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ABSTRACT
Machine learning models leak significant amount of information
about their training sets, through their predictions. This is a serious
privacy concern for the users of machine learning as a service. To
address this concern, in this paper, we focus on mitigating the risks
of black-box inference attacks against machine learning models.

We introduce a mechanism to train models with membership
privacy, which ensures indistinguishability between the predictions
of a model on its training data and other data points (from the
same distribution). This requires minimizing the accuracy of the
best black-box membership inference attack against the model. We
formalize this as amin-max game, and design an adversarial training
algorithm that minimizes the prediction loss of the model as well as
the maximum gain of the inference attacks. This strategy, which can
guarantee membership privacy (as prediction indistinguishability),
acts also as a strong regularizer and helps generalizing the model.

We evaluate the practical feasibility of our privacymechanism on
training deep neural networks using benchmark datasets. We show
that the min-max strategy can mitigate the risks of membership
inference attacks (near random guess), and can achieve this with a
negligible drop in the model’s prediction accuracy (less than 4%).
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1 INTRODUCTION
Large available datasets and powerful computing infrastructures,
as well as advances in training complex machine learning models,
have dramatically increased the adoption of machine learning in
software systems. Machine learning itself has also been provided as
a service, to facilitate the use of this technology by system designers
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and application developers. Data holders can train models using ma-
chine learning as a service (MLaaS) platforms (by Google, Amazon,
Microsoft, ...). The models are accessible through prediction APIs,
which allow simple integration of machine learning algorithms into
applications in the Internet.

A wide range of sensitive data is being used as input for training
machine learning models, where the confidentiality and privacy
of such data is of utmost importance to the data owners. Even if
the training platform is trusted, the remaining major concern is
if a model’s computations (i.e., its predictions) can be exploited to
endanger privacy of its sensitive training data.

The leakage through complex machine learning models maybe
less obvious, compared to, for example, linear statistics [18]. How-
ever, machine learning models could also significantly leak infor-
mation about the datasets on which they are trained. In particular,
an adversary, with even black-box access to a model, can perform
a membership inference [23, 43] (also known as the tracing [17])
attack against the model to determine whether or not a target data
record is a member of its training set [45]. The adversary exploits
the distinctive behavior of the model on its training data. This is
a fundamental threat to data privacy, and is shown to be effective
against many machine learning models and services [45].

In this paper, we focus on protecting machine learning models
against black-box membership inference attacks. There are two
major sets of existing defense mechanisms. The first includes simple
mitigation techniques, such as limiting the model’s predictions to
top-k classes, therefore reducing the precision of predictions, or
regularizing the model (e.g., using L2-norm regularizers) [19, 45].
These techniques may impose a negligible utility loss to the model.
However, they cannot guarantee any rigorous notion of privacy. The
second major set of defenses use differential privacy mechanisms [1,
6, 10]. These mechanisms do guarantee (membership) privacy up
to their privacy parameter ϵ . However, the existing mechanisms
may impose a significant classification accuracy loss for protecting
large models on high dimensional data for small values of ϵ . This is
partly because they are designed to guarantee indistinguishability
for all possible neighboring input training datasets (whether they
could exist or not), and for all possible parameters/outputs of the
models. Secondly, utility is not explicitly included into the design
objective of the existing privacy mechanisms.

Contributions. In this paper, we design a rigorous privacy
mechanism for protecting the training dataset of a machine learning
model, against black-box inference attacks. We want to train ma-
chine learning models that guaranteemembership privacy: No
adversary should be able to distinguish between the predictions of
the model on its training set and other data samples from the same
underlying distribution. Our objective is to achieve membership
privacy with the minimum classification loss.
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We design an optimization problem tominimize the classification
error of the model and the inference accuracy of the strongest
attack who adaptively constructs his attack against the target model.
Therefore, the problem is composed of the utility objective and two
conflicting privacy objectives. We model this optimization problem
as a min-max privacy game between the defense mechanism
and the inference attack. This is similar to privacy games in other
settings [2, 24, 27, 46]. The solution is a model which not only is
accurate but also has the maximum membership privacy against
its corresponding strongest inference attack. Thus, the adversary
cannot design a better membership inference attack than what is
already anticipated by the defender. There does not also exist any
model that, for the achieved level of membership privacy, can give
a better accuracy. So, maximum utility is guaranteed.

To find the solution to our optimization problem, we train the
model in an adversarial process. The classification model maps
features of a data record to classes, and computes the probability
that it belongs to any class. The inference model maps a target
data record, and the output of the classifier on it, to its member-
ship probability. To preserve utility and protect data privacy, we
add the gain of the inference attack as a regularizer for the clas-
sifier, and minimize it along with the classification loss. Using a
regularization parameter, we can control the trade-off between
membership privacy and classification error. We train the mod-
els in a similar way as many adversarial processes for machine
learning [14, 21, 29, 35, 36, 38]. At the equilibrium point, where the
classification loss for achieving privacy is minimized, the strongest
membership inference attack against the model is equivalent to ran-
dom guess, which indicates maximum membership privacy. Thus,
we regularize machine learning models for privacy.

Our experimental results verify that our mechanism indeed
strongly regularizes the models, by preventing overfitting and
significantly closing the gap between their training and testing
accuracies. This directly follows from the indistinguishability of
prediction distributions on training versus test data, in our privacy-
preserving models. For example, on the Purchase100 dataset [45],
we can obtain 76.5% testing accuracy for 51.8% (near random guess)
membership inference accuracy. In contrast, a standard L2-norm
regularizer may provide a similar level of privacy (against the same
attack) but with an extremely low 32.1% classification accuracy.

Our results show that we impose only a negligible classifica-
tion loss for a significant gain in membership privacy. For
the CIFAR100 dataset trained with Alexnet and Densenet architec-
tures, the cost is respectively 1.1% and 3% drop in the prediction
accuracy, relative to the regular non-privacy-preserving models.
For the Purchase100 and Texas100 datasets [45], the cost of mem-
bership privacy in terms of classification accuracy is 3.6% and 4.4%,
respectively, for reducing the inference accuracy from 67.6% to
51.6% and from 63% to 51%, respectively. Note that the minimum
membership inference accuracy is 50% (random guess).

2 MACHINE LEARNING
In this paper, we focus on training classification models using su-
pervised learning. Let X be the set of all possible data points in
a d-dimensional space, where each dimension represents one at-
tribute of a data point (which will be used as the input features of

the classification model). We assume there is a predefined set of
k classes for data points in X . The objective is to find the relation
between each data point and the classes as a classification function
f : X −→ Y . The output reflects how f classifies each input into
different classes. Each element of an output y ∈ Y represents the
probability that the input belongs to its corresponding class.

Let Pr(X,Y) represent the underlying probability distribution of
all data points in the universe X × Y , where X and Y are random
variables for the features and the classes of data points, respec-
tively. The objective of a machine learning algorithm is to find a
classification model f that accurately represents this distribution
and maps each point in X to its correct class in Y . We assume we
have a lower-bounded real-valued loss function l ( f (x ),y) that, for
each data point (x ,y), measures the difference between y and the
model’s prediction f (x ). The machine learning objective is to find
a function f that minimizes the expected loss:

L( f ) = E
(x,y )∼Pr(X,Y)

[l ( f (x ),y)] (1)

We can estimate the probability function Pr(X,Y) using samples
drawn from it. These samples construct the training set D ⊂ X ×Y .
Instead of minimizing (1), machine learning algorithms minimize
the expected empirical loss of the model over its training set D.

LD ( f ) =
1
|D |

∑
(x,y )∈D

l ( f (x ),y) (2)

We can now state the optimization problem of learning a classi-
fication model as the following:

min
f

LD ( f ) + λ R ( f ) (3)

where R ( f ) is a regularization function.
The function R ( f ) is designed to prevent the model from overfit-

ting to its training dataset [7]. For example, the regularization loss
(penalty) increases as the parameters of the function f grow arbi-
trarily large or co-adapt themselves to fit the particular dataset D
while minimizing LD ( f ). If a model overfits, it obtains a small loss
on its training data, but fails to achieve a similar loss value on other
data points. By avoiding overfitting, models can generalize better
to all data samples drawn from Pr(X,Y). The regularization factor
λ controls the balance between the classification loss function and
the regularizer.

For solving the optimization problem (3), especially for non-
convex loss functions for complex models such as deep neural
networks, the commonly used method is the stochastic gradient
descent algorithm [4, 52]. This is an iterative algorithm where in
each epoch of training, it selects a small subset (mini-batch) of the
training data and updates the model (parameters) towards reducing
the loss over the mini-batch. After many epochs of training, the
algorithm converges to a local minimum of the loss function.

3 MEMBERSHIP INFERENCE ATTACKS
The objective of membership inference attacks, also referred to as
tracing attacks, is to determine whether or not a target data record
is in dataset D, when the adversary can observe a computation (e.g.,
aggregate statistics, machine learning model) over D.

The membership inference attacks have mostly been studied
for analyzing data privacy with respect to simple statistical linear



features x label yinput

classifier f

prediction vector f (x )

inference model h

Pr((x ,y) ∈ D) = h(x ,y, f (x ))

Figure 1: The relation between different elements of the
black-box classification model f and the inference model h.

functions [5, 17, 18, 23, 41, 43]. The attacker compares the released
statistics from the dataset, and the same statistics computed on
random samples from the population, to see which one is closer to
the target data record. Alternatively, the adversary can compare
the target data record and samples from the population, to see
which one is closer to the released statistics. In either case, if the
target is closer to the released statistics, then there is a high chance
that it was a member of the dataset. The inference attack could be
formulated and solved using likelihood ratio tests.

In the case of machine learning models, the membership infer-
ence attack is not as simple, especially in the black-box setting.
The adversary needs to distinguish training set members from non-
members from observing themodel’s predictions, which are indirect
(nonlinear) computations on the training data. The existing infer-
ence algorithm suggests training another machine learning model,
as the inference model, to find the statistical differences between
predictions on members and predictions on non-members [45]. In
this section, we formally present this attack and the optimization
problem to model the adversary’s objective. Figure 1 illustrates the
relation between different components of a membership inference
attack against machine learning models in the black-box setting.

Let h be the inference model h : X × Y 2 −→ [0, 1]. For any data
point (x ,y) and the model’s prediction vector f (x ), it outputs the
probability of (x ,y) for being a member of the D (the training set of
f ). Let PrD (X,Y) and Pr\D (X,Y) be the conditional probabilities
of (X,Y) for samples in D and outside D, respectively. In an ideal
setting (of knowing these conditional probability distributions), the
gain of the inference attack can be computed as the following.

Gf (h) =
1
2

E
(x,y )∼PrD (X,Y)

[log(h(x ,y, f (x )))]

+
1
2

E
(x,y )∼Pr\D (X,Y)

[log(1 − h(x ,y, f (x )))]) (4)

The two expectations compute the correctness of the member-
ship inference model h when the target data record is sampled
from the training set, or from the rest of the universe. In a realistic
setting, the probability distribution of data points in the universe

classifier f

D D ′

x x ′

inference model h

f (x ) f (x ′)

h (x, y, f (x )) h (x ′, y′, f (x ′))

Loss: l (f (x ), y )+

λ log(h (x, y, f (x )))

Gain: 1
2 log(h (x, y, f (x )))+
1
2 log(1 − h (x

′, y′, f (x ′)))

Figure 2: Classification loss and inference gain, on the
training dataset D and reference dataset D ′, in our
adversarial training. The classification loss is computed
over D, but, the inference gain is computed on both sets. To
simplify the illustration, the mini-batch size is set to 1 here.

and the probability distribution over the members of the training
set D are not directly and accurately available to the adversary (for
computing his gain). Therefore, we compute the empirical gain of
the inference model on two disjoint datasets DA and D ′A, which
are sampled according to the probability distribution of the data
points inside the training set and outside it, respectively. More con-
cretely, the dataset DA could be a subset of the target training set
D, known to the adversary. Given these sets, the empirical gain of
the membership inference model is computed as the following.

Gf ,DA,D′A (h) =
1

2|DA |

∑
(x,y )∈DA

log(h(x ,y, f (x )))

+
1

2|D ′A |

∑
(x ′,y′)∈D′A

log(1 − h(x ′,y′, f (x ′))) (5)

Thus, the optimization problem for the membership inference
attack is simply maximizing this empirical gain.

max
h

Gf ,DA,D′A (h) (6)

The optimization problem needs to be solved on a given target
classification model f . However, it is shown that it can also be
trained on some shadow models, which have the same model type,
architecture, and objective function as the model f , and are trained
on data records sampled from Pr(X,Y) [45].

4 MIN-MAX MEMBERSHIP PRIVACY GAME
The adversary always has the upper hand. He adapts his inference
attack to his target model in order to maximize his gain with respect
to this existing classification model. This means that a defense
mechanism will be eventually broken if it is designed with respect
to a particular attack, without anticipating and preparing for the
(strongest) inference attack against itself. The conflicting objectives
of the defender and the adversary can be modeled as a privacy
game [2, 24, 34, 46]. In our particular setting, while the adversary
tries to get the maximum inference gain, the defender needs to find



Algorithm 1 The adversarial training algorithm for machine learning with membership privacy. This algorithm optimizes the min-max
objective function (7). Each epoch of training includes k steps of the maximization part of (7), to find the best inference attack model,
followed by one step of the minimization part of (7) to find the best defensive classification model against such attack model.

1: for number of the training epochs do
2: for k steps do
3: Randomly sample a mini-batch ofm training data points {(x1,y1), (x2,y2), · · · , (xm ,ym )} from the training set D.
4: Randomly sample a mini-batch ofm reference data points {(x ′1,y

′
1), (x

′
2,y
′
2), · · · , (x

′
m ,y

′
m )} from the reference set D ′.

5: Update the inference model h by ascending its stochastic gradients over its parameters ω:

∇ω
λ

2m
*
,

m∑
i=1

log(h(xi ,yi , f (xi ))) +
m∑
i=1

(
log(1 − h(x ′i ,y

′
i , f (x

′
i )))
)+

-
6: end for
7: Randomly sample a fresh mini-batch ofm training data points {(x1,y1), (x2,y2), · · · , (xm ,ym )} from D.
8: Update the classification model f by descending its stochastic gradients over its parameters θ :

∇θ
1
m

m∑
i=1

(l ( f (xi ),yi ) + λ log(h(xi ,yi , f (xi ))))

9: end for

the classification model that not only minimizes its loss, but also
minimizes the adversary’s maximum gain. This is a Stackelberg
min-max game.

The privacy objective of the classificationmodel is tominimize its
privacy loss with respect to the worst case (i.e., maximum inference
gain) attack. It is easy to achieve this by simply making the output
of the model independent of its input, at the cost of destroying the
utility of the classifier. Thus, we update the training objective of
the classification model as minimizing privacy loss with respect
to the strongest inference attack, with minimum classification loss.
This results in designing the optimal privacy mechanism which is
also utility maximizing.

We formalize the joint privacy and classification objectives in
the following min-max optimization problem.

min
f

*.....
,

LD ( f ) + λ max
h

Gf ,D,D′ (h)︸               ︷︷               ︸
optimal inference

+/////
-︸                                       ︷︷                                       ︸

optimal privacy-preserving classification

(7)

The inner maximization finds the strongest inference model h
against a given classification model f . The outer minimization finds
the strongest defensive classification model f against a given h.
The parameter λ controls the importance of optimizing classifica-
tion accuracy versus membership privacy. The inference attack
term which is multiplied by λ acts as a regularizer for the classifi-
cation model. In other words, it prevents the classification model
to arbitrarily adapt itself to its training data at the cost of leaking
information about the training data to the inference attack model.
Note that (7) is equivalent to (3), if we set R ( f ) to (6).

These two optimizations need to be solved jointly to find the equi-
librium point. For arbitrarily complex functions f and h, this game
can be solved numerically using the stochastic gradient descent al-
gorithm (similar to the case of generative adversarial networks [21]).
The training involves two datasets: the training set D, which will

be used to train the classifier, and a disjoint reference set D ′ that,
similar to the training set, contains samples from Pr(X,Y).

Algorithm 1 presents the pseudo-code of the adversarial training
of the classifier f on D—against its best inference attack model h.
In each epoch of training, the two models f and h are alternatively
trained to find their best responses against each other through solv-
ing the nested optimizations in (7). In the inner optimization step:
for a fixed classifier f , the membership inference model is trained
to distinguish the predictions of f on its training set D from predic-
tions of the same model f on reference set D ′. This step maximizes
the empirical inference gain Gf ,D,D′ (h). In the outer optimization
step: for a fixed inference attack h, the classifier is trained on D,
with the adversary’s gain function acting as a regularizer. This
minimizes the empirical classification loss LD ( f ) + λGf ,D,D′ (h).
We want this algorithm to converge to the equilibrium point of the
min-max game that solves (7).

Theoretical Analysis. Our ultimate objective is to train a clas-
sification model f such that it has indistinguishably similar output
distributions for data members of its training set versus the non-
members. We make use of the theoretical analysis of the generative
adversarial networks [21] to reason about how Algorithm 1 tries to
converge to such privacy-preserving model. For a given classifica-
tion model f , let pf be the probability distribution of its output (i.e.,
prediction vector) on its training data D, and let p′f be the probabil-
ity distribution of the output of f on any data points outside the
training dataset (i.e., X × Y \ D).

For a given classifier f , the optimal attack model maximizes (4),
which can be expanded to the following.

Gf (h) =
1
2
(

∫
x,y

PrD (x ,y) pf ( f (x )) log(h(x ,y, f (x )))dxdy

+

∫
x ′,y′

Pr\D (x ′,y′) p′f ( f (x
′)) log(1 − h(x ′,y′, f (x ′)))dx ′dy′)

(8)



The maximum value of Gf (h) is achievable by the optimal infer-
ence model h∗f with enough learning capacity, and is equal to

h∗f (x ,y, f (x )) =
PrD (x ,y) pf ( f (x ))

PrD (x ,y) pf ( f (x )) + Pr\D (x ,y) p′f ( f (x ))
(9)

This combines what is already known (to the adversary) about
the distribution of data inside and outside the training set, and what
can be learned from the predictions of the model about its training
set. Given that the training set is sampled from the underlying prob-
ability distribution Pr(X,Y), to build an attack that only depends on
the predictions of the model, we can simplify the optimal inference
model to the following:

h∗f (x ,y, f (x )) =
pf ( f (x ))

pf ( f (x )) + p
′
f ( f (x ))

(10)

This means that the best strategy of the adversary is to determine
membership by comparing the probability that the prediction f (x )
comes from distribution pf or alternatively from p′f .

Given the optimal strategy of adversary against any classifier,
we design the optimal classifier as the best response to the infer-
ence attack. The privacy-preserving classification task has two
objectives (7): minimizing both the classification loss LD ( f ) and
the privacy loss Gf ,D,D′ (h

∗
f ). In the state space of all classification

models f that have the same classification loss LD ( f ), the min-max
game (7) will be reduced to solving minf maxh Gf ,D,D′ (h) which
is then computed as:

min
f

max
h

E
(x,y )∼PrD (X,Y)

[log(h(x ,y, f (x )))]

+ E
(x,y )∼Pr\D (X,Y)

[log(1 − h(x ,y, f (x )))] (11)

According to Theorem 1 in [21], the optimal function f ∗ is the
global minimization function if and only if pf ∗ = p′f ∗ . This means
that for a fixed classification loss and with enough learning capacity
for model f , the training algorithm minimizes the privacy loss by
making the two distributions pf ∗ and p′f ∗ indistinguishable. This
implies that the optimal classifier pushes the membership inference
probability h∗f (x ,y, f (x )) to converge to 0.5, i.e., random guess. Ac-
cording to Proposition 2 in [21], we can prove that the stochastic
gradient descent algorithm of Algorithm 1 eventually converges
to the equilibrium of the min-max game (7). To summarize, the
solution will be a classification model with minimum classification
loss such that the strongest inference attack against it cannot dis-
tinguish its training set members from non-members by observing
the model’s predictions on them.

One of the main issues with adversarial training is that the the-
oretical proofs rely on the possibility of learning the optimal dis-
criminator (the attacker in our problem), which is not provably
achievable using the gradient descent method (for solving a min-
max game). This is a known problem, hence several new techniques
have recently been developed to train more efficient generative
adversarial networks [42]. These techniques could be used to also
improve our adversarial training algorithm. Nevertheless, our exper-
imental results show that the existing gradient descent approaches
perform significantly well against known black box membership
inference attacks.

5 EXPERIMENTS
In this section, we apply our method to several different classifica-
tion tasks using various neural network structures.We implemented
our method using Pytorch1. The purpose of this section is to empir-
ically show the robustness of our privacy-preserving model against
inference attacks and its negligible classification loss.

5.1 Datasets
We use three datasets: a major machine learning benchmark dataset
(CIFAR100), and two datasets (Purchase100, Texas100) which are
used in the original membership inference attack against machine
learning models [45].
CIFAR100. This is a major benchmark dataset used to evaluate
image recognition algorithms [30]. The dataset contains 60,000
images, each composed of 32 × 32 color pixels. The records are
clustered into 100 classes, where each class represents one object.
Purchase100. This dataset is based on Kaggle’s “acquire valued
shopper” challenge. 2 The dataset includes shopping records for
several thousand individuals. The goal of the challenge is to find
offer discounts to attract new shoppers to buy new products. We
use a processed and simplified version of this dataset [45]. Each data
record corresponds to one costumer and has 600 binary features
(each corresponding to one item). Each feature reflects if the item
is purchased by the costumer or not. The data is clustered into 100
classes and the task is to predict the class for each costumer. The
dataset contains 197,324 data records.
Texas100. This dataset includes hospital discharge data. The
records in the dataset contain information about inpatient stays
in several health facilities published by the Texas Department of
State Health Services. Data records have features about the ex-
ternal causes of injury (e.g., suicide, drug misuse), the diagnosis
(e.g., schizophrenia, illegal abortion), the procedures the patient
underwent (e.g., surgery), and generic information such as gen-
der, age, race, hospital ID, and length of stay. We use a processed
version of this dataset, which contains 67,330 records and 6,170
binary features which represent the 100 most frequent medical
procedures [45]. The records are clustered into 100 classes, each
representing a different type of patient medical records.

5.2 Classification Models
For the CIFAR100 dataset, we used two different neural network
architectures. (1) Alexnet architecture [31], trained with Adam
optimizer[28] with learning rate 0.0001, and 100 epochs of training.
(2) DenseNet architecture [25], trained with stochastic gradient de-
scent (SGD) for 300 epochs, with learning rate 0.001 from epoch 0 to
100, 0.0001 from 100 to 200, and 0.00001 from 200 to 300. Following
their architectures, both these models are regularized. Alexnet uses
Dropout (0.2), and Densenet uses L2-norm regularization (5e-4).

For the Purchase100 dataset, we used a 4-layer fully connected
neural network with layer sizes [1024, 512, 256, 100]. We used Tanh
activation functions, similar to [45]. We initialized all of parame-
ters with a random normal distribution with mean 0 and standard
deviation 0.01. We trained the model for 50 epochs.

1http://pytorch.org/
2https://www.kaggle.com/c/acquire-valued-shoppers-challenge/data

http://pytorch.org/
https://www.kaggle.com/c/acquire-valued-shoppers-challenge/data
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Figure 3: The neural network architecture for the inference
attackmodel. Each layer is fully connected to its subsequent
layer. The size of each fully connected layer is provided.

For the Texas dataset, we used a 5-layer fully connected neural
network with layer sizes [2048, 1024, 512, 256, 100], with Tanh
activation functions. We initialized all of parameters with a random
normal distribution with mean 0 and standard deviation 0.01. We
trained the model for 50 epochs.

Table 1 shows the number of training data as well as refer-
ence data samples which we used in our experiments for different
datasets. It also reports the adversarial regularization factor λ which
was used in our experiments.

5.3 Inference Attack Model
For the inference model, we also make use of neural networks. Fig-
ure 3 illustrates the architecture of our inference neural network.
The objective of the attack model is to compute the membership
probability of a target record (x ,y) in the training set of the clas-
sification model f . The attack model inputs (x ,y) as well as the
prediction vector of the classification model on it, i.e., f (x ). We
design the inference attack model with three separate fully con-
nected sub-networks. One network of layer sizes [100,1024,512,64]
operates on the prediction vector f (x ). One network of layer sizes
[100,512,64] operates on the label which is one-hot coded (all el-
ements are 0 except the one that corresponds to the label index).
The third (common) network operates on the concatenation of the
output of the first two networks and has layer sizes of [256,64,1].
In contrast to [45] which trains k membership inference attack
models (one per class), we design only a single model for the infer-
ence attack. The architecture of our attack model, notably its last
(common) layers, enables capturing the relation between the class
and the predictions of the model for training set members versus
non-members.

We use ReLu as the activation function in the network. All
weights are initialized with normal distribution with mean 0 and
standard deviation 0.01, and all biases are initialized to 0. We use
Adam optimizer with learning rate 0.001. We make sure every train-
ing batch for the attack model has the same number of member
and non-member instances to prevent the attack model to be biased
toward one side.

Dataset |D | |D ′ | λ |DA | |D ′A |

Purchase100 20,000 20,000 3 5,000 20,000
Texas100 10,000 5,000 2 5,000 10,000
CIFAR100 50,000 5,000 6 25,000 5,000

Table 1: Experimental setup, including the size of the train-
ing set D and reference set D ′ in Algorithm 1, and the ad-
versarial regularization factor λ during the training. It also
includes the size of the subset of training members DA and
the set of non-member data points D ′A, which are known to
the adversary during the inference attack.
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Figure 4: The trajectory of the classification loss during
training with/without defense mechanism, as well as the in-
ference attack gain, using the Purchase100 dataset.

Table 1 shows the number of known members of the training
set, DA, and known non-member data points, D ′A, that we assume
for the adversary, which is used for training his attack model. The
larger these sets are (especially the DA set), the more knowledge is
assumed for the attacker. As we are evaluating our defense mech-
anism, we assume a strong adversary who knows a substantial
fraction of the training set and tries to infer the membership of the
rest of it.



Baseline (without defense) Privacy-preserving models
Dataset Training

accuracy
Testing
accuracy

Attack
accuracy

Training
accuracy

Testing
accuracy

Attack
accuracy

Purchase100 100% 80.1% 67.6% 92.2% 76.5% 51.6%
Texas100 81.6% 51.9% 63% 55% 47.5% 51.0%
CIFAR100- Alexnet 99% 44.7% 53.2% 66.3% 43.6% 50.7%
CIFAR100- DenseNET 100% 70.6% 54.5% 80.3% 67.6% 51.0%

Table 2: Comparison of membership privacy and training/test accuracy of a classification model (without defense as the base-
line), and a privacy-preservingmodel (with our defense) on four differentmodels/datasets. Compare the two cases with respect
to the trade-off between testing accuracy and attack accuracy. See Table 1 for the experimental setup.

λ Training Testing Attack
accuracy accuracy accuracy

0 (no defense) 100% 80.1% 67.6%
1 98.7% 78.3% 57.0%
2 96.7% 77.4% 55.0%
3 92.2% 76.5% 51.8%
10 76.3% 70.1% 50.6%

Table 3: The effect of the adversarial regularization factor λ,
used in the min-max optimization (7), on the defense mech-
anism trained on the Purchase100 dataset. The λ also acts as
our privacy parameter.

L2-regularization Training Testing Attack
factor accuracy accuracy accuracy

0 (no regularization) 100% 80.1% 67.6%
0.001 86% 81.3% 60%
0.005 74% 70.2% 56%
0.01 34% 32.1% 50.6%

Table 4: The results of using a L2−regularization as a mitiga-
tion technique formembership inference attack. Themodel
is trained on the Purchase100 dataset. Compare these results
with those in Table 2 which shows what we can achieve us-
ing the strategic min-max optimization.

5.4 Empirical Results
Loss and Gain of the Adversarial Training

Figure 4 shows the empirical loss of the classification model (2)
as well as the empirical gain of the inference model (5) throughout
the training using Algorithm (1). By observing both the classifier’s
loss and the attack’s gain over the training epochs, we can see that
they converge to an equilibrium point. Following the optimization
problem (7), the attacker’s gain is themaximum that can be achieved
against the best defense mechanism. The classifier’s loss is also the
minimum that can be achieved while preserving privacy against
the best attack mechanism. As shown in Section 4, by minimizing
the classifier’s loss, we train a model that not only prevents the
attack’s gain to grow large, but also forces the adversary to play
the random guess strategy.

In Figure 4 (top), we compare the evolution of the classification
loss of the privacy-preservingmodel with the loss of the samemodel
when trained regularly (without defense). As we can see, a regular
model (without defense) arbitrarily reduces its loss, thus might over-
fit to its training data. Later in this section, in Figure 6, we visualize
the impact of this small loss on the output of themodel, andwe show
how this can leak information about the model’s training set. The
adversarial training for membership privacy strongly regu-
larizes the model. Thus, our privacy-preserving mechanism not
only protects membership privacy but also significantly prevents
overfitting.
Privacy and Generalization

To further study the tradeoff between privacy and predictive
power of privacy-preserving models, in Figure 5 we show the cumu-
lative distribution of the model’s generalization error over different
classes. The plot shows the fraction of classes (y-axis) for which
the model has a generalization error under a certain value (x-axis).
For each class, we compute the model’s generalization error as the
difference between the testing and training accuracy of the model
for samples from that class [22]. We compare the generalization
error of a regular model and our privacy-preserving model. As the
plots show, the generalization error of our privacy mechanism is
significantly lower over all the classes.

Table 2 presents all the results of training privacy-preserving
machine learning models using our min-max game, for all our
datasets. It also compares them with the same models when trained
without any defense mechanism. Note the gap between training
and testing accuracy with and without the defensive training. Our
mechanism reduces the total generalization error by a factor of up
to 4. For example, the error is reduced from 29.7% down to 7.5%
for the Texas100 model, it is reduced from 54.3% down to 22.7% for
the CIFAR100-Alexnet model, and it is reduced from 29.4% down to
12.7% for the CIFAR100-Densenet model, while it remains almost
the same for the Purchase100 model. Our min-max mechanism
achieves membership privacy with the minimum generaliza-
tion error. Table 3 shows how we can control the trade-off between
prediction accuracy and privacy, by adjusting the adversarial regu-
larization factor λ.

The regularization effect of our mechanism can be compared to
what can be achieved using common regularizers such as the L2-
norm regularizer, where R ( fθ ) =

∑
i θ

2
i (see our formalization of a

classification loss function (3)). Table 4 shows the tradeoff between
the model’s test accuracy and membership privacy using L2-norm.



Such regularizers do not guarantee privacy nor they minimize the
cost of achieving it. For a close-to-maximum degree of membership
privacy, the testing accuracy of our privacy-preserving mechanism
is more than twice the testing accuracy of a L2-norm regularized
model. This is exactly what we would expect from the optimization
objectives of our privacy-preserving model.

Membership Privacy and Inference Attack Accuracy
Table 2 presents the training and testing accuracy of the model,

as well as the attack accuracy. To measure the attack accuracy, we
evaluate the average probability that the inference attack model
correctly predicts the membership:∑

(x,y )∈D\DA
h(x ,y, f (x )) +

∑
(x ′′,y′′)∈D′′

(1 − h(x ′′,y′′, f (x ′′)))

|D \ DA | + |D ′′ |

where D ′′ is a set of data points that are sampled from the same
underlying distribution as the training set, but does not overlap
with D nor with D ′A.

The most important set of results in Table 2 is the two pairs of col-
ored columns which represent the testing accuracy of the classifier
versus the attack accuracy. There is a tradeoff between the predic-
tive power of the model and its robustness to membership inference
attack. As expected from our theoretical results, the experimental
results show that the attack accuracy is much smaller (and close to
random guess) in the privacy-preserving model compared to a regu-
lar model. Our privacy-preserving mechanism can guarantee
maximum achievable membership privacy with only a neg-
ligible drop in the model’s predictive power. To achieve a near
maximum membership privacy, the testing accuracy is dropped
by 3.5% for the Purchase100 model, it is dropped by 4.4% for the
Texas100 model, it is dropped by 1.1% for the CIFAR100-Alexnet
model, and it is dropped by 3% for the CIFAR100-Densenet model.

Effect of the Reference Set
The objective of our min-max optimization is to make the pre-

dictions of the model on its training data indistinguishable from
the model’s predictions on any sample from the underlying data
distribution. We make use of a set of samples from this distribution,
named reference set, to empirically optimize the min-max objec-
tive. Table 5 shows the effect of the size of the reference set D ′
on the model’s membership privacy. The models are trained on
the same training set D of size 20,000, and hyper-parameter λ = 3.
As expected, as the size of the reference set increases, it becomes
better at properly representing the underlying distribution, thus
the attack accuracy converges to 50%.

Indistinguishability of Predictions
The membership inference attacks against black-box models ex-

ploit the statistical differences between the predictions of the model
on its members versus non-members. Figure 6 shows the output of
the model (i.e., the probability of being a sample from each class)
on its training data, for a regular model (without defense) versus a
privacy-preserving model. The input data are all from class 50 in
the Purchase100 dataset. The top figure illustrates that a regular

Reference set size Testing accuracy Attack accuracy
1,000 80.0% 59.2%
5,000 77.4% 52.8%
10,000 76.8% 52.4%
20,000 76.5% 51.6%
30,000 76.4% 50.6%

Table 5: The effect of the size of the reference set D ′ on the
defense mechanism for the Purchase100 dataset. Note that
(as also shown inTable 1) the size of the training set is 20,000.

Dataset Baseline Privacy-preserving training
Purchase100 0.5 h 1 h
Texas100 0.5 h 1 h

CIFAR100-Alexnet 1 h 6 h
CIFAR100-Densenet 3 h 10 h

Table 6: The comparison of the required time for training
a model (on a Titan X GPU) using our privacy-preserving
mechanism versus normal training as the baseline.

model (which is overfitted on its training set) produces a high prob-
ability for the correct class on its training data. This significantly
contributes to the vulnerability of the model to the membership
inference attack. The privacy-preserving model produces a visibly
different distribution (the middle figure). This makes the members’
outputs indistinguishable from non-members’ outputs (the bot-
tom figure). The min-max optimization makes these two output
distributions converge to indistinguishable distributions.

We further investigate the indistinguishability of these two dis-
tributions by computing some statistics (accuracy and uncertainty)
of the model’s output for different datasets. Figure 7 and Figure 8
show the results as the histogram of the models’ accuracy and
uncertainty over the training set and testing set. We compute the
accuracy of model f on data point (x ,y) as fy (x ), which is the prob-
ability of predicting class y for input x . We compute uncertainty
as the normalized entropy −1

log(k )
∑
i ŷi log(ŷi ) of the probability

vector ŷ = f (x ), where k is the number of classes. The two fig-
ures show that our privacy mechanism significantly reduces
both the maximum (worst case risk) and average gap between
the prediction accuracy (and uncertainty) of the model on its
training versus test set, compared with a regular model. Note that
these figures do not prove privacy, but illustrate what the attacker
can exploit in his inference attacks. They visibly show how the in-
distinguishability of the model’s output distributions (on members
and non-members) can improve by using our defense mechanism.

Training time
When we train a model using our technique, we need to train

two models (the classifier and the inference attack) at the same
time. We present the training time for each model in Table 6. We
trained all of the models on a PC equipped with one Titan X GPU
with 12 GBytes of graphic memory, 128 GBytes of memory and an
Intel Xeon E5-2620 CPU.
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Figure 5: The empirical CDF of the generalization error of
classification models across different classes, for regular
models (without defense) versus privacy-preserving models
(with defense). We compute generalization error as the dif-
ference between the training and testing accuracy of the
model [22]. The y-axis is the fraction of classes that have
generalization error less than x-axis. The curves that lean
towards left have a smaller generalization error.
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(a) Train data without defense
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(b) Train data with defense
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(c) Test data

Figure 6: The distribution of the output (prediction vector)
of the classifier on the training data samples from class
50 in the Purchase100 dataset. Each color represents one
data sample. Without the defense, all samples are classi-
fied into class 50 with a probability close to 1. Whereas, the
privacy-preserving classifier spreads the prediction proba-
bility across many classes. This added uncertainty is what
provably mitigates the information leakage. The figure at
the bottom is computed on the test data samples from class
50, which is indistinguishable from the middle figure.
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Figure 7: Distribution of the classifier’s prediction accuracy on members of its training set versus non-member data samples.
Accuracy is measured as the probability of predicting the right class for a sample input. The plots on the left show the distribu-
tion curves for regularmodels (without defense), and the ones on the right show the distribution curves for privacy-preserving
models (with defense). The larger the gap between the curves in a plot is, themore the information leakage of themodel about
its training set is. The privacy-preserving model reduces this gap by one to two orders of magnitude.
– Themaximum gap between the curves (with defense versus without defense) is as follows.
Purchase100 model: (0.02 vs. 0.34), Texas100 model: (0.05 vs. 0.25), and CIFAR100-Densenet model: (0.06 vs. 0.56).
– The average gap between the curves is as follows.
Purchase100 model: (0.007 vs. 0.013), Texas100 model: (0.004 vs. 0.016), and CIFAR100-Densenet model: (0.005 vs. 0.021).
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Figure 8: Distribution of the classifier’s prediction uncertainty on members of its training set versus non-member data points.
Uncertainty is measured as normalized Entropy of the model’s output (i.e., prediction vector). The plots on the left show
the distribution curves for regular models (without defense), and the ones on the right show the distribution curves for
privacy-preservingmodels (with defense). The larger the gap between the curves in a plot is, themore the information leakage
of the model about its training set is. The privacy-preserving model reduces this gap by one to two orders of magnitude.
– Themaximum gap between the curves (with defense versus without defense) is as follows.
Purchase100 model: (0.03 vs. 0.30), Texas100 model: (0.02 vs. 0.15), and CIFAR100-Densenet model: (0.04 vs. 0.49).
– The average gap between the curves is as follows.
Purchase100 model: (0.004 vs. 0.012), Texas100 model: (0.002 vs. 0.04), and CIFAR100-Densenet model: (0.002 vs. 0.01).



6 RELATEDWORK
Analyzing and protecting privacy in machine learning models
against different types of attacks is a topic of ongoing research.
A direct privacy threat against machine learning is the untrusted
access of the machine learning platform during training or predic-
tion. A number of defense mechanisms, which are based on trusted
hardware and cryptographic private computing, have been pro-
posed to enable blind training and use of machine learning models.
These methods leverage various techniques including homomor-
phic encryption, garbled circuits, and secure multi-party computa-
tion for private machine learning on encrypted data [8, 20, 33, 37],
as well as private computation using trusted hardware (e.g., In-
tel SGX) [26, 39]. Although these techniques prevent an attacker
from directly observing the sensitive data, yet they do not limit
information leakage through the computation itself.

An adversary with some background knowledge and external
data can try to infer information such as the training data, the input
query, and the parameters of the model. These inference attacks
include input inference [19], membership inference [45], attribute
inference [9], parameter inference [47, 48], and side-channel at-
tacks [50]. There are examples of a wide-range of privacy attacks
against computations over sensitive data. Our focus is on the pri-
vacy risks of computation on databases, when the adversary ob-
serves the result of the computation. In such settings, membership
inference attacks and reconstruction attacks are considered as the
two major classes of attacks [17].

Membership inference attack is a decisional problem. It aims
at inferring the presence of a target data record in the (training)
dataset [5, 18, 23, 41, 43, 45]. The accuracy of the attack shows the
extent to which a model is dependent on its individual training data.
The reconstruction attack is a more generic type of attack, where
the objective is to infer sensitive attributes of many individuals in
the training set [13, 49]. One proposed defense technique against
general inference attacks is computation (e.g., training of models)
with differential privacy guarantee [15, 16], which has recently
been used in the context of machine learning [1, 6, 10, 40]. Despite
their provable robustness against inference attacks, differential
privacy mechanisms are hard to achieve with negligible utility
loss. The utility cost comes from the fact that we aim at protecting
privacy against all strong attacks by creating indistinguishability
among similar states of all possible input datasets. It is also related
to the difficulty of computing a tight bound for the sensitivity of
functions, which determines the magnitude of required noise for
differential privacy. The relation between some different definitions
of membership privacy and differential privacy is analyzed in the
literature [32, 51].

Using game theory to formalize and optimize data privacy (and
security) is another direction for protecting privacy [2, 24, 34, 44, 46].
In such a framework, the privacy loss is minimized against the
strongest corresponding attack. The solution will be provably ro-
bust to any attack that threatens privacy according to such “loss”
function. The game-theoretic framework allows to explicitly in-
corporate the utility function into the min-max optimization, thus
also minimizing the cost of the privacy defense mechanism. The
recent advances in machine learning, notably the developments of

generative adversarial networks [3, 12, 21], have introduced new al-
gorithms for solvingmin-max gameswhile training a complex (deep
neural network) model. Adversarial training has also been used for
regularizing, hence generalizing, a model [11, 14, 29, 35, 36, 38].

7 CONCLUSIONS
We have designed a training algorithm to regularize machine learn-
ing models for privacy. We have introduced a new privacy mecha-
nism for mitigating the information leakage of machine learning
models about the membership of the data records in their training
sets, through their predictions. We have designed an optimization
problem whose objective is to jointly maximize privacy and pre-
diction accuracy, which is a min-max game that minimizes the
classification loss of the model and the maximum gain of the mem-
bership inference attack. The solution is a model whose predictions
on its training data are indistinguishable from its predictions on
any other data sample from the same distribution. This mecha-
nism guarantees membership privacy of the model’s training set
against the—strongest—inference attack, and imposes the minimum
accuracy loss for achieving such level of privacy, given the avail-
able training/reference data and the capacity of the models. In our
extensive experiments on applying our method on benchmark ma-
chine learning tasks, we show that the cost of achieving privacy is
negligible, and that our privacy-preserving models generalize well.
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