(J,K) = (j, k)} · Pr{(J ′,K ′) 6= (j, k) | (J,K) = (j, k)} ≤ 2ε.
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