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Abstract
The partition bound introduced in [4] is a way to prove lower bounds in classical communica-

tion and query complexity. While the partition bound provides a strong and general way to prove
lower bounds, it remains open how tight the bounds obtained from this method are. In this work
we give quadratically tight lower bounds via a strengthened version of the partition bound, which
we call the public-coin partition bound. Formally, we show that, for all relations, the logarithms
of the communication and query complexity versions of our public-coin partition bounds are
within a quadratic factor of the public-coin randomized communication and randomized query
complexity respectively.
Keywords: Partition bound, communication complexity, lower bounds, linear programs.

1 Introduction

Proving communication and query complexity bounds has been a challenging and active re-
search direction in complexity theory with far reaching applications to VLSI design, stream-
ing algorithms and combinatorial optimization, see [6]. Many different methods have been
proposed which aim to capture communication and query complexity in different settings,
see [7]. Understanding the tightness of these lower bound methods is a central question.
Perhaps the most important and famous among these is understanding the relationship
between log-rank of the communication matrix and deterministic communication complex-
ity (for boolean functions). This question has wide-spread consequences for example in
understanding non-negative rank of matrices and also to deep questions in combinator-
ics. Another important question is understanding relationship between approximate γ2 and
classical randomized communication complexity which can help relate classical and quantum
communication complexity (for total functions).

Among the strongest known lower bound methods, both in classical randomized (public-
coin) communication complexity and randomized query complexity, is the partition bound
introduced in [4]. To the best of our knowledge, there is no function or relation where the
lower bound obtained from the partition bound method is asymptotically weaker either for
randomized (public-coin) communication complexity or for randomized query complexity.
However, it has not been established that the partition bound captures these quantities
tightly. Again understanding relationship between partition bound and randomized com-
munication complexity will enhance our understanding of non-negative rank of matrices.

The other widely studied lower bound method is (internal) information complexity which
very recently has been shown to be exponentially smaller than (distributional) communica-
tion complexity (under a specific distribution) for a particular relation [3].
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2 A Quadratically Tight Partition Bound . . .

Our Contribution
In this work we introduce, both for communication complexity and query complexity, a
strengthening of the partition bound which we call the public-coin partition bound. Ana-
logous to the partition bound, our new bound is also a linear-programming based lower
bound method and is stronger than the partition bound for all relations, both in commu-
nication complexity and query complexity. Formally, in one direction we show that (the
base two logarithm of) its communication and query complexity versions continue to form a
lower bound on the public-coin communication complexity and randomized query complex-
ity respectively. Importantly, we are also able to show a near-converse: The square of (the
base two logarithm of) the communication and query complexity versions of our public-coin
partition bound form an upper bound on the public-coin communication complexity and
randomized query complexity respectively.

In the first look the definition of our lower bound may look quite similar to the defini-
tion of communication complexity itself and hence its tightness may not appear surprising.
However the fact that our lower bound is expressed as a linear program may have poten-
tial advantages. It may be possible to provide new lower bounds for specific functions and
relations by providing good feasible solutions to the dual. It may be possible to relate it
(by comparing feasible solutions) to other linear programming based lower bound methods
e.g. the partition bound and the smooth-rectangle bound [4] and hence helpful in under-
standing the tightness of these bounds. This may also shed light into the direct-product
question in communication complexity since a direct-product result is known in terms of
smooth-rectangle bound for all relations [5]. A direct-product result states that if less than
k times the communication required to compute a single instance of a relation f (with con-
stant error) is provided for computing k simultaneous instances of f , then the overall success
is exponentially small in k. It may also be possible to attack the direct-product question
directly by analyzing if the linear program corresponding to public-coin partition bound
exhibits a product structure.

We now proceed to formally stating our results and proofs.

2 Our Result in the Communication Complexity Setting

In this section we introduce our new bound in the communication complexity setting. Let
us first recall the partition bound of [4].
I Definition 1 (Partition bound [4]). Let f ⊆ X × Y × Z be a relation. Let ε > 0. The
ε-partition bound of f , denoted prtε(f), is given by the optimal value of the following linear
program. Below R represents a rectangle in X × Y and (x, y, z) ∈ X × Y × Z.

Primal
min

∑
z

∑
R

wz,R

s.t.

∀(x, y) :
∑

z:(x,y,z)∈f

∑
R:(x,y)∈R

wz,R ≥ 1− ε

∀(x, y) :
∑

R:(x,y)∈R

∑
z

wz,R = 1

∀(z,R) : wz,R ≥ 0

Dual
max (1− ε)

∑
(x,y)

µx,y +
∑
(x,y)

φx,y

s.t.

∀(z,R) :
∑

(x,y)∈R:(x,y,z)∈f

µx,y +
∑

(x,y)∈R

φx,y ≤ 1

∀(x, y) : µx,y ≥ 0, φx,y ∈ R

Our bound is obtained by refining the above linear program by adding a new set of variables;
one for each setting of the public-coins in the protocol. These extra variables allow us to
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construct a protocol starting from a solution to the linear program.

I Definition 2 (Public-coin partition bound). Let f ⊆ X × Y × Z be a relation. Let ε > 0.
The ε-public-coin partition bound of f , denoted pprtε(f), is given by the optimal value of
the following linear program. Below R represents a rectangle in X × Y and P represents a
partition along with outputs in Z; that is P = {(z1, R1), (z2, R2), · · · , (zm, Rm)}, such that
{R1, · · · , Rm} form a partition of X × Y into rectangles and ∀i ∈ [m], zi ∈ Z.

Primal
min

∑
z

∑
R

wz,R

s.t.

∀(x, y) :
∑

z:(x,y,z)∈f

∑
R:(x,y)∈R

wz,R ≥ 1− ε

∀(x, y) :
∑

R:(x,y)∈R

∑
z

wz,R = 1

∀(z,R) : wz,R =
∑

P :(z,R)∈P

ap∑
P

aP = 1

∀(z,R) : wz,R ≥ 0; ∀P : aP ≥ 0

Dual
max (1− ε)

∑
(x,y)

µx,y +
∑
(x,y)

φx,y + λ

s.t.

∀(z,R) :
∑

(x,y)∈R:(x,y,z)∈f

µx,y +
∑

(x,y)∈R

φx,y + vz,R ≤ 1

∀P :
∑

(z,R)∈P

vz,R ≥ λ

∀(x, y) : µx,y ≥ 0, φx,y ∈ R
∀(z,R) : vz,R ∈ R

λ ∈ R

It is possible to get rid of the variables wz,R in this program, however we keep them since
explicit comparison with partition bound is easier in this form. We present a simplified
linear program in Section C.

Notice that the dual of the linear program used to define the partition bound can be
obtained from the dual of the linear program for the public-coin partition bound by setting
the variables λ and vz,A to 0. Thus, any lower bound on prtε(f) obtained by demonstrating
a feasible solution to the corresponding dual extends to a feasible dual solution of the public-
coin partition bound dual; resulting in the same lower bound on pprtε(f). In particular it is
always true that

prtε(f) ≤ pprtε(f).

The following is our main theorem in the communication complexity setting.

I Theorem 1. Let f ⊆ X × Y × Z be a relation. Let ε > 0. Let Rpub
ε (f) represents the

public-coin communication complexity of f with worst-case error ε. Then,

log2 pprt2ε(f) ≤ Rpub
2ε (f) ≤

(
log2 pprtε(f) + log2

1
ε

+ 1
)2

.

Note that such a result is not known to be true for the partition bound. We prove the lower
bound and the upper bound separately. We start by showing that our bound is indeed a
lower bound (please refer to [6] for standard definitions in communication complexity).

I Lemma 1. Let f ⊆ X × Y × Z be a relation. Let ε > 0. Let Rpub
ε (f) represents the

public-coin communication complexity of f with worst-case error ε. Then,

log2 pprtε(f) ≤ Rpub
ε (f).

This proof proceeds along similar lines as the proof of [4] for an analogous result for the
partition bound.
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Proof. Let P be a public coin randomized protocol for f with communication c def= Rpub
ε (f)

and worst case error ε. For a binary string r, let Pr represent the deterministic com-
munication protocol obtained from P by fixing the public coins to r. Every determin-
istic communication protocol amounts to partitioning the inputs in X × Y into rectangles
and outputting an element in Z corresponding to each rectangle in the partition. Let
Pr = {(zr1 , Rr1), (zr2 , Rr2), · · · , (zrm, Rrm)}, be the corresponding partition along with the out-
puts, i.e., {Rr1, · · · , Rrm} partition X × Y into rectangles and ∀i ∈ [m], zri ∈ Z. Let qr
represent the probability that the string r is chosen in P. For Pr define a′Pr

def= qr. For the
partitions P that do not correspond to a random string r in P, define a′P = 0. For all (z,R)
define

w′z,R
def=

∑
P :(z,R)∈P

a′P .

With these definitions, it can be seen that for all (x, y, z) ∈ X × Y × Z:

Pr[P outputs z on input (x, y)] =
∑

R:(x,y)∈R

w′z,R.

Since the protocol has error at most ε on all inputs we get the constraint:

∀(x, y) :
∑

z:(x,y,z)∈f

∑
R:(x,y)∈R

w′z,R ≥ 1− ε.

Also, since the Pr[P outputs some z ∈ Z on input (x, y)] = 1, we get the constraint:

∀(x, y) :
∑
z

∑
R:(x,y)∈R

w′z,R = 1.

We also have by construction:∑
P

a′P = 1; ∀(z,R) : w′z,R ≥ 0; ∀P : a′P ≥ 0.

Therefore {w′z,R} ∪ {a′P } is feasible for the primal of pprtε(f). We know that for each r,
|Pr| ≤ 2c, since the communication in Pr is at most c bits. Hence,

pprtε(f) ≤
∑
z

∑
R

w′z,R =
∑
r

a′Pr
· |Pr| ≤ 2c

∑
r

a′Pr
= 2c.

J

Next we show the other half of Theorem 1; that the square of the logarithm of our new
bound forms an upper bound on the public-coin communication complexity.

I Lemma 2. Let f ⊆ X × Y × Z be a relation. Let ε > 0. We have,

Rpub
2ε (f) ≤

(
log2 pprtε(f) + log2

1
ε

+ 1
)2

.

Proof. Let pprtε(f) = 2c. Let {wz,R} ∪ {aP } be an optimal solution for the primal. Let nP
be the number of rectangles in P . We have,∑

P

aP · nP =
∑
z,R

wz,R = 2c.
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Next we will identify the partitions with many more rectangles than the expected value
2c, assign 0 probability to them and re-normalize the probability among other partitions.
Define B def= {P | nP ≥ 1

ε2c}. Then δ def=
∑
P∈B aP ≤ ε. Define a′P

def= 1
1−δaP for P /∈ B and

a′P
def= 0 for P ∈ B. Define w′z,R

def=
∑
P :(z,R)∈P a

′
P . Then we have,

∀(x, y) :
∑

z:(x,y,z)∈f

∑
R:(x,y)∈R

w′z,R ≥ 1− 2ε,

∀(x, y) :
∑

R:(x,y)∈R

∑
z

w′z,R = 1,

∀(z,R) : w′z,R =
∑

P :(z,R)∈P

a′p,∑
P

a′P = 1,

∀(z,R) : w′z,R ≥ 0
∀P : a′P ≥ 0.

Next we show that a partition with m rectangles can be realized by a communication pro-
tocol with communication (dlog2 me)2. This argument proceeds as in the proof of Theorem
2.11 in [6], which relates non-deterministic communication complexity to deterministic com-
munication complexity. We provide a proof in Section A. Given this, consider a public-coin
communication protocol Π as follows:
1. Alice and Bob (using public coins) choose a P = {(z1, R1), (z2, R2), · · · , (zm, Rm)} with

probability a′P .
2. They communicate to realize the partition {R1, R2, · · · , Rm} with communication bounded

by (c+ log2
1
ε + 1)2.

3. If they end up with rectangle Ri, they output zi.
It is clear that, in the worst case, the amount of communication of the protocol is bounded
by (c+ log2

1
ε + 1)2. The condition

∀(x, y) :
∑

z:(x,y,z)∈f

∑
R:(x,y)∈R

w′z,R ≥ 1− 2ε

implies that the protocol has worst case error at most 2ε. Therefore,

Rpub
2ε (f) ≤

(
log2 pprtε(f) + log2

1
ε

+ 1
)2

.

J

Thus, we complete the proof of Theorem 1.

3 Our Result in the Query Complexity Setting

In this section we introduce our new bound in the query complexity setting. Let f ⊆
{0, 1}n × Z be a relation. An assignment A : S → {0, 1}l is an assignment of values to
some subset S of n variables (with |S| = l). We say that A is consistent with x ∈ {0, 1}n
if xi = A(i) for all i ∈ S. We write x ∈ A as shorthand for ‘A is consistent with x’. We
write |A| to represent the size of A which is the cardinality of S (not to be confused with
the number of consistent inputs). Furthermore we say that an index i appears in A, iff i ∈ S



6 A Quadratically Tight Partition Bound . . .

where S is the subset of [n] corresponding to A. Let A denote the set of all assignments.
Below we assume x ∈ {0, 1}n, A ∈ A and z ∈ Z. Below P represents a partition along with
outputs in Z; that is P = {(z1, A1), (z2, A2), · · · , (zm, Am)}, such that {A1, · · · , Am} form
a partition of {0, 1}n into assignments (that is for each x ∈ {0, 1}n, there is a unique i ∈ [m]
such that x ∈ Ai) and ∀i ∈ [m], zi ∈ Z. Let us first recall the partition bound of [4].

I Definition 3 (Partition bound [4]). Let f ⊆ {0, 1}n × Z be a relation. Let ε > 0. The
ε-partition bound of f , denoted prtε(f), is given by the optimal value of the following linear
program.

Primal

min
∑

z

∑
A

wz,A · 2|A|

s.t.

∀x :
∑

z:(x,z)∈f

∑
A:x∈A

wz,A ≥ 1− ε

∀x :
∑

A:x∈A

∑
z

wz,A = 1

∀(z,A) : wz,A ≥ 0

Dual

max (1− ε)
∑

x

µx +
∑

x

φx

s.t.

∀(z,A) :
∑

x∈A:(x,z)∈f

µx +
∑
x∈A

φx ≤ 2|A|

∀x : µx ≥ 0, φx ∈ R

Our strengthened bound is defined as follows.

I Definition 4 (Public-coin partition bound). Let f ⊆ {0, 1}n × Z be a relation. Let ε > 0.
The ε-public-coin partition bound of f , denoted pprtε(f), is given by the optimal value of
the following linear program.

Primal

min
∑

z

∑
A

wz,A · 2|A|

s.t.

∀x :
∑

z:(x,z)∈f

∑
A:x∈A

wz,A ≥ 1− ε

∀x :
∑

A:x∈A

∑
z

wz,A = 1

∀(z,A) : wz,A =
∑

P :(z,A)∈P

ap∑
P

aP = 1

∀(z,A) : wz,A ≥ 0; ∀P : aP ≥ 0

Dual

max (1− ε)
∑

x

µx +
∑

x

φx + λ

s.t.

∀(z,A) :
∑

x∈A:(x,z)∈f

µx +
∑
x∈A

φx + vz,A ≤ 2|A|

∀P :
∑

(z,A)∈P

vz,A ≥ λ

∀x : µx ≥ 0, φx ∈ R
∀(z,A) : vz,A ∈ R

λ ∈ R

Again it is possible to get rid of the variables wz,A in this program, however we keep
them since explicit comparison with partition bound is easier in this form. We present a
simplified linear program in Section D.

In a manner similar to the communication complexity setting, it can be seen that, for
all f,

prtε(f) ≤ pprtε(f).

Our main theorem is an analog of Theorem 1 in the query complexity setting and is not
known to be true for the original partition bound.
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I Theorem 2. Let f ⊆ {0, 1}n × Z be a relation. Let ε > 0. Let Rε(f) represent the
randomized query complexity of f with worst case error ε. Then,

1
2 log2 pprt2ε(f) ≤ R2ε(f) ≤

(
log pprtε(f) + log2

1
ε

)2
.

We start by proving the easy direction of Theorem 2.
I Lemma 3. Let f ⊆ {0, 1}n × Z be a relation. Let ε > 0. Let Rε(f) represent the
randomized query complexity of f with worst case error ε. Then,

1
2 log2 pprtε(f) ≤ Rε(f).

Our proof follows arguments similar to [4] for an analogous result for the partition bound.

Proof. Let P be a randomized query algorithm which achieves c def= Rε(f). Let Pr be
the deterministic query algorithm, arising from P, corresponding to random string r. We
know that each such deterministic query algorithm is a binary decision tree of depth at
most c (please refer to [2] for standard definitions related to query complexity). We note
that the leaves of a decision tree represent a partition of the inputs into assignments along
with outputs in Z. Let Pr = {(zr1 , Ar1), (zr2 , Ar2), · · · , (zrm, Arm)} represent the partition and
outputs corresponding to random string r, where {Ar1, · · · , Arm} form a partition of {0, 1}n
into assignments and ∀i ∈ [m], zri ∈ Z. Let qr represent the probability of string r in P.
For Pr define a′Pr

def= qr. For the partitions P that do not correspond to any string r in P,
define a′P = 0. For any (z,A) define,

w′z,A
def=

∑
P :(z,A)∈P

a′P .

As in the proof of Lemma 1, we can argue that {w′z,A} ∪ {a′P } is feasible for the primal of
pprtε(f). Note that for each (z,A) with w′z,A > 0, we have |A| ≤ c. Moreover, |Pr| ≤ 2c
since the depth of the corresponding binary decision tree is at most c. Now,

pprtε(f) =
∑
z

∑
A

w′z,A2|A| ≤ 2c
(∑

z

∑
A

w′z,A

)

≤ 2c
(∑

r

a′Pr
· |Pr|

)
≤ 22c

∑
r

a′Pr
= 22c.

Thus, the result follows. J

Next we show that the square of the logarithm of our new bound forms an upper bound on
randomized query complexity, thus, completing the proof of Theorem 2.
I Lemma 4. Let f ⊆ {0, 1}n ×Z be a relation. Let ε > 0. Then,

R2ε(f) ≤
(

log pprtε(f) + log2
1
ε

)2
.

Proof. Let pprtε(f) = 2c. Let {wz,A} ∪ {aP } be an optimal solution for the primal. We
have, ∑

P

∑
A:(z,A)∈P

aP · 2|A| =
∑
z,A

wz,A · 2|A| = 2c.
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Next we will identify the partitions containing an assignment of size much larger than c,
assign 0 probability to them and re-normalize the probability among other partitions. Define
B

def= {P | ∃(z,A) ∈ P with |A| > c+log2
1
ε}. Then δ

def=
∑
P∈B aP ≤ ε. Define a′P

def= 1
1−δaP

for P /∈ B and a′P
def= 0 for P ∈ B. Define w′z,A

def=
∑
P :(z,A)∈P a

′
P . Then we have,

∀x :
∑

z:(x,z)∈f

∑
A:x∈A

w′z,A ≥ 1− 2ε,

∀x :
∑
A:x∈A

∑
z

w′z,A = 1,

∀(z,A) : w′z,A =
∑

P :(z,A)∈P

a′P ,∑
P

a′P = 1,

∀(z,A) : w′z,A ≥ 0,
∀P : a′P ≥ 0.

Next we show that a partition with assignments each of length at most m can be realized by
a query protocol with m2 queries. This argument proceeds as in the proof of Theorem 11
in [2], relating certificate complexity to deterministic query complexity (for total functions).
We present the proof in Section B. Given this, consider a randomized query protocol Π as
follows:
1. Alice (randomly) chooses a P = {(z1, A1), (z2, A2), · · · , (zs, As)} with probability a′P .
2. She queries to realize the partition {A1, A2, · · · , As} with (c+ log2

1
ε )2 queries.

3. If she ends up with assignment Ai, she outputs zi.
It is clear that, in the worst case, the number of queries made by the protocol is (c+log2

1
ε )2.

The condition
∀x :

∑
z:(x,z)∈f

∑
A:x∈A

w′z,A ≥ 1− 2ε

implies that the protocol has worst case error at most 2ε. Therefore,

R2ε(f) ≤
(

log2 pprtε(f) + log2
1
ε

)2
.

J

4 Conclusion and open questions

In this work we present linear programming based lower bound methods for public-coin
communication complexity and randomized query complexity and show that they are quad-
ratically tight for all relations. This is the first time any lower bound method has been
shown to be quadratically tight (for all relations) either in communication complexity or
query complexity. Some interesting open questions related to this work are as follows:

1. What is the relationship between the public-coin partition bound, the partition bound
and the smooth-rectangle bound introduced in [4] (all of which are a linear program
based lower bound methods)? What is the relationship between the public-coin partition
bound and the information complexity lower bound method?



Rahul Jain, Troy Lee, and Nisheeth K. Vishnoi 9

2. A strong direct product theorem is shown for all relations in terms of the smooth-
rectangle bound by [5] and recently in terms of information-complexity by [1]. Can
a similar result be shown in terms of the public-coin partition bound or the partition
bound?

3. Is the public-coin partition bound linearly tight for communication complexity and query
complexity? This basically boils down to the following: Can a partition of the commu-
nication matrix with 2k rectangles always be realized (with small error) using O(k)
communication public-coin protocol? Can a partition of {0, 1}n with 2k partial assign-
ments, each of size at most k, always be realized (with small error) using O(k) query
randomized query protocol?

4. Can explicit lower bounds for interesting functions and relations be shown using the
public-coin partition bound?
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A Communication protocol to realize a partition

Let {R1, R2, . . . , Rm} be a partition of SA × SB into rectangles. Initially SA = X , SB = Y.
Let ∀i ∈ [m] : Ri = Ai × Bi, where Ai ⊆ X , Bi ⊆ Y. Let x and y be the inputs to Alice
and Bob respectively. The protocol is as follows:

1. Alice determines if there exists an i ∈ [m] such that
a. x ∈ Ai and
b. the number of rectangles in {R1, R2, . . . , Rm} that row intersect with Ri are at most
m/2. We say that Ri1 and Ri2 row intersect if Ai1 ∩Ai2 is non-empty.

If such an i exists she communicates i to Bob using dlog2 me bits. They both now
consider {R1 ∩Ai, R2 ∩Ai, . . . , Rm ∩Ai} as a partition of (Ai×SB) and repeat (and set
SA = Ai). If Alice cannot find any such i she indicates this to Bob by sending 0.

2. On receiving 0 from Alice, Bob determines if there exists a j ∈ [m] such that
a. y ∈ Bj and
b. the number of rectangles in {R1, R2, . . . , Rm} that column intersect with Rj are at

most m/2. We say that Rj1 and Rj2 column intersect if Bj1 ∩Bj2 is non-empty.
If such a j exists he communicates it to Alice using dlog2 me bits. They both now
consider {R1 ∩ Bj , R2 ∩ Bj , . . . , Rm ∩ Bj} as a partition of (SA × Bj) and repeat (and
set SB = Bj).

We can note that either Alice or Bob must succeed in finding a desired i, j respectively since
the rectangle that contains (x, y) satisfies the requirements in either 1 or 2 above (since
{R1, R2, . . . , Rm} is a partition of SA × SB). Moreover, the communication in each round
is at most dlog2 me and the number of (non-empty) rectangles surviving after each round
reduce by a factor of 2. Hence, the process ends after at most dlog2 me rounds. Thus, the
total communication is bounded by (dlog2 me)2.

B Query protocol to realize a partition

Let {A1, A2, . . . , As} be a partition of {0, 1}n such that |Ai| ≤ m for each i ∈ [s]. Let x be
the string in the database.

1. Alice queries the bits of x corresponding to A1. If the bits revealed are consistent with
A1 then she considers A1 to be the desired assignment and stops.

2. If the bits revealed are not consistent with A1 then note that one bit is revealed for all
Ai, i ∈ [s] since {A1, A2, . . . , As} is a partition of {0, 1}n. Hence, the size of each Ai
(consistent with the bits revealed so far) reduces by at least 1. Alice considers now the
new set of modified Ais and repeats.

We note that the number of such rounds is at most m and in each round at most m bits are
revealed. Hence, the total number of queries is at most m2.

C Simplified public-coin partition bound for communication
complexity

Here we present the simplified linear program.
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Primal
min

∑
P

∑
(z,R)∈P

ap

s.t.

∀(x, y) :
∑

P

∑
(z,R)∈P :(x,y)∈R,(x,y,z)∈f

ap ≥ 1− ε

∑
P

aP ≤ 1

∀P : aP ≥ 0

Dual
max (1− ε)

∑
(x,y)

µx,y − λ

s.t.

∀P :
∑

(z,R)∈P

∑
(x,y)∈R:(x,y,z)∈f

µx,y ≤ λ+
∑

(z,R)∈P

1

∀(x, y) : µx,y ≥ 0
λ ≥ 0

D Simplified public-coin partition bound for query complexity

Here we present the simplified linear program.

Primal

min
∑

P

∑
A:(z,A)∈P

aP · 2|A|

s.t.

∀x :
∑

P

∑
(z,A):x∈A,(x,z)∈f

aP ≥ 1− ε

∑
P

aP ≤ 1

∀P : aP ≥ 0

Dual

max (1− ε)
∑

x

µx − λ

s.t.

∀P :
∑

(z,A)∈P

∑
x∈A:(x,z)∈f

µx ≤ λ+
∑

(z,A)∈P

2|A|

∀x : µx ≥ 0
λ ≥ 0
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