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13.1 CONTENTION RESOLUTION 
1. The Problem 
2. Algorithm Design 
3. Analysis 
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The Problem 
• We have n processes P1 to Pn 
• A shared database that can be accessed by at most one 

process in a single round. 
• If more than one processes attempt to access – locked 

out. 
• The n processes compete for the access to the database 
• Processes cannot communicate with each other. 
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Algorithm Design 
• Define the probability 0<p<1. 
• Each process will attempt to access the database with 

probability p. 
• Each process decide independently from other 

processes. 
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Analysis 
1. Rounds for a Particular Process to Succeed  
2. Rounds for All Process to Succeed 
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Basic Events 
1. 𝐴 𝑖, 𝑡  - Pi attempts to access the database in round t. 
 Pr 𝐴 𝑖, 𝑡 = 𝑝 
 Pr 𝐴 𝑖, 𝑡 = 1 − 𝑝 

2. 𝑆 𝑖, 𝑡  - Pi succeeds to access the database in round t. 
  𝑆 𝑖, 𝑡  = 𝐴 𝑖, 𝑡 ∩ ⋂ 𝐴 𝑗, 𝑡𝑗≠𝑖  

 Pr 𝑆 𝑖, 𝑡 =  Pr 𝐴 𝑖, 𝑡 ∙  ∏ Pr 𝐴 𝑗 𝑡𝑗≠𝑖 = 𝑝 1 − 𝑝 𝑛−1 

 
Pr 𝑆 𝑖, 𝑡  has maximum value when p=1/n, so we set p = 
1/n for the following analysis. 
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（13.1） 

1. The function 1−1
n

n
 converges monotonically 

from 1
4  up to 1

e  as n increase from 2 

2. The function 1−1
n

n−1
converges monotonically 

from 1
2  down to 1

e  as n increase from 2 
 

From （13.1） We have 1
𝑒𝑒
≤ Pr 𝑆 𝑖, 𝑡 ≤ 1

2𝑛
, and hence 

Pr 𝑆 𝑖, 𝑡  is asymptotically equals to Θ 1
𝑛

. 
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Rounds for a Particular 
Process to Succeed  

1.  𝐹 𝑖, 𝑡  - Pi fails to access the database from round 1 to t. 
 𝐹 𝑖, 𝑡  = ⋂ 𝑆 𝑖, 𝑡𝑡

𝑖=1  
 Pr 𝐹 𝑖, 𝑡 = (1 − Pr 𝑆 𝑖, 𝑡 )𝑡 

2.𝑃𝑃 𝐹 𝑖, 𝑡 = (1 − Pr 𝑆 𝑖, 𝑡 )𝑡 ≤ 1 −
1
𝑒𝑒

𝑡

 

Set 𝑡 = 𝑒𝑒,𝑃𝑃 𝐹 𝑖, 𝑡 ≤ 1 −
1
𝑒𝑒

𝑒𝑒

≤ 1 −
1
𝑒𝑒

𝑒𝑒

≤
1
𝑒

. 

𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑡 𝑡𝑜 𝑒𝑒 ∙ 𝑐 ln𝑛 ,

𝑃𝑃 𝐹 𝑖, 𝑡 ≤  1 −
1
𝑒𝑒

𝑒𝑒
𝑐 ln 𝑛

≤
1
𝑒

𝑐 ln 𝑛

= 𝑒−𝑐 ln 𝑛 = 𝑛−𝑐 . 
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Rounds for a Particular 
Process to Succeed  

Conclusion:  
After Θ 𝑛  rounds, the probability that Pi  has not 
succeeded in any rounds in bounded by a constant; and 
between Θ 𝑛  and Θ 𝑛 ln𝑛  , the probability drops to a very 
small value, bounded by 𝑛−𝑐 . 
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Rounds for All Process to 
Succeed 

𝐹𝑡 -  Not all processes has succeed after t rounds. 
 𝐹𝑡 =⋃ 𝐹 𝑖, 𝑡𝑛

𝑖=1  
(13.2) (The Union Bound) 

Pr �𝜀𝑖

𝑛

𝑖=1

≤  �Pr [𝜀𝑖]
𝑛

𝑖=1

 

 

𝐹𝐹𝐹𝐹 13.2 , Pr [𝐹𝑡] ≤  �Pr 𝐹 𝑖, 𝑡
𝑛

𝑖=1

. 

𝐼𝐼 𝑤𝑤 𝑡𝑡𝑡𝑡 𝑡 = 𝑒𝑒 ∙ 𝑐 ln𝑛, Pr [𝐹𝑡] ≤  �Pr 𝐹 𝑖, 𝑡
𝑛

𝑖=1

≤ n ∙ n−c = n−c+1. 

𝐿𝐿𝑡′𝑠 𝑠𝑠𝑠 𝑡 = 𝑒𝑒 ∙ 2 ln𝑛, Pr [𝐹𝑡] ≤
1
𝑛

. 
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Rounds for All Process to 
Succeed 

Conclusion:  

With Probability at least 1 − 1
𝑛
, all processes succeed in 

accessing the database at least once within 𝑡 = 2 𝑒𝑒 ln𝑛  
rounds. 
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GLOBAL MINIMUM CUT 
1. The Problem 
2. Algorithm Design 
3. Analysis 
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The Problem 
• Cut: In graph theory, a cut is a partition of the vertices of 

a graph into two disjoint subsets A and B. 
• s-t Cut: a cut that a certain vertices s in subset A and t in 

subset B. 
• Size of cut (A,B): number of edges with one end in A 

and the other in B 
• Global Minimum Cut: A cut with minimum size among 

all cuts of a graph. 
Problem:  
Find the Global Minimum Cut. 
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The Problem 
(13.4) There is a polynomial-time algorithm to find a global 
min-cut in an undirected graph G 
Proof on white board 
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Algorithm Design 
•Multi-graph G = (V, E): An undirected graph allowed to 
have multiple “parallel” edges between the same pair of 
nodes. 
•Contract (e = (u, v)) 
    Combine u and v into a supernode w 
    * w is actually a set of nodes, denoted by S(w) 
•Contract Algorithm: 
    do 
        select an edge e uniformly at random 
        Contract(e) 
    until there left only 2 super nodes, say v1, and v2 
    return cut(S(v1), S(v2)) 
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Analysis 
(13.5) The Contraction Algorithm returns a global min-cut 
with probability at least 1/ 𝑛

2 . 
Proof on white board 
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Further Analysis 
The Number of Global Minimum Cuts 
(13.6) An undirected graph on n nodes has at most 𝑛

2 . 
global min-cuts. 
Proof 
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RANDOM VARIABLE AND EXPECTATION 

19 

1. Definitions 
2. Examples 



Definitions 
1. Random Variable 
2. Expectation 
3. Linearity of Expectation 

 E[X+Y] = E[X]+E[Y] 
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RANDOMIZED APPROXIMATION ALGORITHM 
FOR MAX 3-SAT 

21 

1. The Problem 
2. Algorithm Design 
3. Analysis 



The Problem 
3-SAT Problem: 
Given a set of clauses, C1,… Ck , each of length 3, over a 
set of variables X={x1 ,… xn}, does there exist a satisfying 
truth assignment. 
Max 3-SAT Problem: 
When 3-SAT problem has no solution, we want to have an 
optimized solution. 
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Design and Analysis 
Algorithm: Assign each variable x1 to xn independently to 
0 or 1 with probability ½ each. 
(13.14) Consider a 3-SAT formula, where each clause has 
three different variables. The expected number of clauses 
satisfied by a random assignment is within an 
approximation factor 7/8 if optimal. 
Proof on white board 
(13.15) For every instance of 3-SAT, there is a truth 
assignment that satisfies at least a fraction 7/8 fraction of 
all clauses. 
Proof: From (13.14), if there is no such assignment, the 
expectation cannot be 7/8. 
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(13.15) Application 

• Every instance of 3-SAT with at most 7 
clauses is satisfiable. 
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Waiting to Find a Good Assignment 

Algorithm: Repeat until we find the good assignment. 
Analysis: 
Let p denote the probability of getting a good assignment. 
For j = 0, 1, 2 …, k. let pj denote the probability that a random 
assignment satisfies exactly j clauses. So the expected number 
of clauses satisfied is ∑ 𝑗𝑝𝑗𝑘

𝑗=0 ; and from (13.14) is 7/8k. 
We are interested in the quantity 𝑝 = ∑ 𝑝𝑗𝑗≥7𝑘8

. 

We start by writing: 7
8
𝑘 =  ∑ 𝑗𝑝𝑗𝑘

𝑗=0 = ∑ 𝑗𝑝𝑗 + ∑ 𝑗𝑝𝑗𝑗≥7𝑘8𝑗<7𝑘8
 

Let 𝑘′ =  7
8
𝑘 . Then we have 7

8
𝑘 ≤  ∑ 𝑘′𝑝𝑗𝑘′

𝑗=0 + ∑ 𝑘𝑝𝑗𝑗≥7𝑘8
=

𝑘′ 1 − 𝑝 + 𝑘𝑘 ≤ 𝑘′ + 𝑘𝑘 

Hence 𝑝 ≥
7
8𝑘−𝑘

′

𝑘
≥ 1

8𝑘
(7
8
𝑘 − 𝑘′ ≥ 1

8
) 
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• From (13.7), the expected number of trials 
needed to find a satisfying assignment we 
want is at most 8k. 

• (13.16) There is a randomized algorithm 
with polynomial expected running time that 
is guaranteed to produce a truth 
assignment satisfying at least a 7/8 
fraction of all clauses.  

26 



HASHING: A RANDOMIZED 
IMPLEMENTATION OF DICTIONARIES 

27 

1. The Problem 
2. Algorithm Design 
3. Analysis 



The Problem 

Universe: The set of all possible elements. 
Dictionary: A data structure supporting the following 
operation: 
• MakeDictionary 
• Insert(u) 
• Delete(u) 
• Lookup(u) 
 

28 



Hashing 
Hashing: The basic idea of hashing is to work with an 
array of size |S|, rather than one comparable to |U|. 
We want to be able to store a set S of size up to n. We set 
up an array H of size n to store the information, and a 
function h from U to {0, 1,…,n-1}. 
H: hash table. h: hash function. 
Goal: Find a good hash function 
 
(13.22) With a uniform random hashing scheme, the 
probability that two selected value collide – that is, h(u) = 
h(v) – is exactly 1/n. 
Proof 
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Good Hash Function 
The key idea is to choose a hash function from a carefully 
selected class of functions H. Each function h in H should 
have two properties: 
1. For any pair of elements u, v in U, the probability that a 

randomly chosen h satisfies h(u) = h(v) is at most 1/n 
2. Each h can be compactly represented and, for a given h 

and, we can compute the value h(u) efficiently. 
All the random functions cannot satisfy the second 
properties. The only way to represent an arbitrary function 
is to write down all its values. 
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Design Hash 
• We use a prime number p ≈ n as the size of 

hash table. We identify the universe with vectors 
of the form x = (x1, x2 ,…, xr ) for some integer r 
where 0 ≤ xi <p for all i. 

• Let A be the set of all vectors of the form 
a=(a1,…, ar), where ai is an integer in the range 
[0, p - 1] for each i = 1, …, r. For each a in A, we 
define the linear function 

ℎ𝑎 𝑥 = �𝑎𝑖𝑥𝑖

𝑟

𝑖=1

 𝑚𝑚𝑚 𝑝 
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Design Hash 
• Now we can define the family of hash functions 

H = {ℎ𝑎:𝑎 ∈ 𝐴}  
• To define A, we need to have prime number 

p>=n. There are methods for generating such p, 
so we do not go into here. 

• Now we can build a dictionary by randomly 
selecting an ha from H. 
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Analysis 

• Apparently, this class of hash functions 
satisfy the second property. We can 
represent it compactly and compute h(u) 
efficiently. Now we only need to show it 
satisfy the first property:  
– For any pair of elements u, v in U, the 

probability that a randomly chosen h satisfies 
h(u) = h(v) is at most 1/n 
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Analysis 

𝟏𝟏.𝟐𝟐  𝐹𝐹𝐹 𝑎𝑎𝑎 𝑝𝑝𝑝𝑝𝑝 𝑝 𝑎𝑎𝑎 𝑎𝑎𝑎 𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑧
≠ 0 𝑚𝑚𝑚 𝑝, 𝑎𝑎𝑎 𝑎𝑎𝑎 𝑡𝑡𝑡 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝛼 𝑎𝑎𝑎 𝛽, 𝑖𝑖𝛼𝑧
= 𝛽𝑧 𝑚𝑚𝑚 𝑝, 𝑡𝑡𝑡𝑡 𝛼 = 𝛽 𝑚𝑚𝑚 𝑝. 
 
Proof: From αz=βz mod p, we have z(α−β)=0 

mod p, hence z(α−β) is divisible by p. 
Since z is not divisiable by p, (α−β)  is 
divisibale by p. Thus α=β mod p  
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Analysis 

(13.25) The class of linear functions H 
defined above is universal. 
Proof 
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(13.23) Let H be a universal class of hash 
functions mapping a universe U to the set 
{0, 1, . . . , n − 1}, let S be an arbitrary 
subset of U of size at most n, and let u be 
any element in U. We define X to be a 
random variable equal to the number of 
elements s ∈ S for which h(s) = h(u), for a 
random choice of hash function h ∈ H. (Here 
S and u are fixed, and the randomness is in 
the choice of h ∈ H.) Then E [X]≤ 1. 
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FINDING THE CLOSEST PAIR OF POINTS: 
A RANDOMIZED APPROACH 

37 

1. The Problem 
2. Algorithm Design 
3. Analysis 



The Problem 

Given n points in a plane, we wish to find the 
pair that closest to each other. 
Notations: 
P = {p1, p2, …, pn} 
pi is denoted by (xi, yi) 
d(pi, pj) is the distance 
To simplify the discussion, we assume all 
points are in a unit square. 
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Algorithm Design 
• subdivide the unit square into sub-squares 

whose sides have length δ/2 

• There are totally 2
δ

2
 subsquares. 

• We index the squares by  
𝑆𝑠𝑠 =  {(𝑥,𝑦) ∶  𝑠𝛿/2 ≤ 𝑥 < (𝑠 + 1)𝛿/2;  𝑡𝛿/2 ≤ 𝑦 < (𝑡 + 1)𝛿/2} 

 
(13.26) If two points p and q belong to the same sub-square Sst, 
then d(p, q)<δ. 
(13.27) If for two points p, q ∈ P we have d(p, q) < δ, then the 
subs-quares containing them are close. 
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Algorithm Design 
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Algorithm Design 
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Analysis 
For Each point p we pick, the have the 
following operations: 
1. Look up dictionary for points in 5*5 grid: O(1) 
2. Compute the distance of the points: O(1) 
3. Insert p to the set: 1 
*. If δ change, we make a new dictionary: 1 

We will pick n points, therefore:  
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Analysis 
(13.28) The algorithm correctly maintains the closest 
pair at all times, and it performs at most O(n) distance 
computations, O(n) Lookup operations, and O(n) 
MakeDictionary operations.*Plus n insert operations. 
• Let random variable X be the number of total insert 

operations. 
• let Xi be equal to 1 if the ith point causes δ to 

change, and equal to 0 otherwise. 
• (13.29) 𝑋 = 𝑛 + ∑ 𝑖𝑋𝑖𝑖  
• (13.30) Pr[Xi =1] <=2/i 
• 𝐸 𝑋 = 𝑛 + ∑ 𝑖𝐸[𝑋𝑖]𝑛

𝒊=𝟏 ≤ 𝑛 + 2𝑛 = 3𝑛 
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Analysis 
(13.31) In expectation, the randomized closest-pair 
algorithm requires O(n) time plus O(n) dictionary 
operations. 
Now we will prove the O(n) dictionary 
operations will take O(n) time. 
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Analysis 

(13.32) Assume we implement the randomized 
closest-pair algorithm using a universal hashing 
scheme. In expectation, the total number of 
points considered during the Lookup operations 
is bounded by O(n). 
Proof on white board 
(13.33) In expectation, the algorithm uses O(n) 
hash-function computations and O(n) additional 
time for finding the closest pair of points. 
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RANDOMIZED CACHING 
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The Problem 

• Suppose a processor has n memories and 
k cache slots. 

• The optimal algorithm is Farthest-in-Future 
policy, which is not practical 

• Suppose a sequence σ of memory request 
• f (σ) denotes the minimum number of 

missing which is achieved by the optimal 
Farthest-in-Future policy 
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Marking Algorithm 

Design: 
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Marking Algorithm 
Analysis: 
(13.35) In each phase, σ contains accesses to exactly 
k distinct items. The subsequent phase begins with an 
access to a different (k+1)th item. 
(13.36) The marking algorithm incurs at most k misses 
per phase, for a total of at most kr misses over all r 
phases. 
(13.37) The optimum incurs at least r − 1 misses. In 
other words, f (σ) ≥ r − 1. 
(13.38) For any marking algorithm, the number of 
misses it incurs on any sequence σ is at most k·f (σ)+k 
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Randomized Marking Algorithm 

Design:  
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Randomized Marking Algorithm 

Analysis: 
• We call an unmarked item fresh if it was 

not marked in the previous phase either, 
and stale if it was marked. 

• Among k accesses to unmarked items in 
phase j, cj denote number of fresh items. 

(13.39) 𝑓 σ ≥ 1
2
∑ 𝑐𝑗𝑟
𝑖=1  
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Analysis 
1. Let random variable Mσ denote the number of cache 

misses incurred. 
2. Let Xj denote the number of misses in phase j 
3. There are at least cj misses. 
4. For an ith request to a stale item, suppose there have 

been c ≤ cj requests to fresh items. Then the cache 
contains the c formerly fresh items that are now 
marked, i−1 stale items now marked, and k − c − i + 1 
items that are stale and not marked 

5. There are k − i + 1 items are still stale not yet marked. 
6. The probability of not in cache is  

𝑘 − 𝑖 + 1 − 𝑘 − 𝑖 + 1 − 𝑐
𝑘 − 𝑖 + 1

=
𝑐

𝑘 − 𝑖 + 1
≤

𝑐𝑗
𝑘 − 𝑖 + 1
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Analysis 
7. E Xj ≤cj+∑ cj

k−i+1≤cj 1+∑  1
l

k
l=cj+1

k−cj
i=1 =cj 1+ log k− log cj ≤cj log k 

(l=cj+i) 
 
8.  𝐸 𝑀σ = ∑ 𝐸 𝑋𝑗 ≤𝑟

𝑗=1 log k∑ cj
𝑟
𝑗=1  

9. We have (13.39) 𝑓 σ ≥ 1
2
∑ 𝑐𝑗𝑟
𝑖=1  

10. 𝐸 𝑀σ ≤ 2 log k 𝑓(σ) 
 
(13.41) The expected number of misses incurred by the 
Randomized Marking Algorithm is at most 
2logk·f(σ)=O(log k)·f(σ). 
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CHERNOFF BOUNDS 
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Problem 

A random variable X that is a 
sum of several independent 0-
1valued random variables: X = 
X1+ X2+ X3+ . . . + Xn , where 
Xi takes the value 1 with 
probability pi, and the value 0 
otherwise. 
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Analysis 
(13.42) Let X1, X2, X3, . . . , Xn be defined as 
above, and assume that μ ≥ E [X]. Then, for 
any δ > 0, we have 

Pr 𝑋 > 1 + δ μ <
𝑒δ

1 + δ 1+δ

𝑢

 

(13.43) Let X1, X2, X3, . . . , Xn be defined as 
above, 0< δ<1, we have 

Pr 𝑋 < 1−δ μ < 𝑒−
1
2μ𝛿2 
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LOAD BALANCING 
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1. The Problem 
2. Analysis 



The Problem 

• We distribute m jobs to totally n 
processors randomly. 

• Analyze how well this algorithm will work  
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Analysis: m=n 
• Let Xi be the random variable equal to the number 

of jobs assigned to processor i. 
• Let Yij be the random variable equal to 1 if job j is 

assigned to processor i, and 0 otherwise. 
• Clearly E[Xi]=1. But what is the probability that Xi > 

c? 

• With (13.42) Pr 𝑋 > 1 + δ μ < 𝑒δ

1+δ 1+δ

𝑢

, we 

let u=1 and c=1+δ, therefore 

• (13.44) Pr 𝑋𝑖 > 𝑐 < 𝑒𝑐−1

𝑐𝑐
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Analysis m=n 

 
• (13.45) With Probability at least 1−n−1, no 

processor receives more than eγ n = 

Θ log n
log log n  jobs. 
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Analysis: m>n 
if we have m = 16nln n jobs, then the expected 
load per processor is μ = 16 ln n 
 
 
 
 
 
 
(13.46) When there are n processors and Ω(nlog n) jobs, 
then with high probability, every processor will have a load 
between half and twice the average. 61 



PACKET ROUTING 

62 

1. The Problem 
2. Algorithm Design 
3. Analysis 



The Problem 
• A single edge e can only transmit a single 

packet per time step 
• Given packets labeled 1, 2, . . . , N and 

associated paths P1, P2, . . . , PN, a packet 
schedule specifies, for each edge e and each 
time step t, which packet will cross edge e in 
step t. 

• the duration of the schedule is the number of 
steps that elapse until every packet reaches 
its destination 

• Goal: Find a schedule of minimum duration 
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The Problem 

Obstacles: 
1. Dilation d: the maximum length of any Pi 

2. Congestion c: the maximum number that 
have any single edge in common 

The duration is at least Ω (c + d) 
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Algorithm Design 
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The Problem 

• (13.47) Let ε denote the event that more 
than b packets are required to be at the 
same edge e at the start of the same 
block. If ε does not occur, then the 
duration of the schedule is at most b(r+d) 

• Our goal is now to choose values of r and 
b so that both the probability Pr [ε] and the 
duration b(r + d) are small quantities  
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Analysis 
1. let Fet denote the event that more than b 

packets are required to be at e at the start of 
block t. Clearly, 𝜀 = ⋃𝑒, 𝑡  𝐹𝑒,𝑡 

2. Net is equal to the number of packets 
scheduled at e at the start of block t, then Fet 
is equivalent to the event [Net > b]. 

3. Xeti equal to 1if packet i is required to be at 
edge e at the start of block t, and equal to 0 
otherwise. E[Xeti] = 1/r 

4. We say at most c packets have paths that 
include e, E[Net]<=c/r 
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Analysis 
1. let Fet denote the event that more than b 

packets are required to be at e at the start of 
block t. Clearly, 𝜀 = ⋃𝑒, 𝑡  𝐹𝑒,𝑡 

2. Net is equal to the number of packets 
scheduled at e at the start of block t, then Fet 
is equivalent to the event [Net > b]. 

3. Xeti equal to 1if packet i is required to be at 
edge e at the start of block t, and equal to 0 
otherwise. E[Xeti] = 1/r 

4. We say at most c packets have paths that 
include e, E[Net]<=c/r 
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Analysis 

5. 𝑟 = 𝑐
𝑞𝑞𝑞𝑞 𝑚𝑚

  

6. We define μ = c/r, and observe that E[Net]<=μ. 
Choose δ = 2, so that 1 + 𝛿 𝜇 = 3𝑐

𝑟
= 3𝑞𝑞𝑞𝑞 𝑚𝑚  

7. Pr 𝑁𝑒𝑒 > 3𝑐
𝑟

= Pr [𝑁𝑒𝑒 > (1 + 𝛿)𝜇] 
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8. Here we can choose b=3c/r 
9. There are m different choices for e, and d 
+ r different choice for t, where we observe 
that d + r ≤ d + c − 1≤ N. Thus we have 
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(13.48) With high probability, the duration of 
the schedule for the packets is O(c + d log 
(mN)). 
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