
Randomized Algorithms

Zhou Jun

1

Content
13.1 Contention Resolution
13.2 Global Minimum Cut
13.3 *Random Variables and Expectation
13.4 Randomized Approximation Algorithm for MAX 3-
SAT
13.6 Hashing
13.7 Randomized Approach of Finding Closest Pair of
Points
13.8 Randomized Caching
13.9 *Chernoff Bounds
13.10 Load Balance
13.11 Packet Routing

 2

13.1 CONTENTION RESOLUTION
1. The Problem
2. Algorithm Design
3. Analysis

3

The Problem
• We have n processes P1 to Pn
• A shared database that can be accessed by at most one

process in a single round.
• If more than one processes attempt to access – locked

out.
• The n processes compete for the access to the database
• Processes cannot communicate with each other.

4

Algorithm Design
• Define the probability 0<p<1.
• Each process will attempt to access the database with

probability p.
• Each process decide independently from other

processes.

5

Analysis
1. Rounds for a Particular Process to Succeed
2. Rounds for All Process to Succeed

6

Basic Events
1. 𝐴 𝑖, 𝑡 - Pi attempts to access the database in round t.
 Pr 𝐴 𝑖, 𝑡 = 𝑝
 Pr 𝐴 𝑖, 𝑡 = 1 − 𝑝

2. 𝑆 𝑖, 𝑡 - Pi succeeds to access the database in round t.
 𝑆 𝑖, 𝑡 = 𝐴 𝑖, 𝑡 ∩ ⋂ 𝐴 𝑗, 𝑡𝑗≠𝑖

 Pr 𝑆 𝑖, 𝑡 = Pr 𝐴 𝑖, 𝑡 ∙ ∏ Pr 𝐴 𝑗 𝑡𝑗≠𝑖 = 𝑝 1 − 𝑝 𝑛−1

Pr 𝑆 𝑖, 𝑡 has maximum value when p=1/n, so we set p =
1/n for the following analysis.

7

（13.1）

1. The function 1−1
n

n
 converges monotonically

from 1
4 up to 1

e as n increase from 2

2. The function 1−1
n

n−1
converges monotonically

from 1
2 down to 1

e as n increase from 2

From （13.1） We have 1
𝑒𝑒
≤ Pr 𝑆 𝑖, 𝑡 ≤ 1

2𝑛
, and hence

Pr 𝑆 𝑖, 𝑡 is asymptotically equals to Θ 1
𝑛

.

8

Rounds for a Particular
Process to Succeed

1. 𝐹 𝑖, 𝑡 - Pi fails to access the database from round 1 to t.
 𝐹 𝑖, 𝑡 = ⋂ 𝑆 𝑖, 𝑡𝑡

𝑖=1
 Pr 𝐹 𝑖, 𝑡 = (1 − Pr 𝑆 𝑖, 𝑡)𝑡

2.𝑃𝑃 𝐹 𝑖, 𝑡 = (1 − Pr 𝑆 𝑖, 𝑡)𝑡 ≤ 1 −
1
𝑒𝑒

𝑡

Set 𝑡 = 𝑒𝑒,𝑃𝑃 𝐹 𝑖, 𝑡 ≤ 1 −
1
𝑒𝑒

𝑒𝑒

≤ 1 −
1
𝑒𝑒

𝑒𝑒

≤
1
𝑒

.

𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑡 𝑡𝑜 𝑒𝑒 ∙ 𝑐 ln𝑛 ,

𝑃𝑃 𝐹 𝑖, 𝑡 ≤ 1 −
1
𝑒𝑒

𝑒𝑒
𝑐 ln 𝑛

≤
1
𝑒

𝑐 ln 𝑛

= 𝑒−𝑐 ln 𝑛 = 𝑛−𝑐 .

9

Rounds for a Particular
Process to Succeed

Conclusion:
After Θ 𝑛 rounds, the probability that Pi has not
succeeded in any rounds in bounded by a constant; and
between Θ 𝑛 and Θ 𝑛 ln𝑛 , the probability drops to a very
small value, bounded by 𝑛−𝑐 .

10

Rounds for All Process to
Succeed

𝐹𝑡 - Not all processes has succeed after t rounds.
 𝐹𝑡 =⋃ 𝐹 𝑖, 𝑡𝑛

𝑖=1
(13.2) (The Union Bound)

Pr �𝜀𝑖

𝑛

𝑖=1

≤ �Pr [𝜀𝑖]
𝑛

𝑖=1

𝐹𝐹𝐹𝐹 13.2 , Pr [𝐹𝑡] ≤ �Pr 𝐹 𝑖, 𝑡
𝑛

𝑖=1

.

𝐼𝐼 𝑤𝑤 𝑡𝑡𝑡𝑡 𝑡 = 𝑒𝑒 ∙ 𝑐 ln𝑛, Pr [𝐹𝑡] ≤ �Pr 𝐹 𝑖, 𝑡
𝑛

𝑖=1

≤ n ∙ n−c = n−c+1.

𝐿𝐿𝑡′𝑠 𝑠𝑠𝑠 𝑡 = 𝑒𝑒 ∙ 2 ln𝑛, Pr [𝐹𝑡] ≤
1
𝑛

.

11

Rounds for All Process to
Succeed

Conclusion:

With Probability at least 1 − 1
𝑛
, all processes succeed in

accessing the database at least once within 𝑡 = 2 𝑒𝑒 ln𝑛
rounds.

12

GLOBAL MINIMUM CUT
1. The Problem
2. Algorithm Design
3. Analysis

13

The Problem
• Cut: In graph theory, a cut is a partition of the vertices of

a graph into two disjoint subsets A and B.
• s-t Cut: a cut that a certain vertices s in subset A and t in

subset B.
• Size of cut (A,B): number of edges with one end in A

and the other in B
• Global Minimum Cut: A cut with minimum size among

all cuts of a graph.
Problem:
Find the Global Minimum Cut.

14

The Problem
(13.4) There is a polynomial-time algorithm to find a global
min-cut in an undirected graph G
Proof on white board

15

Algorithm Design
•Multi-graph G = (V, E): An undirected graph allowed to
have multiple “parallel” edges between the same pair of
nodes.
•Contract (e = (u, v))
 Combine u and v into a supernode w
 * w is actually a set of nodes, denoted by S(w)
•Contract Algorithm:
 do
 select an edge e uniformly at random
 Contract(e)
 until there left only 2 super nodes, say v1, and v2
 return cut(S(v1), S(v2))

16

Analysis
(13.5) The Contraction Algorithm returns a global min-cut
with probability at least 1/ 𝑛

2 .
Proof on white board

17

Further Analysis
The Number of Global Minimum Cuts
(13.6) An undirected graph on n nodes has at most 𝑛

2 .
global min-cuts.
Proof

18

RANDOM VARIABLE AND EXPECTATION

19

1. Definitions
2. Examples

Definitions
1. Random Variable
2. Expectation
3. Linearity of Expectation

 E[X+Y] = E[X]+E[Y]

20

RANDOMIZED APPROXIMATION ALGORITHM
FOR MAX 3-SAT

21

1. The Problem
2. Algorithm Design
3. Analysis

The Problem
3-SAT Problem:
Given a set of clauses, C1,… Ck , each of length 3, over a
set of variables X={x1 ,… xn}, does there exist a satisfying
truth assignment.
Max 3-SAT Problem:
When 3-SAT problem has no solution, we want to have an
optimized solution.

22

Design and Analysis
Algorithm: Assign each variable x1 to xn independently to
0 or 1 with probability ½ each.
(13.14) Consider a 3-SAT formula, where each clause has
three different variables. The expected number of clauses
satisfied by a random assignment is within an
approximation factor 7/8 if optimal.
Proof on white board
(13.15) For every instance of 3-SAT, there is a truth
assignment that satisfies at least a fraction 7/8 fraction of
all clauses.
Proof: From (13.14), if there is no such assignment, the
expectation cannot be 7/8.

23

(13.15) Application

• Every instance of 3-SAT with at most 7
clauses is satisfiable.

24

Waiting to Find a Good Assignment

Algorithm: Repeat until we find the good assignment.
Analysis:
Let p denote the probability of getting a good assignment.
For j = 0, 1, 2 …, k. let pj denote the probability that a random
assignment satisfies exactly j clauses. So the expected number
of clauses satisfied is ∑ 𝑗𝑝𝑗𝑘

𝑗=0 ; and from (13.14) is 7/8k.
We are interested in the quantity 𝑝 = ∑ 𝑝𝑗𝑗≥7𝑘8

.

We start by writing: 7
8
𝑘 = ∑ 𝑗𝑝𝑗𝑘

𝑗=0 = ∑ 𝑗𝑝𝑗 + ∑ 𝑗𝑝𝑗𝑗≥7𝑘8𝑗<7𝑘8

Let 𝑘′ = 7
8
𝑘 . Then we have 7

8
𝑘 ≤ ∑ 𝑘′𝑝𝑗𝑘′

𝑗=0 + ∑ 𝑘𝑝𝑗𝑗≥7𝑘8
=

𝑘′ 1 − 𝑝 + 𝑘𝑘 ≤ 𝑘′ + 𝑘𝑘

Hence 𝑝 ≥
7
8𝑘−𝑘

′

𝑘
≥ 1

8𝑘
(7
8
𝑘 − 𝑘′ ≥ 1

8
)

25

• From (13.7), the expected number of trials
needed to find a satisfying assignment we
want is at most 8k.

• (13.16) There is a randomized algorithm
with polynomial expected running time that
is guaranteed to produce a truth
assignment satisfying at least a 7/8
fraction of all clauses.

26

HASHING: A RANDOMIZED
IMPLEMENTATION OF DICTIONARIES

27

1. The Problem
2. Algorithm Design
3. Analysis

The Problem

Universe: The set of all possible elements.
Dictionary: A data structure supporting the following
operation:
• MakeDictionary
• Insert(u)
• Delete(u)
• Lookup(u)

28

Hashing
Hashing: The basic idea of hashing is to work with an
array of size |S|, rather than one comparable to |U|.
We want to be able to store a set S of size up to n. We set
up an array H of size n to store the information, and a
function h from U to {0, 1,…,n-1}.
H: hash table. h: hash function.
Goal: Find a good hash function

(13.22) With a uniform random hashing scheme, the
probability that two selected value collide – that is, h(u) =
h(v) – is exactly 1/n.
Proof

29

Good Hash Function
The key idea is to choose a hash function from a carefully
selected class of functions H. Each function h in H should
have two properties:
1. For any pair of elements u, v in U, the probability that a

randomly chosen h satisfies h(u) = h(v) is at most 1/n
2. Each h can be compactly represented and, for a given h

and, we can compute the value h(u) efficiently.
All the random functions cannot satisfy the second
properties. The only way to represent an arbitrary function
is to write down all its values.

30

Design Hash
• We use a prime number p ≈ n as the size of

hash table. We identify the universe with vectors
of the form x = (x1, x2 ,…, xr) for some integer r
where 0 ≤ xi <p for all i.

• Let A be the set of all vectors of the form
a=(a1,…, ar), where ai is an integer in the range
[0, p - 1] for each i = 1, …, r. For each a in A, we
define the linear function

ℎ𝑎 𝑥 = �𝑎𝑖𝑥𝑖

𝑟

𝑖=1

 𝑚𝑚𝑚 𝑝

31

Design Hash
• Now we can define the family of hash functions

H = {ℎ𝑎:𝑎 ∈ 𝐴}
• To define A, we need to have prime number

p>=n. There are methods for generating such p,
so we do not go into here.

• Now we can build a dictionary by randomly
selecting an ha from H.

32

Analysis

• Apparently, this class of hash functions
satisfy the second property. We can
represent it compactly and compute h(u)
efficiently. Now we only need to show it
satisfy the first property:
– For any pair of elements u, v in U, the

probability that a randomly chosen h satisfies
h(u) = h(v) is at most 1/n

33

Analysis

𝟏𝟏.𝟐𝟐 𝐹𝐹𝐹 𝑎𝑎𝑎 𝑝𝑝𝑝𝑝𝑝 𝑝 𝑎𝑎𝑎 𝑎𝑎𝑎 𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑧
≠ 0 𝑚𝑚𝑚 𝑝, 𝑎𝑎𝑎 𝑎𝑎𝑎 𝑡𝑡𝑡 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝛼 𝑎𝑎𝑎 𝛽, 𝑖𝑖𝛼𝑧
= 𝛽𝑧 𝑚𝑚𝑚 𝑝, 𝑡𝑡𝑡𝑡 𝛼 = 𝛽 𝑚𝑚𝑚 𝑝.

Proof: From αz=βz mod p, we have z(α−β)=0

mod p, hence z(α−β) is divisible by p.
Since z is not divisiable by p, (α−β) is
divisibale by p. Thus α=β mod p

34

Analysis

(13.25) The class of linear functions H
defined above is universal.
Proof

35

(13.23) Let H be a universal class of hash
functions mapping a universe U to the set
{0, 1, . . . , n − 1}, let S be an arbitrary
subset of U of size at most n, and let u be
any element in U. We define X to be a
random variable equal to the number of
elements s ∈ S for which h(s) = h(u), for a
random choice of hash function h ∈ H. (Here
S and u are fixed, and the randomness is in
the choice of h ∈ H.) Then E [X]≤ 1.

36

FINDING THE CLOSEST PAIR OF POINTS:
A RANDOMIZED APPROACH

37

1. The Problem
2. Algorithm Design
3. Analysis

The Problem

Given n points in a plane, we wish to find the
pair that closest to each other.
Notations:
P = {p1, p2, …, pn}
pi is denoted by (xi, yi)
d(pi, pj) is the distance
To simplify the discussion, we assume all
points are in a unit square.

38

Algorithm Design
• subdivide the unit square into sub-squares

whose sides have length δ/2

• There are totally 2
δ

2
 subsquares.

• We index the squares by
𝑆𝑠𝑠 = {(𝑥,𝑦) ∶ 𝑠𝛿/2 ≤ 𝑥 < (𝑠 + 1)𝛿/2; 𝑡𝛿/2 ≤ 𝑦 < (𝑡 + 1)𝛿/2}

(13.26) If two points p and q belong to the same sub-square Sst,
then d(p, q)<δ.
(13.27) If for two points p, q ∈ P we have d(p, q) < δ, then the
subs-quares containing them are close.

39

Algorithm Design

40

Algorithm Design

41

Analysis
For Each point p we pick, the have the
following operations:
1. Look up dictionary for points in 5*5 grid: O(1)
2. Compute the distance of the points: O(1)
3. Insert p to the set: 1
*. If δ change, we make a new dictionary: 1

We will pick n points, therefore:

42

Analysis
(13.28) The algorithm correctly maintains the closest
pair at all times, and it performs at most O(n) distance
computations, O(n) Lookup operations, and O(n)
MakeDictionary operations.*Plus n insert operations.
• Let random variable X be the number of total insert

operations.
• let Xi be equal to 1 if the ith point causes δ to

change, and equal to 0 otherwise.
• (13.29) 𝑋 = 𝑛 + ∑ 𝑖𝑋𝑖𝑖
• (13.30) Pr[Xi =1] <=2/i
• 𝐸 𝑋 = 𝑛 + ∑ 𝑖𝐸[𝑋𝑖]𝑛

𝒊=𝟏 ≤ 𝑛 + 2𝑛 = 3𝑛

43

Analysis
(13.31) In expectation, the randomized closest-pair
algorithm requires O(n) time plus O(n) dictionary
operations.
Now we will prove the O(n) dictionary
operations will take O(n) time.

44

Analysis

(13.32) Assume we implement the randomized
closest-pair algorithm using a universal hashing
scheme. In expectation, the total number of
points considered during the Lookup operations
is bounded by O(n).
Proof on white board
(13.33) In expectation, the algorithm uses O(n)
hash-function computations and O(n) additional
time for finding the closest pair of points.

45

RANDOMIZED CACHING

46

The Problem

• Suppose a processor has n memories and
k cache slots.

• The optimal algorithm is Farthest-in-Future
policy, which is not practical

• Suppose a sequence σ of memory request
• f (σ) denotes the minimum number of

missing which is achieved by the optimal
Farthest-in-Future policy

47

Marking Algorithm

Design:

48

Marking Algorithm
Analysis:
(13.35) In each phase, σ contains accesses to exactly
k distinct items. The subsequent phase begins with an
access to a different (k+1)th item.
(13.36) The marking algorithm incurs at most k misses
per phase, for a total of at most kr misses over all r
phases.
(13.37) The optimum incurs at least r − 1 misses. In
other words, f (σ) ≥ r − 1.
(13.38) For any marking algorithm, the number of
misses it incurs on any sequence σ is at most k·f (σ)+k

49

Randomized Marking Algorithm

Design:

50

Randomized Marking Algorithm

Analysis:
• We call an unmarked item fresh if it was

not marked in the previous phase either,
and stale if it was marked.

• Among k accesses to unmarked items in
phase j, cj denote number of fresh items.

(13.39) 𝑓 σ ≥ 1
2
∑ 𝑐𝑗𝑟
𝑖=1

51

Analysis
1. Let random variable Mσ denote the number of cache

misses incurred.
2. Let Xj denote the number of misses in phase j
3. There are at least cj misses.
4. For an ith request to a stale item, suppose there have

been c ≤ cj requests to fresh items. Then the cache
contains the c formerly fresh items that are now
marked, i−1 stale items now marked, and k − c − i + 1
items that are stale and not marked

5. There are k − i + 1 items are still stale not yet marked.
6. The probability of not in cache is

𝑘 − 𝑖 + 1 − 𝑘 − 𝑖 + 1 − 𝑐
𝑘 − 𝑖 + 1

=
𝑐

𝑘 − 𝑖 + 1
≤

𝑐𝑗
𝑘 − 𝑖 + 1

52

Analysis
7. E Xj ≤cj+∑ cj

k−i+1≤cj 1+∑ 1
l

k
l=cj+1

k−cj
i=1 =cj 1+ log k− log cj ≤cj log k

(l=cj+i)

8. 𝐸 𝑀σ = ∑ 𝐸 𝑋𝑗 ≤𝑟

𝑗=1 log k∑ cj
𝑟
𝑗=1

9. We have (13.39) 𝑓 σ ≥ 1
2
∑ 𝑐𝑗𝑟
𝑖=1

10. 𝐸 𝑀σ ≤ 2 log k 𝑓(σ)

(13.41) The expected number of misses incurred by the
Randomized Marking Algorithm is at most
2logk·f(σ)=O(log k)·f(σ).

53

CHERNOFF BOUNDS

54

Problem

A random variable X that is a
sum of several independent 0-
1valued random variables: X =
X1+ X2+ X3+ . . . + Xn , where
Xi takes the value 1 with
probability pi, and the value 0
otherwise.

55

Analysis
(13.42) Let X1, X2, X3, . . . , Xn be defined as
above, and assume that μ ≥ E [X]. Then, for
any δ > 0, we have

Pr 𝑋 > 1 + δ μ <
𝑒δ

1 + δ 1+δ

𝑢

(13.43) Let X1, X2, X3, . . . , Xn be defined as
above, 0< δ<1, we have

Pr 𝑋 < 1−δ μ < 𝑒−
1
2μ𝛿2

 56

LOAD BALANCING

57

1. The Problem
2. Analysis

The Problem

• We distribute m jobs to totally n
processors randomly.

• Analyze how well this algorithm will work

58

Analysis: m=n
• Let Xi be the random variable equal to the number

of jobs assigned to processor i.
• Let Yij be the random variable equal to 1 if job j is

assigned to processor i, and 0 otherwise.
• Clearly E[Xi]=1. But what is the probability that Xi >

c?

• With (13.42) Pr 𝑋 > 1 + δ μ < 𝑒δ

1+δ 1+δ

𝑢

, we

let u=1 and c=1+δ, therefore

• (13.44) Pr 𝑋𝑖 > 𝑐 < 𝑒𝑐−1

𝑐𝑐

59

Analysis m=n

• (13.45) With Probability at least 1−n−1, no

processor receives more than eγ n =

Θ log n
log log n jobs.

60

Analysis: m>n
if we have m = 16nln n jobs, then the expected
load per processor is μ = 16 ln n

(13.46) When there are n processors and Ω(nlog n) jobs,
then with high probability, every processor will have a load
between half and twice the average. 61

PACKET ROUTING

62

1. The Problem
2. Algorithm Design
3. Analysis

The Problem
• A single edge e can only transmit a single

packet per time step
• Given packets labeled 1, 2, . . . , N and

associated paths P1, P2, . . . , PN, a packet
schedule specifies, for each edge e and each
time step t, which packet will cross edge e in
step t.

• the duration of the schedule is the number of
steps that elapse until every packet reaches
its destination

• Goal: Find a schedule of minimum duration

63

The Problem

Obstacles:
1. Dilation d: the maximum length of any Pi

2. Congestion c: the maximum number that
have any single edge in common

The duration is at least Ω (c + d)

64

Algorithm Design

65

The Problem

• (13.47) Let ε denote the event that more
than b packets are required to be at the
same edge e at the start of the same
block. If ε does not occur, then the
duration of the schedule is at most b(r+d)

• Our goal is now to choose values of r and
b so that both the probability Pr [ε] and the
duration b(r + d) are small quantities

66

Analysis
1. let Fet denote the event that more than b

packets are required to be at e at the start of
block t. Clearly, 𝜀 = ⋃𝑒, 𝑡 𝐹𝑒,𝑡

2. Net is equal to the number of packets
scheduled at e at the start of block t, then Fet
is equivalent to the event [Net > b].

3. Xeti equal to 1if packet i is required to be at
edge e at the start of block t, and equal to 0
otherwise. E[Xeti] = 1/r

4. We say at most c packets have paths that
include e, E[Net]<=c/r

67

Analysis
1. let Fet denote the event that more than b

packets are required to be at e at the start of
block t. Clearly, 𝜀 = ⋃𝑒, 𝑡 𝐹𝑒,𝑡

2. Net is equal to the number of packets
scheduled at e at the start of block t, then Fet
is equivalent to the event [Net > b].

3. Xeti equal to 1if packet i is required to be at
edge e at the start of block t, and equal to 0
otherwise. E[Xeti] = 1/r

4. We say at most c packets have paths that
include e, E[Net]<=c/r

68

Analysis

5. 𝑟 = 𝑐
𝑞𝑞𝑞𝑞 𝑚𝑚

6. We define μ = c/r, and observe that E[Net]<=μ.
Choose δ = 2, so that 1 + 𝛿 𝜇 = 3𝑐

𝑟
= 3𝑞𝑞𝑞𝑞 𝑚𝑚

7. Pr 𝑁𝑒𝑒 > 3𝑐
𝑟

= Pr [𝑁𝑒𝑒 > (1 + 𝛿)𝜇]

69

Analysis

8. Here we can choose b=3c/r
9. There are m different choices for e, and d
+ r different choice for t, where we observe
that d + r ≤ d + c − 1≤ N. Thus we have

70

Analysis

(13.48) With high probability, the duration of
the schedule for the packets is O(c + d log
(mN)).

71

	Randomized Algorithms�
	Content
	13.1 Contention Resolution
	The Problem
	Algorithm Design
	Analysis
	Basic Events
	Slide Number 8
	Rounds for a Particular Process to Succeed
	Rounds for a Particular Process to Succeed
	Rounds for All Process to Succeed
	Rounds for All Process to Succeed
	Global Minimum Cut
	The Problem
	The Problem
	Algorithm Design
	Analysis
	Further Analysis
	Random Variable and Expectation
	Definitions
	Randomized Approximation Algorithm�for MAX 3-SAT
	The Problem
	Design and Analysis
	(13.15) Application
	Waiting to Find a Good Assignment
	Slide Number 26
	Hashing: A randomized Implementation of dictionaries
	The Problem
	Hashing
	Good Hash Function
	Design Hash
	Design Hash
	Analysis
	Analysis
	Analysis
	Slide Number 36
	Finding the closest pair of points:�A randomized approach
	The Problem
	Algorithm Design
	Algorithm Design
	Algorithm Design
	Analysis
	Analysis
	Analysis
	Analysis
	Randomized Caching
	The Problem
	Marking Algorithm
	Marking Algorithm
	Randomized Marking Algorithm
	Randomized Marking Algorithm
	Analysis
	Analysis
	Chernoff bounds
	Problem
	Analysis
	Load Balancing
	The Problem
	Analysis: m=n
	Analysis m=n
	Analysis: m>n
	Packet routing
	The Problem
	The Problem
	Algorithm Design
	The Problem
	Analysis
	Analysis
	Analysis
	Analysis
	Analysis

