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Preface

It is well known that many technologies have downsides that are initially overlooked or un-
derestimated: engines and heating systems lead to exhaustion of fossil resources and climate
change, road traffic kills people by the thousands, etc. Information technology is no excep-
tion as it has notably paved the way to an unprecedented assault on privacy. Privacy was
already identified as a major issue as early as the last decade of the nineteenth century, with
the emergence of photography. Today the pervasiveness of digital systems has brought the
concern to a completely different level. In particular, the total number of cellular phones now
in operation already exceeds six billion, with a growing proportion being smart phones. This
means that virtually everyone can be tracked by their cellular operator and by a growing
number of location-based service (LBS) providers.

This thesis revolves around the crucial topic of location privacy. It presents an analytical
framework for the location privacy of LBS users. In such a setting, users share their location
data and complementary application-dependent information with an LBS provider. However,
users should be concerned about possible third-party observers who track their shared loca-
tions and therefore violate their privacy. This work relies on privacy enhancing technologies
that do not require changing the architecture of LBSs, which I consider to be the most rea-
sonable assumption. This means that the considered protection mechanisms (activated by
the end users) are based on data perturbation. This perturbation can be achieved by either
blurring the reported location data or swapping the identifiers (pseudonyms) of end users.
This thesis defines users’ mobility models, their access patterns to location-based services, and
their privacy and service-quality requirements. Based on Bayesian techniques and on Markov
modeling, it provides methodologies for quantifying and protecting the location privacy of
mobile users.

This work is particularly remarkable because it is the first convincing contribution that
quantifies location privacy and because it contains a very elegant game-theory based model
that makes it possible for the service provider and the end user to compute their strategies
in order to optimize their (conflicting) utilities. Another outstanding achievement is the
open-source tool (the “Location Privacy Meter”) that embodies the designed algorithms.

The papers underpinning this work have been published in the best conferences in the field
(including IEEE S&P and ACM CCS) and one paper was the runner-up for the Award for
Outstanding Research in Privacy Enhancing Technologies (PET Award 2012). Furthermore,
the PhD committee nominated this thesis for the School of Computer and Communication
Sciences’ award for the best PhD thesis (the Patrick Denantes Prize).

This thesis is a must read for anyone doing research in location privacy.

Jean-Pierre Hubaux, January 2013
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Abstract

Recent developments in information and communication technologies have been profound
and life-changing. Most people are now equipped with smart phones with high computation
power and communication capabilities. These devices can efficiently run multiple software
applications in parallel, store a non-negligible amount of (personal) user data, process various
sophisticated sensors and actuators, and communicate over multiple wireless media. Further-
more, they are commonly equipped with high-precision localization capabilities based, for
example, on a GPS receiver or on triangulation with nearby base stations or access points.
Mobile applications take advantage of this feature to provide location-based services to users.

The ever-increasing usage of these personal communication devices and mobile applica-
tions, although providing convenience to their owners, comes at a very high cost to their
privacy. Interacting with location-based services (LBSs) leaves an almost indelible digital
trace of users’ whereabouts. Moreover, the contextual information attached to these traces
can reveal users’ personal habits, interests, activities, and relationships. Consequently, ex-
posure of this private information to third parties (such as service providers) escalates their
power on individuals, and opens the door to various misuses of users’ personal data.

Individuals have the right, and should also have the means to control the amount of
their private (location) information that is disclosed to others. In the context of location-
based services, various privacy enhancing mechanisms, such as location obfuscation and user
anonymization, are proposed in the literature. However, the existing design methodologies for
location-privacy preserving mechanisms do not consistently model users’ (privacy and service
quality) requirements together with the adversary’s knowledge and objectives. Protection
mechanisms are instead designed in an ad hoc manner and irrespective of the adversary
model. Consequently, there is a mismatch between the goals and results of these protec-
tion mechanisms. Furthermore, the evaluation of privacy preserving mechanisms and their
comparison remain problematic because of the absence of a systematic method to quantify
them. In particular, the assumptions about the adversary model tend to be incomplete, with
the risk of a possibly wrong estimation of the users’ location privacy. Arguably, the lack of a
generic analytical framework for specifying protection mechanisms and for evaluating location
privacy is evident. The absence of such a framework makes the design of effective protection
mechanisms and the objective comparisons between them impossible.

In this thesis, we address these issues and provide solutions for a systematic quantification
and protection of location privacy. To this end, we construct an analytic framework for
location privacy. We formalize users’ mobility model, their access pattern to location-based
services, and their privacy and service quality requirements. We also model location-privacy
preserving mechanisms as probabilistic functions that obfuscate users’ (location and identity)
information before being shared with location-based services. Moreover, in order to quantify
users’ location privacy, we propose inference mechanisms that measure users’ information

iii



iv

leakage to third parties. They combine various pieces of information about users and estimate
(by establishing a probabilistic belief on) users’ private information (e.g., their location at a
given time). Therefore, we propose the adversary’s expected estimation error as, arguably,
the right metric for location privacy.

In our inference framework, we formalize the adversary’s prior knowledge on users, his
observation (on the users’ accesses to LBS), and his inference objectives (e.g., re-identifying
or localizing users). We assume that adversary constructs a (mobility) profile for each user, to
be used in his inference attacks. We make use of statistical tools to construct these profiles,
given users’ partial traces. Moreover, we model the inference attacks as the estimation of
users’ actual locations, given their profiles and their LBS accesses (observed by the adversary).
We mainly use Bayesian inference to perform the estimation. In particular, we use known
inference algorithms for hidden Markov models to design de-anonymization, localization, and
tracking attacks. To cover more adversary’s objectives, we propose an algorithm for generic
location inference attacks, based on Markov-chain Monte-Carlo methods.

We also provide a software tool: the Location-Privacy and Mobility Meter (LPM). It is
designed based on our formal framework for evaluating the effectiveness of various location-
privacy preserving mechanisms and quantifying users’ location privacy. As an example, using
LPM, we validate the efficacy of existing location obfuscation and anonymization mechanisms
on real location traces. We show that users’ location privacy measured by existing popular
metrics, k-anonymity and entropy, is not correlated with the adversary’s success (in learning
users’ private information), thus these metrics are inappropriate as privacy metrics. Our re-
sults also confirm that anonymization alone is a weak location-privacy preserving mechanism.
Moreover, our results show how the resilience of a protection mechanism varies with respect
to different inference attacks. Hence, it is a necessity for privacy protection mechanisms to
be designed with concrete attack objectives in mind.

Relying on these findings, we design optimal location obfuscation techniques tailored
against localization attacks. A user needs a protection mechanism that maximizes her lo-
cation privacy. This is at odds with the objectives of the adversary who designs inference
attacks that minimize his estimation error. We propose a game-theoretic methodology that
models the conflicting objectives of user and adversary simultaneously. More precisely, we
model the problem as a Bayesian Stackelberg game and solve it by using linear programming.
In the optimization problem, users constrain the protection mechanism to respect their service
quality requirements. This enables us to find the optimal point in the tradeoff curve between
privacy and service quality that satisfies both user privacy and service quality requirements.
Our results indicate that anticipating for the inference attacks and considering the adversary’s
knowledge lead to the design of more effective protection mechanisms.

This thesis is a step towards a more systematic modeling, analysis, and design of (location)
privacy enhancing technologies. We believe that our analytical approach can be used to
quantify and protect privacy in scenarios and domains that are not covered in this thesis.

Keywords: location privacy, mobile networks, location-based services, inference attacks,
location-privacy preserving mechanisms, privacy metric, Bayesian inference, hidden Markov
models, game theory, Bayesian Stackelberg game



Résumé

Le développement récent des technologies de l’information et de la communication a révolu-
tionné notre vie quotidienne. La plupart des individus sont désormais munis de téléphones
mobiles avec des capacités de calcul et de communication élevées. Ces appareils peuvent faire
fonctionner de nombreuses applications en parallèle, stocker une quantité non-négligeable de
données personnelles, traiter des données de senseurs, et communiquer via différents canaux
sans-fil. En outre, ils sont généralement équipés de moyens de localisation très précis basés,
par exemple, sur le récepteur GPS, ou sur la triangulation avec des points d’accès Internet
ou des stations de base. Les applications mobiles ont mis à profit cette nouvelle fonction en
fournissant aux utilisateurs mobiles de nouveaux services basés sur la localisation.

L’explosion de l’utilisation de ces téléphones et applications mobiles, bien qu’apportant
une certaine commodité à leurs utilisateurs, a aussi mis sérieusement en danger la vie privée.
Nos interactions avec les services de localisation laissent une trace numérique quasi indélébile
de nos déplacements. L’information contextuelle liée à ces traces peut révéler aux fournisseurs
de services les habitudes, intérêts, activités et relations des utilisateurs. L’exposition de ces
données privées à des tierces parties aggrave leur pouvoir sur les individus, et ouvre la voie
à de nombreux abus. Les individus ont le droit, et devraient surtout avoir les moyens, de
contrôler la quantité d’information (de localisation) privée qui est divulguée aux autres. Dif-
férents mécanismes de protection des données privées dans les services de localisation (SL)
ont été proposés, tels que l’embrouillement de la localisation et l’anonymisation des utilisa-
teurs. Cependant, l’absence d’un cadre analytique générique pour spécifier les mécanismes de
protection et pour évaluer la protection des données de localisation est manifeste. Le manque
d’un tel cadre ne permet pas la comparaison objective entre les différents mécanismes de
protection. De plus, les méthodologies existantes de conception de mécanismes de protection
des données de localisation ne prennent pas en considération les besoins (de qualité de ser-
vice et de protection) des utilisateurs en même temps que les connaissances et objectifs de
l’adversaire. Nous proposons d’examiner ces problèmes dans cette thèse.

Premièrement, nous développons un cadre, un modèle, unifié pour la protection des don-
nées de localisation. En ce qui concerne les utilisateurs, nous formalisons leur modèle de mo-
bilité, leur façon d’accéder aux services de localisation, ainsi que leurs besoins de qualité de
service et de protection de leurs données privées. Nous formalisons également les mécanismes
de protection des données de localisation comme des fonctions probabilistes qui brouillent les
informations de localisation et l’identité des utilisateurs avant de les partager avec des services
de localisation. En ce qui concerne l’adversaire, nous formalisons ses connaissances préalables,
ses observations (des accès au SL), et ses objectifs d’inférence (par exemple, ré-identifier ou
localiser les utilisateurs). Dans ce cadre, nous considérons l’erreur d’estimation moyenne de
l’adversaire comme la bonne métrique pour quantifier le niveau de protection des données de
localisation.
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Ensuite, nous construisons chaque élément de notre modèle en commençant par la for-
malisation des profils de mobilité des utilisateurs (comme les connaissances préalables de
l’adversaire). Nous faisons usage d’outils statistiques pour générer ces profils, étant donné les
traces (passées) des utilisateurs. Les profils des utilisateurs alimentent les attaques d’inférence
de la localisation, pour lesquelles nous utilisons principalement des techniques d’inférence
bayésienne. Plus particulièrement, nous utilisons des algorithmes d’inférence pour les mod-
èles de Markov cachés afin de dé-anonymiser, de localiser et de reconstruire la trajectoire
d’un ou plusieurs utilisateurs. En outre, nous proposons un algorithme générique d’inférence
de la localisation basé sur des méthodes de Monte-Carlo (MCMC). Nous fournissons égale-
ment un outil logiciel : le Mètre de Protection de la Localisation et de la Mobilité (MPL).
Sa conception est basée sur notre modèle formel unifié. Il permet d’évaluer l’efficacité de
divers mécanismes de protection des données de localisation and de quantifier le niveau de
protection des utilisateurs. Par exemple, grâce au MPL, nous validons l’efficacité des méth-
odes existantes d’embrouillement de la localisation et des mécanismes d’anonymisation sur
des trajectoires réelles. Nous démontrons que d’autres métriques (comme k-anonymité et
l’entropie) ne sont pas corrélées au succès de l’adversaire (essayant de connaitre les informa-
tions privées des utilisateurs), et donc inappropriées. Nos résultats confirment également que
l’anonymisation n’est pas une technique adéquate pour protéger les données de localisation.
De plus, nos résultats montrent comment la résistance d’un mécanisme de protection varie par
rapport aux différents types d’attaques. En conclusion, il est absolument nécessaire d’avoir
en tête des objectifs d’attaque concrets lorsque l’on développe des mécanismes de protection
des données de localisation.

Finalement, nous développons des techniques optimales d’embrouillement de la localisation
contre des attaques de localisation. Un utilisateur a besoin d’un mécanisme de protection de
la localisation qui maximise son niveau de protection. L’adversaire, cependant, développe des
attaques d’inférence qui minimise son erreur d’estimation. Ces deux objectifs sont en contra-
diction l’un avec l’autre. Nous proposons donc une méthodologie basée sur la théorie des jeux
qui prend en compte à la fois les objectifs de l’utilisateur et de l’adversaire, simultanément.
Plus précisément, nous modélisons le problème en utilisant un jeu bayésien de Stackelberg, et
le résolvons en utilisant de l’optimisation linéaire. Dans le problème d’optimisation considéré,
les utilisateurs imposent au mécanisme de protection de respecter un certain niveau de qualité
de service. Nos résultats indiquent que l’anticipation des attaques d’inférence et la prise en
considération des connaissances de l’adversaire permettent la réalisation de mécanismes de
protection plus efficaces.

Cette thèse est un pas vers une manière plus systématique de modéliser, analyser, et
développer des technologies qui améliorent la protection des données (de localisation) privées.
Nous proposons différentes méthodes analytiques ainsi qu’un outil logiciel permettant une
meilleure comparaison des différents mécanismes de protection. La thèse ouvre également
la voie à des investigations futures. Nous sommes convaincus que des approches analytiques
similaires peuvent être utilisées pour quantifier et protéger la sphère privée dans des domaines
qui n’ont pas été abordés dans cette thèse.

Mots-clés : protection des données de localisation, réseaux mobiles, services de localisa-
tion, attaques d’inférence, mécanismes de protection des données de localisation, métrique de
protection des données privées, inférence bayésienne, modèles de Markov cachés, théorie des
jeux, jeu de Stackelberg bayésien.
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Introduction

The endless cycle of idea and action,
Endless invention, endless experiment,
Brings knowledge of motion, but not of stillness;
Knowledge of speech, but not of silence;
Knowledge of words, and ignorance of the Word.
All our knowledge brings us nearer to our ignorance,
All our ignorance brings us nearer to death,
But nearness to death no nearer to God.
Where is the Life we have lost in living?
Where is the wisdom we have lost in knowledge?
Where is the knowledge we have lost in information?

T.S. Eliot

Privacy is an absolute essential for individuals’ personal development and for the estab-
lishment of trust among members of a society. It is valued by individuals, respected in all
societies, and recognized internationally as a human right.1 However, the fast and profound
progress in information and communication technologies has increased the vulnerability of
individuals’ privacy in various domains.

Privacy Threats

An increasing number of people interact with various computer and communication systems in
their everyday lives. Each interaction produces data about, for example, how, when, where, by
whom, with whom, and for what purpose these interactions happen. The data that becomes
available about individuals is becoming more personal, as most people are now equipped with
smart phones with many sophisticated sensors and actuators closely related to their activities.
Each of these devices is usually equipped with high-precision localization capabilities based,
for example, on a GPS receiver or on triangulation with nearby base stations or access points.
In addition, the environment is more and more populated by sensors and smart devices, with
which smart phones interact. Operating systems of recent mobile phones also enable multiple
personalized applications (from different providers) to constantly run and observe the users’
behavior. Many of the services provided by these smart-phone applications need (or request)
to have access to users’ location data [FDW12]. The use of these personal communication
devices, although providing convenience to their owners, exposes an almost indelible digital
trace of their whereabouts to the service providers. Note that a location trace is not only a

1 “No one shall be subjected to arbitrary interference with his privacy, family, home or correspondence, nor
to attacks upon his honor and reputation. Everyone has the right to the protection of the law against such
interference or attacks.” Article 12, Universal declaration of human rights, United Nations, 1984.
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2 Introduction

set of positions on a map. The contextual information attached to a trace tells much about
individuals’ habits, interests, activities, and relationships.

Advanced data storage facilities empower governments and corporations to profile an
increasing number of users and to keep track of their data traces for long periods of time.
This tracking is performed for various financial, strategic, or security reasons, or basically in
order to provide services to their users. Moreover, as the cost of data storage tends to zero, and
because users’ data might have some value at some future time, their data is not deleted. The
tools required to analyze (location-tagged) data traces have also made tremendous progress:
sophisticated data mining algorithms can leverage on fast growing storage and processing
power, thus facilitating the joint analysis of multiple data-sets in parallel.

As the location-tagged data observed from mobile users increase and the cost of storing
and processing data decreases, the negative side-effects of insufficient privacy are becoming
more and more threatening. Data-holders can learn users’ personal or corporate secrets,
by using various inference algorithms. Consequently, this can expose people to unwanted
advertisements and location-based spams/scams; it can damage their social reputation; it can
stimulate service providers to stealthily discriminate among their users (clients); and, it can
even make users victims of blackmail or physical violence [Gut02, PC02]. More importantly,
information disclosure breaks the balance of power between the informed entity (governments
and corporations) and the individuals about whom this information is disclosed. What makes
the problem of protecting privacy more challenging is that these entities, who gain power
and make profit, have little (if any) incentive to change their strategies and limit their user
profiling activities. Hence, in order to preserve mobile users’ privacy, we need to protect their
private data from being unnecessarily disclosed to untrusted entities.

Protecting Privacy

An individual has privacy with respect to an entity if the link between the individual and her
personal information is concealed from that entity. The first step towards protecting privacy
is to educate users to expose less personal information while interacting with information and
communication technologies. Moreover, legal means, as well as privacy enhancing technologies
(PETs), need to be designed and used to preserve the privacy of users in their use of computer
and communication systems. PETs limit the amount of information that can be leaked about
users in these systems. To further enforce privacy protection, legal means can prevent the
organizations from misusing the information that users share with them, and can encourage
them to protect their users’ privacy. In this thesis, we address the approach of using privacy
enhancing technologies.

In order to better explain privacy enhancing technologies, let us assume some users com-
municating with each other and with some servers over a network. In this setting, users’
personal data is placed in different places: in the computer of the users themselves, in the
communication network (e.g., in routers), and in the servers (e.g., in the database of a rec-
ommender system or a social networking service provider). Privacy enhancing technologies
have been proposed to defend users’ privacy in these three (user, network, server) fronts.

The data located on the users’ side can be obfuscated before they leave the users’ comput-
ers (e.g., using data perturbation techniques [AA01, AS00], network perturbation [MPS13,
SPTH09], or traffic obfuscation [WCM09]). This prevents an observer to have a correct view
on users’ data. Furthermore, the users’ sensitive information, such as their IP addresses
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or address of their destinations, can be concealed in the communication network (e.g., using
anonymity2 networks [Cha81, DDM03, DMS04, FM02, GRS99, RR98]). In online interactions,
the identity of a user can be concealed using anonymous credentials [Bra00, CVH02]. Users’
privacy can be protected by distributing their data over multiple entities that do not collude
with each other (e.g., P2P social networks [BSVD09, CMS09], and distributed search engines
[Yac]). Some trusted entities can be introduced, or communities can be formed, to process
users’ data and provide only the aggregated information to the servers (e.g., community-based
recommender systems [Can02], and anonymity proxies). These entities can even distort the
aggregated results to further protect users’ privacy, for example using mechanisms that pro-
vide differential privacy [Dwo06, Dwo08, DMNS06, MT07]. Last but not least, users and
servers can agree to run a cryptographic protocol that limits what any observer (including
the servers) can learn about the users. The server gains only the information that it needs
in order to provide the service (e.g., private information retrieval [CGKS95, CKGS98], pri-
vate data mining [DZ03, LP00]). A combination of these defense mechanisms can be used to
further enforce users’ privacy.

Effectiveness of these PETs are evaluated in different ways. For example, information
theoretic measures (e.g., entropy and channel capacity [CT06, Sha48]) and statistical methods
(e.g., Metropolis-Hastings algorithm) are used to quantify how much anonymity a privacy
preserving mechanism provides [CPP08, Dan04, DSCP02, SD02, Tro11]. By analyzing traffic
and topology of networks (of computers or users), it is shown that anonymization alone
does not necessarily protect users’ privacy. In fact, given some auxiliary (background / side-
channel) information about the users and the properties of their protection mechanisms, an
adversary can break/reduce their anonymity [HVCT10, MD05, NS08, NS09, NS10]. These
findings quest for PETs that anticipate the adversary’s knowledge and attacks.

PETs need also to take the system specifics and users’ requirements into account. Despite
the strength of various PETs, not all of them can be applied in all scenarios due to their specific
requirements or restrictions. Data perturbation and traffic obfuscation can reduce users’
service quality. So, they cannot be used when the service quality cannot be sacrificed (e.g.,
checking if someone is susceptible to cancer from her genomic data). Anonymity networks
require volunteers to run the protection mechanism and many participants to use it in order
to provide an acceptable level of privacy. So, it is less effective when used by a few users in
a small network. Output distortion techniques (used in providing differential privacy), must
be applied on the aggregated data of multiple users. Therefore, it is not suitable for the case
where each single user accesses the server directly. Cryptographic approaches require changes
on the side of users and the servers. Consequently, they cannot be used against untrusted
service providers who do not have (economic) incentives to change their system models.

Protecting Location Privacy

Smart phone users in mobile networks connect to the Internet and, similarly to the desktop
users, participate in activities such as web surfing and online social networking. Thus, similar
privacy concerns and protection mechanisms exist in mobile networks as well. However, what
makes mobile users different from desktop users is the heavy usage of location-based services
(LBSs). In this thesis, we focus on analyzing and protecting users’ location privacy, which is
more specific to mobile networks.

2 Anonymity is the state of being indistinguishable among a set of users (anonymity set) [PK08].
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The users’ location information that is shared with various location-based services enables
the service providers (or any untrusted observer) to identify the users’ personal (or regularly
visited) locations, such as their homes and workplaces. This information can be used to
identify the users, even if they are anonymous/pseudonymous in the network layer [FSH11,
GP09, HGXA06, Kru07, MYYR10, DMDBP08, ZB11]. To overcome this problem, users
can use temporal pseudonyms [BS04, BHV07, CPHL07, FMHP09, JWH07, LSHP06], hide
their location occasionally [BS04, HGH+08, HGXA07, HYMS05, HYMS06, JWH07, LSHP06],
report a noisy version of their location [GG03, MRC09], hide their reported location in a
large area [BLPW08, CML06, GL08, GG03], or report fake locations [CG09, KYS05, Kru09a,
LJY08, YPL07] when connecting to an LBS. Cryptographic tools can be used, in addition to
obfuscation mechanisms, in order to allow users to obtain desired location-based services while
hiding their true locations from the service providers [NTL+11, FPIU10, PBP10, ZGH07].

Different protection mechanisms have been evaluated with different location privacy met-
rics. Two popular examples are k-anonymity [Swe02] and entropy [DSCP02, SD02]; they
have been adapted to measure location privacy in the case of sporadic access to the LBS
[BWJ05, GL05, GL08, GG03, KGMP07, MCA06, SHL+05]. In the case of continuous lo-
cation updates, the uncertainty of an adversary in linking subsequent location updates of
a user [BS04, FMHP09, HGH+08, HGXA07, HYMS05, HYMS06, JWH07, LSHP06], or the
k-anonymity of the user at the trace level [BWJ05, GDV08, NAS08, XC08] have been used
to quantify users’ location privacy.

Notwithstanding the many contributions from different disciplines (such as databases,
mobile networks, and ubiquitous computing) for protecting location privacy, the lack of a
unified and generic formal framework for specifying protection mechanisms and for evaluating
location privacy is evident. This has led to the divergence of contributions, hence, it has
caused confusion about which mechanisms are more effective. The adversary model is often
not appropriately addressed and formalized, and a good model for the knowledge of the
adversary and his possible inference attacks is missing. Additionally, the privacy metrics are
not properly correlated with the information that the adversary gains in an inference attack.
These can unfortunately lead to a wrong estimation of the location privacy of mobile users,
both for evaluation and protection purposes.

Contributions and Outline of the Thesis

In this thesis, we propose an analytical framework for the location privacy of LBS users. In
such a setting, users share their location plus complementary application-dependent infor-
mation (e.g., their opinion about the location) with the LBS. However, users are concerned
about any third-party observer who tracks their shared locations and therefore violates their
privacy. We assume users use privacy enhancing technologies that do not require them to
change the architecture of LBS (who has little incentive to cooperate), or trust on third-party
entities such as anonymity proxies (which does not solve the problem, but shifts it to an entity
other than LBS). Furthermore, as users independently connect to LBS and expect immedi-
ate response, data aggregation and output perturbation mechanisms are not very applicable
neither. So, the location-privacy protection mechanisms that we consider in this thesis are in
the category of data perturbation mechanisms. In other words, instead of reporting their true
and precise location, users report a pseudo-location (an obfuscated location) to the LBS at
each (pseudonymous) access. In our framework, we make explicit assumptions about the ad-
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versary’s knowledge, observation, and inference objectives. We define users’ mobility model,
their access pattern to location-based services, and their privacy and service-quality require-
ments. Relying on this framework, we provide methodologies to quantify and protect location
privacy of mobile users who make use of different types of location-based services.

More precisely, the contributions of this thesis are as follows:

Chapter 1 We propose a framework that encompasses the main elements and entities that
affect the location privacy of mobile users. We provide probabilistic models for the mo-
bility of users, their access patterns to LBSs, the location-privacy preserving mechanisms
(LPPMs), and location-inference attacks. LPPMs anonymize and obfuscate users’ loca-
tions before being observed by an untrusted entity (adversary). We show how different
types of location obfuscation methods, such as location perturbation, location hiding,
and adding dummy locations, can be specified in our formalism. In our framework,
we also define the adversary’s knowledge on users’ mobility patterns. Furthermore, we
define the adversary’s inference objectives. For example, he might be interested in re-
identifying the users from whom anonymous traces are observed, finding the location of a
specific user at a given time, or estimating the number of times that two users have been
in each other’s proximity. We suggest metrics for quantifying users’ location privacy gain
and service quality. By formalizing the adversary’s inference attack as an estimation
problem, we distinguish between accuracy, certainty, and correctness of his estimation.
We then argue that the estimation error of the adversary (i.e., his incorrectness) is
the appropriate metric to quantify (location) privacy. Our related publications, which
contribute to this framework, are [SFH10, SFJH09, STD+11, STT+12, STLBH11].

Chapter 2 We formalize the adversary’s background knowledge on users’ mobility patterns.
In this thesis, we formalize users’ mobility, i.e., the relation between each user and
locations over time, as a (time-period dependent) first order Markov chain. We assume
that the adversary has some prior information about the users’ locations. For example,
he might know where they live and work, or where their locations of interests are. He
might also have access to some location traces of the users. We propose a Bayesian
inference user profiling algorithm for the adversary. The profiling algorithm turns the
adversary’s prior information on users’ traces into his background knowledge on their
mobility. To compute the users’ profiles through the Bayesian inference process, we
make use of a Monte-Carlo method called Gibbs sampling. The outcome of this iterative
method converges to users’ mobility patterns given the prior information. Our related
publication is [STLBH11].

Chapter 3 We provide a generic model that formalizes the adversary’s attacks against the
private location-information of mobile users. In particular, we rigorously define and
provide inference methods for de-anonymization, tracking, and localization attacks on
anonymous traces. An adversary who knows users’ mobility profiles and observes their
distorted and anonymous location traces, tries to infer what has been hidden from him.
We rely on well-established statistical methods to evaluate the performance of such in-
ference attacks. More precisely, as we assume a Markovian model for the users’ mobility,
we use hidden Markov models to invert location-privacy preserving mechanisms. We
formalize the adversary’s success and we quantify location privacy as the adversary’s
expected estimation error. We also (quantitatively) show the inappropriateness of some
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existing metrics, notably entropy and k-anonymity, for quantifying location privacy.
Our related publications are [SFH10, SFJH09, STD+11, STLBH11, STD+10].3

Chapter 4 We provide a methodology for designing optimal location-privacy preserving
mechanisms against inference attacks. On the one hand, privacy-concerned mobile
users make use of LPPMs to increase their location privacy with respect to untrusted
observers (including the service provider). On the other hand, the adversary (the un-
trusted observer) tries to infer more information about users’ locations. These two
objectives are obviously in conflict, and optimizing one damages the other. Hence, a
game naturally emerges between users and the adversary. We formalize the problem of
designing optimal LPPMs for users as a Bayesian Stackelberg game, where users an-
ticipate the best inference attacks on their defense mechanism. We solve the game for
each user against an adversary who tries to localize users by observing their sporadic
accesses to an LBS. We design linear programs to find an optimal strategy for each
user, respecting her service quality constraints and location privacy sensitivities. Subse-
quently, we find the optimal inference attack for the adversary. Our related publication
is [STT+12].4

Software We devoted considerable time and effort to designing and developing a software tool
named Location-Privacy and Mobility Meter (LPM). We implemented all the elements
of our framework in this tool. Our user profiling algorithm, and location inference
attacks are also included. LPM is a modular software that enables the comparison of
various LPPMs in terms of their effectiveness in protecting users’ location privacy. It
also enables us to analyze users’ mobility models. For example, we can compute the
randomness of a user’s mobility, or the similarity between two users’ mobility models.
LPM allows us to define time periods, location regions, and the user-specific privacy and
service quality distance metrics. Given this configuration, we can run multiple attacks
on multiple LPPMs and compare the users’ location privacy for each attack-defense
pair. LPM is an object-oriented tool and is implemented in C++. Its fully documented
code, plus examples and a quick start guide, are available online [LPM12].

In summary, the main contribution of this thesis to the field of location privacy is twofold:
(i) we consider the adversary model as the inseparable element in analysis and design of
privacy preserving mechanisms, and (ii) we provide theoretical methods plus software tools
to analyze and design privacy preserving mechanisms.

3 Our related publication, which is not covered in this thesis, is [FSH11]. In this paper, we propose
methods to identify personal locations (e.g., home and workplace) of mobile users. We show that this location
identification can lead to the identification of users even if they contact the LBS anonymously and sporadically
(but, over an long enough time period). Our results emphasize the need to protect users’ location privacy.

4 Our related publications, which are not covered in this thesis, are [SHSH11, FSH09, RSH10, SPTH11,
SPTH09]. In [SHSH11, SPTH11], we propose a collaborative approach to protect location privacy of mobile
users relaying on wireless peer-to-peer communication. The idea is that a user can share the location-based
content that she obtains from the LBS with other users. So, users can hide from the LBS while receiving
the contextual information they seek. In [SPTH09], we propose another collaborative approach that enables
users of recommender systems to preserve their privacy with respect to the service provider, and still obtain
accurate recommendations. The idea is that users can inject fake ratings, obtained from other similar users,
into their profiles. In [FSH09], we explain how mix zones (where mobile users remain silent and change their
pseudonym) can be placed in an area to optimize users’ location privacy. In [RSH10], we discuss the conflict
between preserving privacy and establishing trust among mobile users.



1 A Unified Framework

There are various elements that influence the location privacy of smart phone users, espe-
cially while various location-based services are being used. As these components are highly
interconnected, they should be studied together in a consistent framework. Such a framework
should consist of the following: (1) the structure and the semantic of the underlying location
map within which considered users move, (2) a model representing users’ mobility and the
regularity of their activities, (3) a model of the location-based services and of the users’ pri-
vate information leakage pattern through such services, (4) an adversary model representing
the threats against users’ location privacy, (5) a model of location-privacy preserving mecha-
nisms, (6) a metric for measuring the service quality loss that users incur by using a protection
mechanism, and (7) an evaluation metric for quantifying the location privacy of users, given
a protection mechanism against a given inference attack. In this chapter, we build a unified
framework and we briefly describe these components and their interrelation. This framework
allows us to precisely define location privacy and to evaluate and compare the cost/benefit
of various location-privacy preserving mechanisms with respect to different attacks. In this
chapter, we state our basic assumptions and define the notations and terminology that we
use throughout the thesis.

We define a location-privacy framework (system) as a tuple of the following inseparable
elements: 〈 U , LOC,A, LBS, LPPM,SQ,O,ADV,PRV 〉, where U is the set of mobile users who
move within an area whose geographical and contextual information is embodied in LOC, and
A represents the set of possible location traces for the users, in a given time window. LBS is
the location-based service1 through which users share (expose) their location to the service
provider (and potentially other untrusted entities) and consequently open the door to various
privacy threats. Location-privacy preserving mechanism, LPPM, acts on the actual traces a
(which is a member of A) and produces the observed traces o (a member of O, which is the
set of observable traces to an adversary ADV). Hence, when accessing the LBS, users only
expose the output of LPPM, instead of sharing their actual locations. The users’ obtained
service quality is measured by an evaluation metric SQ. The adversary ADV is an entity
who implements inference (reconstruction) attacks to infer some information about a (e.g.,
location of a given user at a given time instant), having observed o and by relying on his
knowledge of the LBS and LPPM and of the users’ mobility model (profile). The performance
of the adversary and his success in recovering the desired information about a is captured by
an evaluation metric PRV. The success of the adversary and the location-privacy of users are
two sides of the same coin, which are coupled together using PRV. In the following sections,
we present and specify all the entities and components of our framework and illustrate their
inter-relationships.

Figure 1.1 shows a sketch of our framework. Table 1.1 presents the summary of notations
that we introduce here and use in the next chapters. Throughout the thesis, we use bold italic

1 We use this term for referring to location-sharing services too.
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Figure 1.1: A unified framework for location privacy. Time and location are discrete. Users
access (expose themselves to) the LBS at different times. Location-privacy preserving mech-
anisms (LPPMs) perform access anonymization and location obfuscation for users. So, users
share their anonymous and obfuscated locations with LBS. The attacker processes a set of
available location traces associated with users in order to create a mobility profile for each one.
A profile is in the form of transition probability matrix of a Markov chain. Given the users’
mobility profiles and the observed traces, the adversary tries to reconstruct (infer) the actual
traces. Location privacy of users and the service quality that they experience is computed
given the users’ actual traces, LPPM outcome, and the result of the attack.

capital letters (X) to denote random variables, bold lower case letters to denote vectors and
matrices (x), the script letters (X ) to denote sets, and lower case letters (x) to denote the
elements of vectors or members of sets. For simplicity, we sometimes use briefer notation if
it is clear from the context; for example, we might use Pr{a} to mean Pr{A = a}.

1.1 Users, Time, and Space

We consider U = {u1, u2, . . . , uN} a set of N mobile users who move within an area that is
partitioned into M distinct regions (locations) R = {r1, r2, . . . , rM}. Time is also considered
to be discrete, and the set of time instants when the location of users might be observed is
T = {1, . . . , T}.2

We can represent the information associated to each location in a three-layer model. The
first layer, to which we refer the most, models the geographical coordinate space of the region.
The second layer models the distinguishable places (e.g., hospital, bus station) in the region,
and the third layer models the semantic associated to the places, which determines the type
of activities that happen in the region.

2 The set of time instants in T can be partitioned by some time periods (e.g., morning, afternoon, evening,
night).
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The precision at which we want to represent the user mobility determines the granularity
of the space and time. For example, if the mobility is supposed to have a low/high precision,
regions can be of a city/block size, and two successive time instants can be a day/hour apart.

1.1.1 Events and Traces

The spatio-temporal position of users is modeled through events and traces. An event is
defined as a triplet 〈u, r, t〉, where u ∈ U , r ∈ R, t ∈ T . A trace of user u is a T -size vector of
events au =

[
a1u a2u · · · aTu

]
. The set of all traces that belong to user u is denoted by Au.

Notice that, of all the traces in Au, exactly one is the true trace that user u created in the
time window of interest T ; the true trace, denoted by au, is called the actual trace of user u,
and its events are called the actual events of user u. The set of all possible traces of all users
is denoted by A = Au1 ×Au2 × . . . ×AuN

; the member of A that is actually created by the
N users is denoted by a and it is equal to

a =




a1u1
a2u1

· · · aTu1

a1u2
a2u2

· · · aTu2
...

...
. . .

...
a1uN

a2uN
· · · aTuN


 . (1.1)

1.1.2 User Mobility Model

The matrix of all actual events a is in fact a sample from the random variable A that is
distributed according to Pr{A = ·}. This distribution reflects the joint mobility pattern of
the users. We refer to each marginal distribution Pr{Au = ·} as the mobility profile of user
u, that is au ∼ Pr{Au = ·}. In this work, we assume that the users’ mobility profiles are
independent of each other, i.e., Pr{A = a} =

∏
u Pr{Au = au}. In other words, the location

of a user is independent of others, given the user’s mobility profile (i.e., there is a conditional
independence between the users’ locations).

As users tend to have different mobility patterns at different time periods (e.g., morning
vs. afternoon, or weekday vs. weekend), we assume the users’ mobility profiles to be time-
period dependent. Because of the time dependence, we take into account indirect correlation
among the users’ locations, for instance traffic jams in the morning and in the evening.

We assume that the mobility of a user, in each time period, is modeled as a Markov chain
on the set of regions. So, for user u, the probability distribution of actual traces can be
expressed using the transition matrix of its Markov chain. Each state of the Markov chain
represents a region. We use pr,r′(u) to indicate the probability of a transition from region r
to r′ by user u. We also use πr(u) to indicate the probability that user u is in region r. In
Chapter 2, we propose a method to construct the users’ mobility profiles.

The Markov chain model can be turned into a more powerful (yet more complex) model,
depending on how the states of the chain are defined. If states, or the transition between
states, represent complex previous location visits (e.g., past k > 1 locations in the past), or
the user’s current/previous activity, then the model can become arbitrarily accurate.
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U Set of mobile users u1, u2, ..., uN .

R Set of regions (locations) r1, r2, ..., rM that partition the whole location area.

T Time window under consideration (when users make use of a LBS and their

locations can be observed). Without loss of generality, we assume T = {1, 2, ..., T }.

a = 〈u, r, t〉 An actual location event: User u ∈ U at time t ∈ T is in location r ∈ R.

atu Location of user u at time t.

au Actual trace of user u.

a Actual traces of all users.

A Set of all possible actual traces (of all users). Accordingly, Au is the set of possible

actual traces of user u. An actual trace a is a member of A that is generated

probabilistically according to the random variable A.

x LBS access pattern of users. The vector xu ∈ {0, 1}T reflects the time instants

when user u accesses the LBS. Set X is the set of possible LBS access patterns,

where x is its member generated probabilistically according to random variable X .

Ũ Set of user pseudonyms ũ1, ũ2, ..., ũN ′ .

R̃ Set of pseudolocations r̃1, r̃2, ..., r̃M ′ .

σ(u) Persistent pseudonym of user u.

σ(u) Pseudonyms of user u over time. Element σt(u) is the user’s pseudonym at t.

σ Pseudonyms of all users. It is generated according to random variable Σ.

o = 〈ũ, r̃, t〉 An observed location event, representing that some user with pseudonym ũ ∈ Ũ at

time instant t ∈ T is associated with pseudolocation r̃ ∈ R̃. We use otũ to refer to

the pseudolocation r̃ in this observed event. Vector oũ is an observed trace with

pseudonym ũ. Matrix o represents observed traces of all users, that is generated

probabilistically according to the random variable O.

O Set of possible observable traces from all users.

Table 1.1: Table of notations. We use bold italic capital letters (X) to denote random
variables, bold lower case letters to denote vectors and matrices (x), the script letters (X ) to
denote sets, and lower case letters (x) to denote the elements of vectors or members of sets.

1.2 Location-based Services

Smart phones, among other increasingly powerful mobile computing devices, offer various
methods of localization. Integrated GPS receivers, or positioning services based on nearby
communication infrastructure, enable users to position themselves fairly accurately. This gives
rise to a range of Location-based Services (LBSs) that rely on the users’ current location: users
can connect to a LBS server and share/obtain contextual information relevant to their current
location and surroundings.3

Let xu ∈ {0, 1}T be a vector that shows the LBS access times of user u over the time T .
In effect, xu acts as a bit-mask, for example, if xtu = 1, then user u sends a query to the LBS
that contains her actual location at time t, i.e., atu is exposed to the LBS. Thus, xu reflects
the access pattern of user u to the LBS.

We model an LBS application (that runs on the user’s smart phone) as a function that

3 This includes location-sharing services as well. However, for the sake of simplicity, throughout this thesis,
we just refer to them as LBSs.
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maps actual traces a ∈ A to a random variableX that takes values in the set X = {0, 1}N×T .
The corresponding probability distribution function Pr{X = x |A = a} can be computed as
follows, considering that mobile users usually make use of the location-based services at each
time instant, independently from each other:

Pr{X = x |A = a} =
∏

u

∏

t

Pr{Xt
u = xtu |A

t
u = atu}. (1.2)

1.2.1 Sporadic vs. Continuous

We differentiate among location-based services according to the frequency at which users
access them. On one end of the spectrum, there are LBSs that require their users to contin-
uously access them, whereas on the other end, there are the majority of LBSs whose users
access them in a rather sporadic manner, i.e., there is a non-negligible time gap between two
successive accesses of a user to the LBS. In other words, an application is considered to be
sporadic if the exposed locations from the users are sparsely distributed over time, and it is
considered continuous if they are very close in time. Most of the existing location-based ser-
vices, such as Foursquare4 and various nearby points-of-interest search services, are sporadic
as they do not need their users to share their location all the time.

1.3 Location-Privacy Preserving Mechanisms

Mobile users share their location with possibly untrusted entities in various location-based
services, or unwillingly expose their location to curious eavesdropping entities through the
wireless channel. In all these scenarios, an adversarial entity can track users over an ob-
servation period, unless their actual traces are properly modified and distorted before being
exposed to others, i.e., before becoming observable. The mechanism that performs this modi-
fication in order to protect the users’ location-privacy is called a Location-Privacy Preserving
Mechanism (LPPM).

LPPMs can be implemented in different architectures: centralized vs. distributed. The
protection can be performed in the centralized architecture by a trusted third party (mostly
known as the central anonymity server or privacy proxy) as opposed to being done by the
users or on their mobile devices in a distributed architecture, where modifications are (mostly)
done independently from each other, i.e., in a user-centric manner. Next, we abstract away
these details and provide a generic model for LPPMs.

A location-privacy preserving mechanism receives a set of actual traces a and their corre-
sponding LBS access traces x, one for each user, and modifies them in two steps: obfuscation
and anonymization.

1.3.1 Obfuscation

In the obfuscation process, the location-stamp of each exposed event can be obfuscated, i.e.,
replaced by a pseudolocation in the set R̃ = {r̃1, ..., r̃M ′}.5 Each pseudolocation corresponds
to a subset of regions in R. Hence, R̃ = P(R), and M ′ = 2M . In the case when the user does

4 https://foursquare.com/
5 Note that, in this work, we do not consider time obfuscation.
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not access the LBS (hence her actual location is not exposed), a fake pseudolocation can be
produced by the LPPM. This is equivalent to saying that the LPPM selects a fake location
for the user and then obfuscates it. According to our definition of location obfuscation, hiding
a location can be done by replacing it with the pseudolocation {}, perturbing a location can
be implemented by replacing it with another single location (e.g., by adding a noise to the
actual location), and generalizing a location can happen by replacing it with a pseudolocation
that refers to a set of locations (e.g., by reducing the granularity of the location). Notice that
each location can be obfuscated to a different pseudolocation each time it is encountered.

1.3.2 Anonymization

In the anonymization/pseudonymization process, the user identity part of each event is re-
placed by a user pseudonym in the set Ũ = {ũ1, ..., ũN ′}. Users might change their pseudonym
any time they access the LBS, or keep it for a longer time and have a persistent pseudonym.
The possibility of changing pseudonym depends on the LBS, whether it allows implementing
a multiple pseudonym scheme. Let σt(u) be the pseudonym of user u at time t, which will be
equal to σ(u) in case of persistent pseudonyms. We denote by σt(u) = ũ the assignment of
pseudonym ũ to user u at time t. Let σu be the pseudonym vector of user u over time, and
σ be the matrix of pseudonyms for all users during the observation time. An assignment of
pseudonyms to users, σ is selected according to the random variable Σ.

For the case of persistent pseudonyms, each user’s pseudonym remains the same for the
whole observation time T . In this thesis, the anonymization mechanism that we consider, is
the random permutation. That is, a permutation of the users is chosen uniformly at random
among all N ! permutations and each user’s pseudonym is her position in the permutation.
More formally, the anonymization mechanism selects, independently of everything else, a
permutation σ according to the probability distribution function Pr{Σ = σ} = 1

N ! .

1.3.3 Observed Events and Traces

The LPPM, as the combination of the two (obfuscation and anonymization) processes, prob-
abilistically maps exposed traces (a,x) ∈ A × X to obfuscated and anonymized traces. The
output is distributed according to a random variable O that takes values in the set O, which is
the set of all possible obfuscated and anonymized traces of all users. Such a trace is composed
of T events of the form o = 〈ũ, r̃, t〉, where ũ ∈ Ũ , r̃ ∈ R̃, for t = {1, 2, · · · , T}. A complete
trace, observed from a single user, is denoted by oũ. We denote by o the spatiotemporal po-
sition of users over time as perceived by the observer (e.g., LBS), and we call it the observed
traces of users. In the case of persistent pseudonyms:

o =




o1ũσ(u1)
o2ũσ(u1)

· · · oTũσ(u1)

o1ũσ(u2)
o2ũσ(u2)

· · · oTũσ(u2)

...
...

. . .
...

o1ũσ(uN )
o2ũσ(uN )

· · · oTũσ(uN )



, (1.3)

In this work, we mainly study the case where each exposed event of a user is obfuscated
independently of other events that belong to that user or other users. The mobility profiles
of all users can be used by the LPPM in the process of obfuscating users’ locations. This
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knowledge of the users’ mobility profiles enables us to design strong LPPMs against the
adversary who also relies on this type of information (see Chapter 4).

The probability of a given LPPM output o is then computed as follows, for the case of
using persistent pseudonyms:

Pr{O = o |X = x,A = a}

=
∑

σ

Pr{O = o,Σ = σ |X = x,A = a}

=
∑

σ

Pr{Oũ = oũ |σ(u) = ũ,Xu = xu,Au = au}︸ ︷︷ ︸
Obfuscation Mechanism

·Pr{Σ = σ |X = x,A = a}︸ ︷︷ ︸
Anonymization Mechanism

(1.4)

For each user u the LPPM chooses a pseudonym ũ according to the anonymization mecha-
nism, and for each actual event a = 〈u, r, t〉 the LPPM chooses a pseudolocation r̃ by sampling
from the obfuscation probability distribution, hence outputting o = 〈ũ, r̃, t〉.

Notice that, in general, using an LPPM reduces the quality of the information provided
to the location-based service. Consequently, the service quality that the user receives is also
reduced. Therefore, there exists a tradeoff between the effectiveness of the LPPM and the
experienced service quality for the user. We mainly address this tradeoff when designing an
optimal LPPM for the users, in Chapter 4.

1.4 Adversary Model

The privacy of users in a mobile network can be threatened in different ways. As stated
before, an adversary can be present in the physical vicinity of the users and eavesdrop their
wireless communication with the LBS. He can also be the LBS operator itself, or an entity
sitting in the LBS network sniffing the users’ location-tagged information. In this thesis, we
abstract away how the adversary technically observes users’ traces.

In order to accurately evaluate and effectively design an LPPM, we must formalize the
adversary against whom the protection is placed. Hence, the adversary model is certainly an
important, if not the most important, element of a location-privacy framework. An adversary
is characterized by his knowledge and attack(s). A framework should provide a model for the
adversary knowledge and specify how the adversary obtains and constructs his knowledge,
and which attacks he performs in order to reconstruct location information of the users.

1.4.1 Background Knowledge

The adversary is assumed to be aware of the type and the characteristics of the location-
based service, and also of the location-privacy preserving mechanism. More precisely, he
knows the anonymization and obfuscation probability distribution functions of the LPPM
and the exposure probability distribution function of the LBS.

The adversary might have access to some (possibly noisy or incomplete) traces of users,
and other public information about locations visited by each user, such as their homes and
workplaces. We refer to this as his prior information. From this information, the adversary
constructs a mobility profile (p̂u, π̂u) for each user u ∈ U . In Chapter 2, we explain in detail
one way of profiling users and constructing the adversary’s background knowledge.
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1.4.2 Inference Attacks

Given the LBS and LPPM, the users’ mobility profiles {(p̂u, π̂u)}u∈U estimated by the ad-
versary, and the observed traces o that are produced by the LPPM, the attacker runs an
inference (reconstruction) attack and formulates his objective as a question of the U −R−T
type. Schematically, in such a question, the adversary specifies a subset of users, a subset of
regions and a subset of time instants, and he asks for information related to these subsets.
If the adversary’s objective is to find out the whole sequence (or a partial subsequence) of
the events in a user’s trace, the attack is called a tracking attack. The attacks that target a
single event (at a given time instant) in a user’s trace, are called localization attacks. These
two categories of attacks are examples of presence/absence disclosure attacks [SFH10]: they
infer the relation between users and regions over time. In contrast, if the physical proximity
between users is of interest to the adversary, we call the attack a meeting/proximity disclosure
attack (i.e., who possibly meets whom at a given place/time).

A very general inference attack can be defined as the one that aims to recover the actual
trace of each user. That is, it targets the whole set of users and the whole set of time instants,
and it asks for the most likely trace of each user, or even for the whole probability distribution
of traces for each user. The adversary’s ultimate goal is then formally defined as calculating
the following probability distribution function:

Pr{A = â |O = o} (1.5)

More specific objectives can be defined, which lead to all sorts of location disclosure
attacks: Specify a user and a time, and ask for the region where the user was at the specified
time; specify a user and a region, and ask for the times when the user was there; specify a
subset of regions, and ask for the (number of) users who visited these regions at any time.

1.5 Evaluation Metrics

In this section, we describe two main evaluation metrics that we formalize in our framework:
location privacy of users under some inference attacks, and the service quality loss that they
incur by using a LPPM to protect their privacy.

1.5.1 Location Privacy

At a high level, the adversary obtains some obfuscated traces o, and, knowing the LBS, the
LPPM, and the mobility profiles of the users, he tries to infer some information of interest
about the actual traces a. As we have mentioned, the possible objectives of the adversary
range from the very general (the traces a themselves) to the specific (the location of a user
at a specific time, the number of users at a particular location at a specific time, etc.).

Nevertheless, usually, neither the general nor the specific objectives have a single deter-
ministic answer. The actual traces are generated probabilistically from the mobility profiles,
the users’ access patterns to the LBS are generated probabilistically according to its model
(e.g., being sporadic or continuous), and the observed traces are generated probabilistically
by the LPPM. So, there are many traces a that might have produced the observed traces
o. The same applies to the more specific objectives. For example, there are many possible
regions where a user might have been at a particular time. The output of the inference attack
can be a probability distribution on the possible outcomes (traces, regions, number of users),
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the most probable outcome, the expected outcome under the distribution on outcomes (the
average number of users), or any function of the actual trace. We call φ(·) the function that
describes the attacker’s objective. If its argument is the actual trace a, then its value φ(a)
is the correct answer to the attack. Let Z be the set of values that φ(·) can take for a given
attack (e.g., M regions, N users, MT traces of one user, etc.).

The probabilistic nature of the attacker’s task implies that he cannot obtain the exact
value of φ(a), even if he has an infinite amount of resources. The best he can hope for
is to extract all the information about φ(a) that is contained in the observed traces. The
extracted information is in the form of the posterior distribution Pr{z|o}, z ∈ Z, of the
possible values of φ(a) given the observed traces o. We call uncertainty the ambiguity of this
posterior distribution with respect to finding a unique answer – that unique answer need not
be the correct one; see the discussion on correctness later. The uncertainty is maximum, for
example, if the output of a localization attack is a uniform distribution on the locations. On
the contrary, the uncertainty is zero if the output is a Dirac distribution on one location.

Of course, the attacker does not have infinite resources. Consequently, the result of the
attack is only an estimate P̂r{z|o} of the posterior distribution Pr{z|o}. We call inaccuracy
the discrepancy between the distributions P̂r{z|o} and Pr{z|o}.

Neither the uncertainty metric nor the inaccuracy metric, however, quantify the privacy
of the users. What matters for a user is whether the attacker finds the correct answer to his
attack, or, alternatively, how close the attacker’s output is to the correct answer. Knowing
the correct answer, we can calculate a distance (or expected distortion) between the output
of the attack and the true answer. We call this distance the incorrectness of the attack, and
we believe that this is the appropriate way to quantify the success of an attack: The lower
the expected distortion of the estimation is, the higher the correctness of the estimation is,
hence the lower the privacy of users will be.

It is important that the accuracy and the certainty not be mistaken to be equivalent to
the correctness of the attack. Even an attacker with infinite resources will not necessarily find
the true answer, as he might have been able to observe only an insufficient number of events.
But he will extract all the information that is contained in the events, so the accuracy will be
maximum. If the accuracy is maximum, and the observed traces point to a unique answer –
so the certainty is also maximum – the correctness will not necessarily be high. It is clearly
possible, for instance, that the user did something out of the ordinary on the day the traces
were collected: What she did is still consistent with the observed trace, but as it is not typical
for the user, it is assigned a low probability/weight in the attack output.

Accuracy

We compute the accuracy of each element of the distribution P̂r{z|o}, z ∈ Z, separately. That
is, we estimate the posterior probability Pr{z|o} for each possible value z of φ(a). We quantify
the accuracy with a confidence interval and a confidence level. By definition, the probability
that the accurate value of Pr{z|o} is within the confidence interval is equal to the confidence
level.

The extreme case is that the interval is of zero length (i.e., a point) and the confidence
level is 1 (i.e., the attacker is absolutely confident that the point estimate is accurate). An
attacker using more and more accurate estimation tools could achieve this extreme case, thus
making P̂r{z|o} converge to Pr{z|o}. However, achieving such ultimate accuracy might be
prohibitively costly. So, the adversary will in general be satisfied with some high enough level
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of accuracy (i.e., large enough confidence level, and small enough confidence interval). When
the accuracy reaches the desired level, or the resources of the adversary are exhausted, the
probability P̂r{z|o} with some confidence interval is the estimate of the adversary.

Certainty

We quantify the certainty with the entropy of the distribution P̂r{z|o}. The entropy shows
how uniform vs. concentrated the estimated distribution is and, in consequence, how easy it is
to pinpoint a single outcome z out of Z. The higher the entropy is, the lower the adversary’s
certainty is.

Ĥ(Z) =
∑

z

P̂r{z|o} log
1

P̂r{z|o}
(1.6)

Correctness

The correctness of the attack is quantified using the expected distance between the true
outcome zc ∈ Z and the estimate based on the P̂r{z|o}. In general, if there is a distortion
metric ‖ · ‖ defined between the members of Z, the expected distortion can be computed as
the following sum, which is the adversary’s expected estimation error :

∑

z

P̂r{z|o}‖z − zc‖ (1.7)

The value zc is what the users want to hide from the adversary. The higher the adversary’s
correctness is, the lower the privacy of the targeted user(s) is. Hence, correctness is the

metric that determines the privacy of users.
The distortion metric ‖·‖ quantifies the loss of privacy stemming from the inference attack.

The privacy loss depends on the locations’ semantics and also on the privacy requirements
of the user (e.g., a user might consider a hospital to be more sensitive than other places),
and the distortion function must be defined accordingly. For the case where the adversary’s
objective is to find the users’ locations (e.g., in tracking and localization attacks), the set Z
becomes equivalent to the set of locations R. In this case, we determine the value of ‖r̂ − r‖
using a distortion function dp(r̂, r) that is a user’s privacy loss if her actual location is r and
the adversary estimates it as r̂.

As an example for the distortion function, if the user wants to simply hide her exact current
location (as opposed to hiding her location area, for example), the appropriate distortion
function could be the Hamming distortion (probability of error), where the distance between
the estimated location r̂ and the actual location r is:

dp(r̂, r) =

{
0, if r̂ = r

1, otherwise
(1.8)

In this case, any location different from the user’s actual location results in a high level
of location privacy. Alternatively, the user’s privacy could depend on the physical distance
between the estimated and actual locations, hence the distortion function can be modeled as
the Euclidean distance between these locations, i.e., the squared-error distortion:

dp(r̂, r) = (r̂ − r)2 (1.9)



1.5. Evaluation Metrics 17

P
r(

z
) 

Z z
c 

High accuracy 

High certainty 

Low correctness 

Z z
c 

High accuracy 

High certainty 

High correctness 

Z z
c 

High accuracy 

Low certainty 

Low correctness 

Z z
c 

Low accuracy 

High certainty 

Low correctness 

Z z
c 

Low accuracy 

Low certainty 

Low correctness 

Z z
c 

Low accuracy 

High certainty 

High correctness 

P
r(

z
) 

P
r(

z
) 

P
r(

z
) 

P
r(

z
) 

P
r(

z
) 

Figure 1.2: Accuracy, Certainty, and Correctness of the adversary. The adversary is estimat-
ing P̂r{z|o} where the true value for z (correct guess) is zc. In this example, z can get three
discrete values. The black dot shows the estimate P̂r{z|o} for different z and the lines show
the confidence interval for a given confidence level chosen by the adversary. As it is shown
in the figures, the accuracy of the estimation is independent of its certainty and correctness.
Moreover, the level of correctness does not convey anything about the level of certainty, and
high certainty does not mean high correctness. The only correlation between certainty and
correctness is that low certainty usually (depending on the size of Z and the distance between
its members) implies low correctness.

In summary, the adversary tries to achieve the maximum accuracy for P̂r{z|o} under his
resource constraints. He can measure the success of the attack by computing the certainty
over the results. However, to measure users’ location privacy, given a LPPM, we consider
the true value zc and measure the adversary’s incorrectness (estimation error). Notice that
the adversary does not know the value of zc, hence he cannot evaluate this aspect of his
performance. Figure 1.2 illustrates through some examples the independence of these three
aspects (of the adversary’s performance) from each other.

1.5.2 Service Quality

In the aforementioned setting, where users’ actual locations are potentially altered using a
LPPM, the LBS response quality depends on the pseudolocation output by the LPPM and
not on the user’s actual location. The distortion introduced in the observed pseudolocations
determines the quality of service that each user experiences. The more similar the actual and
the observed location are, the higher the service quality is.

Let function dq(r̃, r) determine the dissimilarity between location r and pseudolocation
r̃. The semantics of this dissimilarity depend on the LBS under consideration and also on
the user’s specific service-quality expectations. In many applications, the service quality can
be considered inversely proportional to the physical distance between r and r̃. For example,
applications that find nearby points of interest could give very different responses to r and to
r̃, even if they are only a couple of kilometers apart. In contrast, there exist LBSs in which the
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service quality depends on other criteria, such as on whether r̃ is within a region of interest.
For a weather forecast application, for instance, any pseudolocation r̃ in the same city as the
actual location r would result in a high quality LBS response.

1.6 Summary

In this chapter, we have defined the fundamental elements of our analytical framework for
location privacy. Throughout the next chapters, we further elaborate on these components
and their interrelation.

Related Publications [SFH10, SFJH09, STD+11, STT+12, STLBH11]



2 User Profiling

Human beings tend to have regular life styles. This is reflected in different aspects of their
everyday life, and also in the pattern at which they visit various locations. An adversarial
entity, who is after discovering the true identities and location related information of LBS
users, take advantage of this fact. All the information that is a priori available about each
user, for example her home and workplace address, where her parents live, or her favorite
points of interest, can be processed in order to construct a model for her behavior (in our
case, her mobility); a model that can be used to predict the user’s future activities. In this
chapter, we formalize the adversary’s background knowledge, which is constituted of the users’
mobility profiles, as Markov chains on the set of regions (locations). Then, we use Bayesian
inference techniques to estimate the transition matrix of the Markov chain associated to
the mobility of each user, and also their probability distribution over the set of locations,
given, e.g., the prior information about the visited locations by each user. The adversary’s
background knowledge will be used as the fuel for the location disclosure attacks.

2.1 Prior Information

The adversary collects various pieces of information about the users’ mobility and the locations
that they visit regularly, e.g., their homes and offices. In general, such information can be
translated to events; perhaps the events can be linked into transitions; or, they can be further
linked into partial traces or even full traces reflecting the trajectory of each user.

We assume, the prior mobility information exists in the following two ways: in the form of
some traces yu, and as a matrix of transition counts n. The traces can be noisy or they might
be missing some events. The matrix n is of dimensionM2, whereM is the number of regions,
and its (i, j)th entry contains the number of transitions from region ri to rj, that users have
had (in the past) and have not been encoded as traces. Any information about the general
movement across the regions (i.e., how a typical user moves) that cannot be attributed to a
particular user can be incorporated in the n matrix. In addition to this mobility information
on the users, the adversary also considers the general mobility constraints of users within
regions. For example, it might not be possible to move between two far-away regions in one
time instant, or cross a border between two regions because of some physical obstacles. Let c
be a binary matrix to represent this mobility constraint. The matrix c, in some way, encodes
the map of the whole area in which the users move. The summary of notations is presented
in Table 2.1.

2.2 Background Knowledge

In this section, we first illustrate how to formalize the knowledge of the adversary. Then, we
propose a method of constructing his background knowledge, given the prior information.

19
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y Prior trace of the user; The element y(t) is the location of user at time t. Trace y might

miss some events. The trace ŷ is an estimated completion for it.

n Prior transition counts matrix; The element nr,r′ is the number of transitions that users

have had from region r to r′.

c Mobility constraints matrix; The element cr,r′ is equal to 1 if it is possible to move from

r to r′, and it is 0 otherwise.

p̂ Mobility profile of the user estimated by the adversary, as the form of first-order Markov

chain transition matrix; The element p̂r,r′(u) is the probability of moving to location r′

given that the user u has been in r.

π̂ Mobility profile of the user estimated by the adversary, as the users’ location probability

distribution. The element π̂r(u) is the probability of user u visiting location r.

ŷ{l} The lth sample for trace ŷ in the Gibbs sampling procedure.

π̂{l} The lth sample for location probability distribution ŷ in the Gibbs sampling procedure.

p̂{l} The lth sample for transition probability matrix p̂ in the Gibbs sampling procedure.

Table 2.1: Table of notations.

2.2.1 Mobility Profiles

We model user mobility as a first-order Markov chain on the set of regions (locations).12

We define the mobility profile (pu,πu) of a given user u as the pair of a transition matrix
pu of the Markov chain associated with the user’s mobility, and the probability distribution
πu of the user’s location.3 The entry pr,r′(u) of pu is the probability that user u moves to
region r′ in the next time instant, given that she is now in region r. The entry πr(u) is the
probability that user u is in region r. Thus, the user’s mobility profile consists of the following
probabilities:

pr,r′(u) = Pr{At+1
u = r′ |At

u = r}, πr(u) = Pr{At
u = r}. (2.1)

The objective of the adversary is to estimate pu and πu, given his prior information. Let
(p̂u, π̂u) denote the estimated values.

2.2.2 Profile Estimation

Hereafter, we explain how to estimate the transition probability profile p̂u of user u from traces
yu with (potentially) missing events, a transition count matrix nu, and mobility constraint
matrix c. The stationary distribution π̂u can then be computed from p̂u. Note that the
method that we develop considers multiple prior traces per user. However, to simplify the
presentation we consider only one trace. Moreover, as we are talking about profiling each user
separately, we omit the index u.

1 Note that this Markovian model can become even more precise, for example, by increasing the order of
the Markov chain, or by incorporating the user activity or location semantic in each of its states.

2 Mobility model of users is time-dependent. In this chapter, we present the user profiling algorithm
considering a given time period. In the case of multiple time periods, the algorithm should be run for each
time period separately.

3 The probability distribution πu is the stationary distribution of transition matrix pu (if it has a stationary
probability distribution).
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The ultimate goal is to estimate the parameters of the underlying Markov chain that
represents the user’s mobility model. As the available prior trace y can be incomplete (i.e.,
location of the user might not be available for all time instants), we also need to fill in the
missing data at the same time. Let ŷ be an estimated completion for y. Formally, we estimate
the profile p̂ of the user with the expectation E{p̂ |y,n, c}. To compute this expectation we
will sample from the distribution

Pr{p̂ |y,n, c} =
∑

ŷ

Pr{p̂, ŷ |y,n, c}. (2.2)

However, sampling directly from Pr{p̂, ŷ |y,n, c} is not straightforward; it involves com-
puting the sum of terms whose number grows exponentially with the length of the trace.
Hence, we use Gibbs sampling algorithm [GG84, Mac03], a Markov Chain Monte Carlo
(MCMC) method, as it only needs sampling from the conditional distributions Pr{p̂ | ŷ,y,n, c}
and Pr{ŷ | p̂,y,n, c}. More precisely, in order to sample from Pr{p̂, ŷ |y,n, c}, we create a
homogeneous Markov chain on the state space of p̂ and ŷ in an iterative procedure. Starting
from an initial value for ŷ{0}, Gibbs sampling produces pairs (p̂{l}, ŷ{l}) as follows:

p̂{l} ∼ Pr{p̂ | ŷ{l−1},y,n, c} (2.3)

ŷ{l} ∼ Pr{ŷ | p̂{l},y,n, c} (2.4)

As we discuss later, the sequence of the p̂{l} matrices converges to the desired probability
distribution Pr{p̂ |y,n, c}, and we estimate the user’s profile by computing the average value
of the samples. We then compute π̂ as the steady state distribution of p̂. Now, let us explain
how to produce the samples.

Sampling (2.3)

In order to sample a p̂{l} from (2.3), according to the Markov property, we assume that the
rows of the transition matrix p̂ are independent. More precisely, given that the user is in
region r, the probability that she moves to a region in R is independent of her transition
probability from any region r′ to r′′ ∈ R when r′ 6= r. So, we produce samples for each
row of the matrix separately. We consider a Dirichlet prior for each row of p̂, based on the
prior observation on the number of transitions from a region r to other regions. Dirichlet
distribution is the conjugate prior for multinomial and categorical distributions, where the
outcome of a random experiment is one of M rival events (in our case, going to any of M
regions from a given region r). That is, its probability density function reflects the belief
about the probabilities of M rival events, given the number of observations about each event.
Hence, we generate the elements of the lth sample for p̂ by sampling according to the following
Dirichlet distribution:

p̂{l}
r,. ∼ Dir

(
{nr,r′ + cntr,r′(ŷ

{l−1}) + ǫcr,r′}∀r′∈R
)
,∀r ∈ R (2.5)

where cntr,r′(·) is the number of transitions from region r to r′ in a trace, ǫ is a very small
positive number, and cr,r′ is an element of the mobility constraint binary matrix c correspond-
ing to the possibility of moving from region r to r′ in one time instant. The term ǫcr,r′ (if
cr,r′ = 1) gives some small positive weight to the transition between two regions r and r′, even
if there is no transition between them in the adversary’s prior information. The rationale is
that the absence of prior observation on transition between r and r′ (in the finite trace y, or
in matrix n) does not mean that the probability of moving between r and r′ is zero.
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Sampling (2.4)

To sample a complete trace ŷ{l} from (2.4), we follow the procedure proposed in [RCD93]
and iteratively construct ŷ{l} by performing T successive samplings,4 from

p̂
{l}
ŷ(t−1),ŷ(t) · o(y(t) | ŷ(t)) · p̂

{l}
ŷ(t),ŷ(t+1)

∑
r p̂

{l}
ŷ(t−1),r

· o(y(t) | r) · p̂
{l}
r,ŷ(t+1)

, t = 1, . . . , T, (2.6)

where p̂ŷ(t),ŷ(t+1) is, according to p̂
{l}, the probability of moving from the region visited at time

t, in the trace ŷ, to its subsequent visited location at time t+1. The value of the probability

p̂
{l}
ŷ(t),ŷ(t+1) for t = 0 and t = T is defined to be 1. The function o(r′|r) represents the noise

function if the trace y is noisy: It is the probability that user location r is distorted as r′ in
the trace (for example due to positioning error). If r′ is missing (due to the incompleteness
of the trace), then o(r′|r) is equal to 1.

Estimating the Profile given the Samples

The convergence properties of the Gibbs sampling for this problem are studied in [RCD93]. As
it is shown in [DR92, Gey91, RCD93, Tie91], the illustrated Gibbs sampling, i.e., the iterative
simulation of p̂{l} according to (2.5) and ŷ{l} according to (2.6), produces a homogeneous,
irreducible and aperiodic Markov chain (p̂{l}, ŷ{l}) that converges at a geometric rate to a
stationary distribution.56 Hence, the sequence of the p̂{l} matrices is ergodic and converges
to the desired probability distribution Pr{p̂ |y,n, c}. Thus, the Ergodic theorem for Markov

chains applies, and we can compute p̂r,r′ for every r, r
′ as the average of p̂

{l}
r,r′ over all samples

l, for a large enough L number of samples:

p̂r,r′ =
1

L

∑

l

p̂
{l}
r,r′, ∀r, r

′ ∈ R. (2.7)

The higher the number of iterations is, the higher the accuracy of the user mobility profile
will be. The sample variance of each element of the mobility transition matrix is a candidate
for the accuracy metric. However, if the learning trace is complete (i.e., it does not miss any
location event) and not noisy, then the transition matrix samples in each iteration construct
an i.i.d. sequence, and consequently we can use the variance of each element and the number
of samples to compute a confidence interval on each element of the mobility matrix. This can
be done, for example, using Theorem 2.2 of [LB10] where the confidence interval at level γ

for the sample mean p̂r,r′ is p̂r,r′ ±
1+γ

2
√
L
v̂r,r′ where v̂r,r′ is the sample variance of p̂

{l}
r,r′ .

4 Without loss of generality, we assume that trace y spans from time t = 1 to T .
5 A Markov chain (X(t) being the state at time t) is called time-homogeneous (or just homogeneous) if

Pr{X(t+ k) = j |X(t) = i} is independent of t. It is called irreducible, if it is possible to get to any state from
any state, i.e., ∀i, j, ∃k, such that Pr{X(t + k) = j |X(t) = i} > 0. It is called aperiodic if all the states are
aperiodic, i.e., for any state i, gcd{k ≥ 1 : Pr{X(t + k) = i |X(t) = i} > 0} = 1, where function gcd denotes
the greatest common divisor [KT75].

6 The Ergodic theorem simply states that if a sequence {X(0), X(1), ..., X(n)} is an irreducible, homoge-
neous discrete Markov chain with some stationary distribution π, then the sample mean of f(X(i)), for some
bounded function f : X −→ R, converges to the true distribution of E{f(X)}. If further, it is aperiodic, then
the probability Pr{X(n) = x |X(0) = x0} converges to π(x) for any x, x0 ∈ X.
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2.3 Summary

In this chapter, we have used Gibbs sampling, which is a Markov Chain Monte Carlo method,
in order to construct the mobility profile of users from some prior information about their
mobility. This mobility profile will be used by the adversary in his inference attacks in order
to invert the location-privacy preserving mechanisms and disclose private information about
the users’ actual locations.

Related Publications [STLBH11]





3 Inference Attacks

Our goal, in this chapter, is to make progress on the quantification of the performance of
a location-privacy preserving mechanism (LPPM). This is an important topic, because (i)
people are notoriously bad estimators of risks in general, and privacy risks in particular, (ii)
it is the only way to make meaningful comparisons between different LPPMs and (iii) the
research literature is not yet mature enough on the topic.

In specific areas, several contributions have been made to quantify privacy, be it for
databases [Dwo06], for anonymity protocols [CPP08], or for anonymization networks [DSCP02,
SD02, Tro11, TD09]. Yet, in the field of location privacy, notwithstanding many contribu-
tions from different disciplines (such as databases, mobile networks, and ubiquitous com-
puting [Kru09b]) for protecting location privacy, the lack of a unified and generic formal
framework for specifying protection mechanisms and also for evaluating location privacy is
evident. This has led to the divergence of contributions and, hence, has caused confusion
about which mechanisms are more effective. In general, the adversary model is often not
appropriately addressed and formalized, and a good model for adversary’s possible inference
attacks (while incorporating his background knowledge) is missing. This can lead to a wrong
estimation of the location privacy of mobile users. In few cases, that privacy vulnerabilities
of sharing location data is discussed, location privacy is evaluated as the anonymity of users
[BJB+12, MYYR10, DMDBP08, ZB11]. Hence, the amount of location information leakage
through sharing location data is not properly quantified. Moreover, the proposed evaluation
schemes cannot be extended to generic location-privacy preserving mechanisms.

In this chapter, we propose a generic theoretical framework for quantifying location privacy
of LBS users. We make the following contributions.

• We provide a generic model that formalizes the adversary’s attacks against private
location-information of mobile users. In particular, we rigorously define de-anonymization
(re-identifying pseudonymous location traces), localization (finding location of a user
at a specific time) and tracking attacks on anonymous traces as statistical inference
problems. We also construct a generic attack that discloses even more location-related
information about users who expose their (pseudonymous and obfuscated) locations to
LBSs.

• We rely on well-established statistical methods to evaluate the performance of such in-
ference attacks. More precisely, we rely on Bayesian inference techniques, especially
those that are proposed for hidden Markov models. We infer users’ private information
even if their LBS accesses are pseudonymous1 and obfuscated. We formalize the adver-
sary’s success and we clarify, explain and justify the right metric to quantify location
privacy: The adversary’s expected estimation error.

1 In this chapter, we assume persistent pseudonyms for users.
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26 Chapter 3. Inference Attacks

• We provide a tool: the Location-Privacy and Mobility Meter (LPM) is developed based
on our formal framework and is designed for evaluating the effectiveness of various
location-privacy preserving mechanisms. We use LPM to evaluate various location-
privacy preserving mechanisms and to compare their effectiveness under similar settings.

• We show the inappropriateness of some existing metrics, notably entropy and k-anonymity,
for quantifying location privacy.

3.1 De-Anonymization Attack

The de-anonymization attack finds the most likely assignment of users {u1, u2, ..., uN} to
the observed (pseudonymous and obfuscated) traces {oũ1 ,oũ2 , ...,oũN

}. Notice that it is not
correct to simply assign each user to the trace that she could have most likely created. This
is because doing so more than one user might be assigned to the same trace. The most likely
assignment is a joint assignment; it maximizes the joint probability of assigning all users to
the observed traces (pseudonyms). More formally, we compute the following:

σ∗ = argmaxσ Pr{Σ = σ |O = o}. (3.1)

3.1.1 User-Pseudonym Likelihood Graph

We use Bayesian inference in order to perform the de-anonymization. In order to obtain the
most likely assignment σ∗, we need to maximize the following probability:

Pr{Σ = σ |O = o} =
Pr{o |σ} · Pr{σ}

Pr{o}
=

∏

ũ

Pr{oũ |σ} ·
Pr{σ} ≡ 1

N !

Pr{o}︸ ︷︷ ︸
constant

. (3.2)

Thus,

σ∗ = argmax
σ

∏

ũ

Pr{oũ |σ} (3.3)

Notice that, given the assignment of a user u to a pseudonym ũ, the probability Pr{oũ |σ}
is independent of all other user-pseudonym assignments. So, to find the most likely assignment
σ∗, we first compute Pr{oũ |σ(u) = ũ} for all pairs of u ∈ U and ũ ∈ Ũ . Then, we construct
a complete weighted bipartite graph in which disjoint sets of vertices are U and Ũ , and the
weight on the edge between given vertices u and ũ is the likelihood Pr{oũ |σ(u) = ũ}. We
later use this graph to de-anonymize the users.

For the case when the obfuscation function operates on each region separately, we compute
the likelihood for each pair as follows. These probabilities should be computed appropriately
according to the background knowledge that we consider for the adversary. In the next
subsections, we compute these probabilities for two adversaries with different background
knowledge:

I The adversary whose knowledge of users’ mobility is the probability distribution over the
regions for each user, i.e., π̂.

II The adversary who, in addition to knowing π̂, also knows the users’ probability of transi-
tion between the regions, i.e., p̂.
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LBS(θ) A location-based service with users’ access probability θ.

LPPM(A,Oρ,Fφ{u|g}) A location-privacy preserving mechanism that (A) anonymizes traces,

(Oρ) obfuscates each location among 2ρ locations, and (Fφ{u|g})

accesses the LBS on behalf of the users and generates fake locations:

(u) uniformly from the set of locations, or (g) according to the

average users’ location distribution π̄(r) = 1

N

∑
u π̂u(r).

σ An assignment of users to pseudonyms. Element σ(u) is the

pseudonym assigned to user u.

σ∗ The most likely assignment of users to pseudonyms (observed traces)

given the adversary knowledge and the observed traces.

α
u,ũ
r (t) The forward variable (in the forward-backward algorithm), which is

the joint probability of observed trace oũ up to time t, and that the

actual location of user u at time t is r, given that pseudonym ũ is

associated with user u.

β
u,ũ
r (t) The backward variable (in the forward-backward algorithm), which is

the probability of observed trace oũ from time t+ 1 to the end, given

that the actual location of user u at time t is r and given that the

pseudonym ũ is associated with user u.

â∗u The most likely trace of user u, given the adversary knowledge on the

user’s mobility profile, and given an observed trace associated to u.

δur (t) The recursive variable used in the Viterbi algorithm, which is the joint

probability of the most likely trace of user u up to time t− 1, and that

her location at time t is r, and that her observed trace up to the time

t− 1, given the adversary knowledge on her mobility profile.

LP (u, t) Location privacy of user u at time t, against the localization attack,

quantified with the distortion metric (incorrectness or expected

estimation error of the adversary).

NK(u, t) Location privacy of user u at time t, as her normalized k-anonymity.

NH(u, t) Location privacy of user u at time t, against the localization attack,

quantified with the normalized entropy metric.

Table 3.1: Table of notations.

3.1.2 Likelihood Computation Given the Mobility Profile as π̂

For adversary (I), whose knowledge is limited to π̂, we compute the likelihood of assigning
observed trace oũ to user u as follows:

Pr{oũ |σ(u) = ũ, π̂} =
∏

t∈T

∑

r∈R

∑

x∈{0,1}
Pr{otũ |X

t
u = x,At

u = r, σ(u) = ũ, π̂}︸ ︷︷ ︸
LPPM - Obfuscation mechanism

· Pr{Xt
u = x |At

u = r, π̂}︸ ︷︷ ︸
LBS Application

· Pr{At
u = r | π̂}︸ ︷︷ ︸

User Mobility Profile

(3.4)
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3.1.3 Likelihood Computation Given the Mobility Profile as (π̂, p̂)

For adversary (II), whose knowledge expands beyond π̂ and who also knows p̂, we compute the
likelihood for each pair of observed trace oũ and user u with the Forward-Backward algorithm
[Rab89]. This is an inference algorithm for hidden Markov models; it computes the posterior
marginals of all hidden state variables given a sequence of observations. With this algorithm,
each likelihood computation takes time O(TM2) by taking advantage of the recursive nature
of the likelihood that we want to compute.

We first define the forward variable αu,u′

r (t) for t ∈ T , r ∈ R, u ∈ U , ũ ∈ Ũ as

αu,ũ
r (t) = Pr{At

u = r,o1:t
ũ |σ(u) = ũ, p̂}, (3.5)

which is the joint probability of (i) the observed trace oũ up to time t and (ii) that the actual
location of the user with pseudonym ũ is r at time t, given that the pseudonym ũ is associated
with user u. Notice that, if we can compute the forward variable at all regions at time T , i.e.,

α
u,u′

r (T ), then the desired likelihood is simply

Pr{oũ |σ(u) = ũ, p̂} =
∑

r∈R
Pr{AT

u = r,oũ |σ(u) = ũ, p̂} =
∑

r∈R
αu,ũ
r (T ). (3.6)

We compute the forward variables, for 1 ≤ t < T , recursively as

αu,ũ
r (t+ 1) = Pr{At+1

u = r,o1:t+1
ũ |σ(u) = ũ, p̂}

=
∑

x∈{0,1}
Pr{ot+1

ũ |X t+1
u = x,At+1

u = r, σ(u) = ũ, p̂}︸ ︷︷ ︸
LPPM - Obfuscation mechanism

·Pr{X t+1
u = x |At+1

u = r, p̂}︸ ︷︷ ︸
LBS Application

·
∑

r′∈R
Pr{At+1

u = r |At
u = r′, p̂}︸ ︷︷ ︸

User Mobility Profile

·Pr{At
u = r′,o1:t

ũ |σ(u) = ũ, p̂}︸ ︷︷ ︸
=α

u,ũ

r′
(t)

. (3.7)

Within the inner sum, there is one term for each way of reaching region r at time t+1, i.e.,
having been at each of the regions r′ ∈ R at time t. After computing the sum, we need only
to multiply with the probability of sharing location r through the LBS application and then
obfuscating it to the pseudolocation observed at time t+ 1, summed over two possibilities of
sharing or not sharing the location. Now, the only remaining issue is the initialization of the
forward variables:

αu,ũ
r (1) = Pr{A1

u = r, o1ũ |σ(u) = ũ, p̂}

=
∑

x∈{0,1}
Pr{o1ũ |A

1
u = r,X1

u = x, σ(u) = ũ, p̂}︸ ︷︷ ︸
LPPM - Obfuscation mechanism

·Pr{X1
u = x |A1

u = r, p̂}︸ ︷︷ ︸
LBS Application

· Pr{A1
u = r | p̂}︸ ︷︷ ︸

User Mobility Profile

. (3.8)

Hence, we first compute (3.8) for all locations, and then iteratively for t = 1..T we compute
the value of forward variables for all locations and time instants using (3.7). Having computed
α
u,ũ
r (T ),∀r ∈ R, we finally compute the desired likelihood using (3.6). The whole likelihood

computation for one pair of observed trace and user can be done in 2M(T (M +2)− (M +1))
multiplications and 2M(M(T − 1) + 1) additions.

For the computation of the likelihood, we do not need the backward variables (which is
where the rest of the algorithm’s name comes from). We will, however, define and use them
in Section 3.2 on localization attacks.



3.2. Localization Attack 29

3.1.4 Maximum Weight Assignment

Having computed the likelihoods for all pairs of observed traces and users in the bipartite
graph, we complete the de-anonymization attack by solving theMaximum Weight Assignment
(MWA) problem in this graph2, in order to obtain σ∗. We use the Hungarian algorithm, which
has time complexity of order O(N4). Faster algorithms exist, but the Hungarian algorithm is
simple, and it only needs to be computed once in this attack. The MWA is also an instance
of a linear program, so linear program solvers can be used. The outcome is a matching of
users and observed traces, such that the product

∏
ũ Pr{oũ |σ(u) = ũ} is maximized over all

N ! user-to-trace assignments.

3.2 Localization Attack

Localization is the attack in which the adversary computes the probability distribution over
regions where a specific user might be at a specific time instant. This probability is computed
given the observed traces from users. More formally, the adversary computes Pr{At

u = r |o}
for user u at time instant t for all regions r ∈ R.

Then, given the most likely assignment of users to observed traces σ∗, which we computed
in (3.1) through the de-anonymization attack, we compute the probability distribution of the
given user’s location at the given time instant as Pr{At

u = r |o,Σ = σ∗}, which itself can be
computed as Pr{At

u = r |oũ, σ
∗(u) = ũ}.

3.2.1 Localization Given the Mobility Profile as π̂

Depending on the adversary knowledge, the probability of interest for localization is computed
differently. In the case when the adversary knows only the probability distribution over
locations π̂, the probability that user u at time t is in region r is

Pr{At
u = r |oũ, σ

∗(u) = ũ, π̂} =
Pr{At

u = r, otũ |o
1:t−1,t+1:T
ũ , σ∗(u) = ũ, π̂}

Pr{oũ |σ∗(u) = ũ, π̂}

=
Pr{At

u = r, otũ |σ
∗(u) = ũ, π̂}

Pr{oũ |σ∗(u) = ũ, π̂}
(3.9)

where the normalizing factor Pr{oũ |σ
∗(u) = ũ, π̂} is

∑
r′∈R Pr{At

u = r′, otũ |σ
∗(u) = ũ, π̂},

and the numerator can be computed as follows:

Pr{At
u = r, otũ |σ

∗(u) = ũ, π̂} = Pr{otũ |A
t
u = r, σ∗(u) = ũ, π̂} · Pr{At

u = r | π̂}

=
∑

x∈{0,1}
Pr{otũ |X

t
u = x,At

u = r, σ∗(u) = ũ, π̂}︸ ︷︷ ︸
LPPM - Obfuscation mechanism

· Pr{Xt
u = x |At

u = r, π̂}︸ ︷︷ ︸
LBS Application

· Pr{At
u = r | π̂}︸ ︷︷ ︸

User Mobility Profile

(3.10)

2See also [TGPV08] for another example of using MWA in user de-anonymization attacks.
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3.2.2 Localization Given the Mobility Profile as (π̂, p̂)

For the stronger adversary, who knows π̂ and p̂, we use the Bayesian rule to compute the
localization probability

Pr{At
u = r |oũ, σ

∗(u) = ũ, p̂} =
Pr{At

u = r,oũ |σ
∗(u) = ũ, p̂}

Pr{oũ |σ∗(u) = ũ, p̂}
, (3.11)

where the numerator probability can be easily computed with the Forward-Backward algo-
rithm. In Section 3.1, we described the computation of the forward variables

αu,ũ
r (t) = Pr{At

u = r,o1:t
ũ |σ(u) = ũ, p̂}. (3.12)

The backward variables are defined to be

βu,ũr (t) = Pr{ot+1:T
ũ |At

u = r, σ(u) = ũ, p̂}, (3.13)

that is, βu,ũr (t) is the probability of the partial observed trace from time t + 1 to the end,
given that the trace oũ is observed from user u whose actual location at time t is r.

The computations of backward variables (3.13), for t < T , are done recursively as follows:

βu,ũr (t) = Pr{ot+1:T
ũ |At

u = r, σ(u) = ũ, p̂}

=
∑

r′∈R
Pr{ot+2:T

ũ |At+1
u = r′, σ(u) = ũ, p̂}︸ ︷︷ ︸
= β

u,ũ

r′
(t+1)

·
∑

x∈{0,1}
Pr{ot+1

ũ |Xt+1
u = x,At+1

u = r′, σ(u) = ũ, p̂}︸ ︷︷ ︸
LPPM - Obfuscation mechanism

· Pr{Xt+1
u = x |At+1

u = r′, p̂}︸ ︷︷ ︸
LBS Application

· Pr{At+1
u = r′ |At

u = r, p̂}︸ ︷︷ ︸
User Mobility Profile

(3.14)

Note that the computation takes place backwards in time. The initialization (at time T )
of the backward variables is:

βu,ũr (T ) = 1, ∀r ∈ R, u ∈ U , ũ ∈ Ũ . (3.15)

Having computed the backward variables, the probability Pr{At
u = r |oũ, σ

∗(u) = ũ} is
then equal to

Pr{At
u = r |oũ, σ

∗(u) = ũ, p̂} =
α
u,ũ
r (t) · βu,ũr (t)

Pr{oũ |σ∗(u) = ũ, p̂}
. (3.16)

The variable αu,ũ
r (t) accounts for the observations up to time t and region r at time t, and

β
u,ũ
r (t) accounts for the remainder of the observed trace, given that the user’s location at time
t is region r. The term Pr{oũ |σ

∗(u) = ũ, p̂} is a normalization factor that was earlier (3.6)
computed as

∑
r∈R α

u,ũ
r (T ). An alternative way of computing it is as

∑
r∈R α

u,ũ
r (t) · βu,ũr (t),

which more directly shows its role as a normalization factor.
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3.2.3 Meeting Disclosure Attack

The results of the localization attack can be used to infer even more location-related infor-
mation about the users. For an example, in a meeting disclosure attack, a typical adversary’s
objective specifies a pair of users u and v, a region r, and a time instant t, and then it asks
whether this pair of users have met at that place and time. We compute the probability of
this event as the product

Pr{At
u = r |oũ, σ

∗(u) = ũ} · Pr{At
v = r |oṽ, σ

∗(v) = ṽ} (3.17)

by using the results of the localization attack. A more general attack would specify only a
pair of users and ask for the expected number of time instants that they have met in any
region. Such questions can be answered by using the results of the localization attack and by
computing the expected value of (3.17).

3.3 Tracking Attack

In a tracking attack, the adversary’s objective is to reconstruct complete or partial actual
traces, i.e., he is interested in the sequences of events, rather than isolated events (e.g., in
a localization attack). To perform this attack, the adversary needs to have some knowledge
on each user’s transition probability between locations, otherwise the attack is not possible.
Hence, we present an algorithm for the tracking attack given that the adversary knowledge is
(π̂, p̂).

We define the objective of this attack to be finding the most likely trace for each user.
Given σ∗ as the result of the de-anonymization attack (see Section 3.1), the tracking can be
formalized as finding

â∗u = argmax
âu∈Au

Pr{âu |oũ, σ
∗(u) = ũ, p̂}. (3.18)

We use the Viterbi algorithm [Rab89], which is a dynamic programming algorithm, in
order to perform this attack. Let δur (t) be

δur (t) = max
â
1:t−1
u

Pr{â1:t−1
u ,At

u = r,o1:t−1
ũ |σ∗(u) = ũ, p̂}, (3.19)

which is the joint probability of the most likely trace of user u in the time windows [1, t] that
the user’s location at time t is r, and her trace observed up to time t, which is o1:t−1

ũ . Max-
imizing this quantity at time T is equivalent to maximizing (3.18). We recursively compute
its values, for 2 ≤ t ≤ T , as following:

δur (t) =max
r′∈R

(
δur′(t− 1) · Pr{At

u = r |At−1
u = r′, p̂}︸ ︷︷ ︸

User Mobility Profile

)

·
∑

x∈{0,1}
Pr{otũ |X

t
u = x,At

u = r, σ∗(u) = ũ, p̂}︸ ︷︷ ︸
LPPM - Obfuscation mechanism

·Pr{Xt
u = x |At

u = r, p̂}︸ ︷︷ ︸
LBS Application

. (3.20)

The initialization at time t = 1 is

δur (1) = Pr{A1
u = r | p̂}︸ ︷︷ ︸

User Mobility Profile

·
∑

x∈{0,1}
Pr{o1ũ |X

1
u = x,A1

u = r, σ∗(u) = ũ, p̂}︸ ︷︷ ︸
LPPM - Obfuscation mechanism

·Pr{X1
u = x |A1

u = r, p̂}︸ ︷︷ ︸
LBS Application

. (3.21)
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From the values δur (T ), we compute the joint probability of the most likely trace and the
observations by computing

max
r∈R

δur (T ). (3.22)

Of course, we are interested in the most likely trace itself, not only in its probability. The
most likely trace is computed by keeping track, at each time 2 ≤ t ≤ T , of the location that
maximizes (3.20) and, for t = T , the one that maximizes (3.22). Then, we can backtrack from
time T back to time 1 and reconstruct the trace.

Notice that finding the most likely trace is exactly equivalent to finding the shortest path
in an edge-weighted directed graph. The graph’sMT vertices are labeled with elements of the
set R× T , i.e., for each time t there are M vertices corresponding to each of the M regions.
There are edges only from vertices labeled with time t to vertices labeled t + 1, 1 ≤ t < T .
The weight of an edge (t− 1, r′) → (t, r) is equal to

− log
(
Pr{At

u = r |At−1
u = r′, p̂}︸ ︷︷ ︸

User Mobility Profile

·
∑

x∈{0,1}
Pr{otũ |X

t
u = x,At

u = r, σ∗(u) = ũ, p̂}︸ ︷︷ ︸
LPPM - Obfuscation mechanism

·Pr{Xt
u = x |At

u = r, p̂}︸ ︷︷ ︸
LBS Application

)
. (3.23)

Indeed, minimizing the sum of negative logarithmic terms is equivalent to maximizing the
product of the original probabilities.

3.4 A Generic Location Disclosure Attack

We now consider the most general type of location disclosure attack, on which we can compute
the distribution of traces for each user, rather than simply the most likely trace:

Pr{A = â,X = x̂,Σ = σ̂ |O = o} (3.24)

In the implementation of this attack, we use the Metropolis-Hastings (MH) algorithm
[Has70, Mac03] on the product of the space A×X with the space of all possible permutations
σ. The purpose of the MH algorithm is to draw independent samples (from the space A ×
X × Σ) that are identically distributed according to the desired distribution (3.24). The
algorithm makes use of the fact that the desired distribution, briefly written as Pr{â, x̂, σ̂ |o},
is equivalently

Pr{â, x̂, σ̂ |o} =
Pr{â, x̂, σ̂,o}

Pr{o}
=

Pr{o | â, x̂, σ̂} · Pr{σ̂ | â, x̂} · Pr{x̂ | â} · Pr{â}

Pr{o}
(3.25)

The denominator is a normalizing factor that is hard to compute, however, the algorithm
allows us to sample from the distribution Pr{â, x̂, σ̂ |o} without computing the denominator
Pr{o}. Nevertheless, the numerator needs to be easy to compute, which is true in our case:
We compute the probability Pr{o | â, x̂, σ̂} using the probability mass function of the LPPM
obfuscation mechanism; the probability Pr{σ̂ | â, x̂} is constant and equal to 1

N ! , as we use
random permutation as the anonymization function; we compute the probability Pr{x̂ | â}
from the LBS application probability mass function; and we compute the probability Pr{â}
from the users’ mobility profiles.
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At a high level, the MH algorithm performs a random walk on the space of possible values
for (â, x̂, σ̂). The transition probabilities of the random walk are chosen so that its stationary
distribution is the distribution from which we want to sample.

First of all, we need to find a feasible initial point for the walk (i.e., a point that does not
violate the mobility profile of any user and is consistent with the observations from the users;
it is not a trivial matter to find such a point). We use the most likely trace of the users, i.e.,
â∗, which is the output of the tracking attack in Section 3.3, as the starting point.

We then need to define a neighborhood for each point. We define two points (â, x̂, σ̂) and
(â′, x̂′, σ̂′) to be neighbors if and only if exactly one of the four following conditions holds:

• The components σ̂ and σ̂′ differ in exactly two places. That is, N − 2 out of the N
traces are assigned to the same users in both σ̂ and σ̂′, and the assignment of the
remaining two traces to users is switched. The components â and â′ are identical, and
so are components x̂ and x̂′.

• The components â and â′ differ in exactly one place. That is, the location of exactly
one user at exactly one time instant is different. All other locations are unchanged. The
other components are identical.

• The components x̂ and x̂′ differ in exactly one place. That is, LBS access bit of one
user at only one time instant is different. All other bits of x̂ and x̂′ are the same. The
other components are identical.

• Points (â, x̂, σ̂) and (â′, x̂′, σ̂′) are identical. That is, a point is assumed to be included
in its own neighborhood.

We finally define a proposal density function that determines the candidate neighbor to
move to, at the next step; this function also influences the convergence speed of the algorithm.
For simplicity, we use a uniform proposal density, so the candidate point is selected randomly
among all the neighbors of the current point.

To perform the random walk, suppose that the current point is (â, x̂, σ̂) and the selected
candidate is (â′, x̂′, σ̂′). Then, the candidate point is accepted with the following probability:

min{1,
Pr{â′, x̂′, σ̂′ |o}
Pr{â, x̂, σ̂ |o}

=
Pr{o | â′, x̂′, σ̂′} · Pr{σ̂′ | â′, x̂′} · Pr{x̂′ | â′} · Pr{â′}

Pr{o | â, x̂, σ̂} · Pr{σ̂ | â, x̂} · Pr{x̂ | â} · Pr{â}
}. (3.26)

In the explanation of (3.25), we described that these probabilities can easily be computed
given the knowledge of LPPM, LBS, and user mobility profile. Moreover, as the two neighbors
differ only in a small number of elements, the acceptance probability can become even simpler
by cancelling out the identical probabilities in the numerator and denominator of (3.26).

If (â′, x̂′, σ̂′) is rejected, we log the current step, and we repeat the procedure of selecting
and probabilistically moving to a neighbor. If it is accepted, it is logged as a step in the
random walk. However, the logged sample is not an independent sample, as it is correlated
with (â, x̂, σ̂). Only after making enough steps to overcome the inherent correlation among
successive steps is a step stored as an independent sample. After storing enough independent
samples, the algorithm stops.

How many independent samples are enough? The attacker collects as many samples as
needed to satisfy his accuracy requirements. The confidence interval for the chosen confi-
dence level must be shorter than the desired length. Suppose the attacker needs to collect n
independent samples.



34 Chapter 3. Inference Attacks

How many steps of the random walk must be taken between each pair of successive sam-
ples to ensure the independence of these n samples? There are standard statistical tests of
independence; our choice is the Turning Point test [LB10]. The basic idea of this test is that,
among three successive independent and identically distributed samples, all 3! = 6 possible
orderings are equiprobable. Given three numerical values zi−1, zi, zi+1, a turning point exists
at i if and only if zi is either larger than both zi−1, zi+1 or smaller than both zi−1, zi+1. If the
three numerical values are independent and identically distributed, then the probability of a
turning point is 2

3 . Then, given a large enough number of values, n in our case, the number
of turning points is approximately Gaussian with mean 2n−4

3 and variance 16n−29
90 .

So, we test if the number of turning points in our sequence of n MH samples can be
claimed to be Gaussian with this mean and variance. If so, we stop. Otherwise, we make
more steps in the random walk and skip more of the logged intermediate steps before storing
each sample.

It should be emphasized that, after collecting enough number of samples, this generic
attack can answer all kinds of U-R-T questions. The attacker can specify a very wide range
of objectives as functions of a sample of the MH algorithm. Then, the attacker computes this
function on each independent sample, and the sample average of the computed values is the
estimate of the attacker’s objective. In this case, the accuracy and certainty metrics would be
computed on the values that the function returns, rather than directly on the MH samples.

3.5 Evaluation

We implement the user profiling algorithms (presented in Chapter 2) and the inference attacks
(presented in this chapter) in a tool called Location Privacy and Mobility Meter (LPM). The
tool enables us to evaluate various location-privacy preserving mechanisms with respect to
various location inference attacks. See [LPM12] for more details about our software tool. In
this section,

• we show a few examples of using LPM to quantify the effectiveness of LPPMs to protect
users’ anonymity and location privacy.

• we evaluate the appropriateness of two popular metrics, namely, k-anonymity and en-
tropy, for quantifying location privacy.

3.5.1 LPM Simulation Setting

Location Traces The location traces that we use are interpolated traces of N = 20 ran-
domly chosen mobile users (vehicles) from the epfl/mobility dataset at CRAWDAD [PSDG].
Each trace contains the location of a user every 5min for a full day, T = 288. The location
area (the San Francisco bay area) is divided into M = 40 regions forming a 5× 8 grid.

LBS We assume that at any time instant, a user accesses the LBS with some probability
θ, independently from other users. More formally, Pr{Xt

u = 1 |At
u = r} = θ. This implicitly

gives more weight to the locations that a user visits more frequently.3

3 We could consider alternative LBS access patterns as well. However, our goal here is not to evaluate all
different types of LBSs. That is why we only consider a simple model for LBS.
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User Profiling To consider the worst case scenario, we use the users’ actual traces as the
adversary’s prior information on the users’ mobility patterns. Then, we run the user profiling
algorithm, presented in Chapter 2, to construct both the transition probability matrix p̂, and
the location probability distribution π̂, for each user.

Inference Attacks We run the de-anonymization and localization attacks on the users’
observed traces, and obtain results for the following attack scenarios:

• De-Anonymization Attack : For all users being observed until time t, what is the user
identity associated to each observed trace (pseudonym)?

• Localization Attack : For a given user u and time t, what is the location of u at t? (As
the user’s location is a random variable, the answer is a probability distribution over
the locations).

• Meeting (Location Proximity) Disclosure Attack : For a given pair of users u and v, what
is the expected number of meetings between u and v? Put differently, at how many time
instants in T the two users are in the same region (in the proximity of each other).

• Aggregated Presence Disclosure Attack : For a given region r and time t, what is the
expected number of users present in r at t?

LPPM The protection mechanism, that we evaluate, anonymizes the traces by using a
random permutation function (i.e., each user is assigned a unique and permanent pseudonym
randomly chosen from 1 to N). For our considered location obfuscation methods, we have to
define two modes of behavior, according to whether the user accesses the LBS (i.e., exposes her
location). When the user accesses the LBS, the LPPM obfuscates her location by removing
some low-order bits/digits of the location-stamp of the event. We refer to the number of
removed bits as the obfuscation level ρ of the LPPM. So, for a given ρ, the user’s location is
obfuscated among 2ρ location. In the case when the user does not access the LBS, the LPPM
chooses, with some probability φ, to create a fake location and then obfuscates it (as it does
for the actual locations). We consider two ways in which the LPPM can create a fake location:
The first way is to create a fake location uniformly at random among all locations r ∈ R,
and the second way is to create it according to the aggregate user geographical distribution
π̄ = 1

N

∑
u π̂u (i.e., the average location probability distribution). We refer to an LPPM

using its parameters φ and ρ, and its type (u: uniform selection, g: selection according to the
average mobility profile). For example LPPM(A,O2,F0.3u) anonymizes the traces, injects a
fake location (uniformly selected at random) with probability 0.3 if there is no LBS access, and
obfuscates the (both fake and actual) locations by dropping their 2 low-order bits, whereas
LPPM(A) only anonymizes the traces.

Privacy Metrics The metric that we use to evaluate the LPPMs is the expected error
(incorrectness) of the adversary, as described in Section 1.5.1. We evaluate the effect of
the LPPM parameters that we listed above (obfuscation level, probability of fake location
injection, different ways of creating fake locations) on the users’ privacy. We are also interested
in the effect of the pseudonym lifetime on the anonymity of users. In our model, we consider
that all users keep their pseudonyms from time 1 to T . By attacking at time T , we can
compare the anonymity achieved by users for various values of T .
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The anonymity metric is the fraction of incorrectly de-anonymized observed traces, hence
its values range from 0 to 1. In the case of localization attack, we compute the location
privacy of each user u at each time instant t as the adversary’s probability of error (i.e.,
we use Hamming distortion function in computing the expected estimation error) that is
1 − P̂r{At

u = atu |o}, hence its values range from 0 to 1. To quantify users’ privacy against
meeting (location proximity) disclosure attack, we compute the error of attacker in estimating
the number of meetings between two users u and v over all time instants as

∣∣ ∑

t

1atu=atv
−

∑

t

∑

r

P̂r{At
u = r |o} · P̂r{At

v = r |o}
∣∣ (3.27)

whose values range from 0 to T . In the case of aggregated presence disclosure attack, the at-
tacker estimates the expected number of users in each region r at each time t as the summation∑

u P̂r{A
t
u = r |o}, hence we compute his error (i.e., the users’ privacy) as

∣∣ ∑

u

1atu=r −
∑

u

P̂r{At
u = r |o}

∣∣ (3.28)

whose values range from 0 to N .

3.5.2 Simulation Results

We run the LPM for various combinations of the following parameters:

• LBS access probabilities {0.1, 0.2, ..., 1.0}

• location obfuscation levels {0, 2, 4}

• fake-location injection rates {0, 0.3, 0.6} with uniform selection u and general mobility
selection g

• observation time period {31, 71, 141, 281}

We then perform the de-anonymization and localization attacks (for the adversary knowl-
edge being π̂ or (π̂, p̂)). The results are averaged over 20 simulation runs. Hereafter, we
present some of the results that we obtained regarding the anonymity and location-privacy
of users.

Anonymity

In Figure 3.1, we plot user anonymity as a function of pseudonym lifetime (how long the
users’ accesses to the LBS are observed by the adversary). The anonymity is quantified as
the percentage of users that are incorrectly de-anonymized by the attacker. Each of the
four sub-figures corresponds to each of the four combinations of adversary knowledge and
LPPMs. Each line in a sub-figure corresponds to different combinations of obfuscation levels
and probabilities of injecting a fake location.

We observe that the anonymity decreases as the length of the observation period increases.
The same trend is seen in all four sub-figures, for all combination parameters. By compar-
ing the results that are obtained from different LPPMs, we observe the following interesting
phenomenon, regarding the effect of stronger LPPM parameters, in particular when both the
obfuscation level and the fake injection probability are non-zero: By jointly increasing the
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Figure 3.1: User anonymity versus pseudonym lifetime. Users access the LBS sporadically
with probability 0.1. The anonymity is quantified as the percentage of users that are incor-
rectly de-anonymized by the attacker. In the top two sub-figures, we consider the adversary
with his background knowledge being π̂, whereas in the bottom two, we consider a more
knowledgeable adversary with his background knowledge being (π̂, p̂). The fake-location
injection algorithm used in the left column is the uniform selection (u), whereas the right
column considers the general mobility fake-location selection (g) according to the average
location distribution π̄. Each line in a sub-figure corresponds to different combinations of
obfuscation levels {0, 2} and fake-location injection rates {0, 0.3, 0.6}. All the LPPMs used
here anonymize the traces.

protection level of the two mechanisms, the absolute value of anonymity increases. Addi-
tionally, the level of anonymity drops with a slower rate as the pseudonym lifetime increases.
This shows the relation between the effects of obfuscation and anonymization techniques.
The LPPM designer can appropriately choose the parameters to achieve a desired level of
anonymity; or alternatively, the pseudonym should be changed when the desired level of
anonymity is no longer achieved.
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Figure 3.2: System-level location privacy against localization attack, for all users u and
times t. Left-hand and right-hand side plots, respectively, show the attack results against
LPPM(A), that only anonymizes the traces, and LPPM(A,O4), that in addition to anonymiza-
tion it also obfuscates the users’ locations among 24 locations when they access the LBS. The
x-axis shows the probability that a user accesses the LBS at any time instant. By moving
from the left side to the right side in each plots, the amount of information shared with the
attacker (through his observed events) decreases, as the user accesses the location-based ser-
vice less frequently. The considered attacker’s background knowledge here is (π̂, p̂). In the
boxplots, the bottom and top of each box show the 25th and 75th percentiles, respectively,
and the central mark shows the median. The ends of the whiskers represent the most extreme
data points not considered as outliers, and the outliers are plotted individually.

Location Privacy

Figure 3.2 illustrates the results that we have obtained about the effectiveness of the anonymiza-
tion and precision-reduction location obfuscation against the localization attacks. The left-
hand plot shows the results for the LPPM with anonymization, and the right-hand plot shows
the results for the LPPM with location obfuscation level 4. The probability at which users
access the LBS varies from 1.0 (for a fully continuous LBS) to 0.1 (for a sporadic LBS). As
we expect, users’ location privacy increases as their access frequency to the LBS decreases.
Obfuscating their locations by hiding them among almost half of the locations also leads to
a non-negligible increase in their location privacy. Looking at the two ends of these plots,
we note the following interesting points. In Figure 3.2(a), users have zero location privacy
when their privacy is protected only through anonymization and when they access the LBS
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Figure 3.3: Users’ location privacy in sporadic LBSs (accessing the LBS with probability 0.1
at any time instant), using various LPPMs, with respect to localization attack performed
by the attacker with two different classes of background knowledge (first row: π̂, and second
row: (π̂, p̂)). The tested LPPMs anonymize the traces, and inject fake locations when a user
does not access the LBS. The sub-figures corresponds to LPPM with obfuscation level 4 (for
the two right side plots), and 0 (for the two left side plots). The x-axis shows the fake-location
injection rate φ of the LPPMs. Each box-and-whisker diagram (boxplot) shows system level
location-privacy, where the bottom and top of each box show the 25th and 75th percentiles,
and the central mark shows the median. The ends of the whiskers represent the most extreme
data points not considered as outliers, and the outliers are plotted individually.

continuously (when x-axis value is 1.0). In Figure 3.2(b), for the case of the most shown
sporadic LBS, when users’ LBS access probability is 0.1, despite the trace anonymization and
the high degree of location obfuscation, the users’ location privacy is still 30 percent below its
maximum value 1. This is, due to the predictability of users’ locations given their mobility
profiles, that enables the adversary to still estimate their locations over time, although there
is not much information in their observed traces.

Now, let us focus on a sporadic LBS and study the effects of more location-privacy preserv-



40 Chapter 3. Inference Attacks

1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
0

5

10

15

20

25

LBS Access Probabilit y

(a) LPPM(A)

L
o

c
a

ti
o

n
-P

ro
x
im

it
y
 P

ri
v
a

c
y

1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
0

5

10

15

20

25

LBS Access Probabilit y

(b) LPPM(A, O4)

Figure 3.4: System-level location privacy against meeting (location proximity) disclo-
sure attack, for all pairs of users u, v. Left-hand and right-hand side plots, respectively, show
the attack results against LPPM(A), that only anonymizes the traces, and LPPM(A,O4), that
in addition to anonymization it also obfuscates the users’ locations among 24 locations when
they access the LBS. The x-axis shows the probability that a user accesses the LBS at any
time instant. By moving from the left side to the right side in each plot, the amount of infor-
mation shared with the attacker (through his observed events) decreases, as the user accesses
the location-based service less frequently. The considered attacker’s background knowledge
here is (π̂, p̂). In the boxplots, the bottom and top of each box show the 25th and 75th

percentiles, respectively, and the central mark shows the median. The ends of the whiskers
represent the most extreme data points not considered as outliers, and the outliers are plotted
individually.

ing mechanisms on the expected error of the adversary in localization attacks. In Figure 3.3,
we show the location privacy of users who sporadically access the LBS (with access probability
0.1), and use the LPPM that additionally adds fake locations to the users’ observed traces
according to the aggregate user geographical distribution π̄, when users do not access the LBS.
As it is expected, the users’ location privacy increases when the level of location-obfuscation
or fake-location injection increases. However, the main finding of our result is that, in spo-
radic applications, the fake-location injection can considerably help the obfuscation method
in preserving users’ location-privacy, when the injection rate is high. Moreover, adding fake
location has a high impact on misleading the more knowledgeable adversary (with knowledge
(π̂, p̂), as it reduces his success down to that of the adversary with knowledge π̂ (compare
the location-privacy improvement obtained by injecting fake-locations with rate 0.3 in the
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Figure 3.5: System-level location privacy against aggregated presence disclosure attack,
for all regions r and times t. Left-hand and right-hand side plots, respectively, show the attack
results against LPPM(A), that only anonymizes the traces, and LPPM(A,O4), that in addition
to anonymization it also obfuscates the users’ locations among 24 locations when they access
the LBS. The x-axis shows the probability that a user accesses the LBS at any time instant.
By moving from the left side to the right side in each plots, the amount of information
shared with the attacker (through his observed events) decreases, as the user accesses the
location-based service less frequently. The considered attacker’s background knowledge here
is (π̂, p̂). In the boxplots, the bottom and top of each box show the 25th and 75th percentiles,
respectively, and the central mark shows the median. The ends of the whiskers represent the
most extreme data points not considered as outliers, and the outliers are plotted individually.

bottom sub-figures).

Figure 3.4 and 3.5 illustrate the users’ privacy with respect to meeting (location proximity)
disclosure attack and aggregated presence disclosure attack, respectively. As in Figure 3.2,
we expect to see improvement in location privacy, as we increase the level of obfuscation. We
also expect to observe convergence of location privacy to its near maximum value, when we
set the LBS access probability equal to 0.1 (i.e., 90% of the users’ locations are hidden from
the adversary). Unsurprisingly, we observe these two things in the plots: Reading a plot from
left to right, we see the effect of decreasing the access probability (1.0 to 0.1) for constant
precision-reducing levels. Specifically, the privacy always increases, although the effect is much
more pronounced in Figure 3.2. By comparing corresponding boxes of two adjacent plots, i.e.,
same LBS access probability, we see the added value of the precision-reducing mechanism (on
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Figure 3.6: Comparison of location-privacy metrics. The x-axis shows the users’ location-
privacy based on the incorrectness (distortion) metric (1.7), that is the adversary’s expected
estimation error. The y-axis shows (a) the normalized entropy of the adversary’s estimation,
(b) the normalized k-anonymity of users. Each point in the plot represents the location privacy
of some user at some time for two metrics (incorrectness vs entropy in (a), incorrectness vs
k-anonymity in (b)). “∗”s are the location privacy values achieved from LPPM(A,O5) as
a strong mechanism protecting users’ sporadic access to the LBS with access probability
0.1, “·”s are the values for LPPM(A,O3) as a medium mechanism protecting users’ access
to the LBS with access probability 0.5, and “◦”s are the values for LPPM(A,O1) as a weak
mechanism protecting users’ continuous access to the LBS with access probability 1.0. The
considered attacker’s background knowledge in all cases is (π̂, p̂). The two metrics would be
fully correlated only if all points were on the diagonal (0, 0) to (1, 1).

the left, there is no location obfuscation; on the right, obfuscation level is 4). Again, the
clearest improvement happens in Figure 3.2. An interesting conclusion is that the effect of
the LPPM is most positive against Figure 3.2, which is, in a sense, the most intrusive attack of
the three: it targets the exact location of a single user at a single time. The other two attacks,
especially Figure 3.5, are more related to the statistics of user mobility, so there could even be
legitimate reasons that one would want to collect that information. For instance, a researcher
who studies the geographical distribution of users would be interested in the number of users
in a region. We can conclude that the tested LPPMs protect users’ location-privacy against
malicious adversaries, but they still provide information for less harmful activities.

Existing Metrics for Location Privacy

Now, we assess the appropriateness of two existing metrics, namely k-anonymity and entropy,
for quantifying location privacy. Note that any other heuristic metric can be evaluated in the
same way. We focus on the localization attack, and we assess these metrics by testing to what
extent they are correlated to the success of the adversary in correctly localizing users over
time (i.e., the incorrectness/distortion/expected-estimation-error metric). We choose three
LPPMs: LPPM(A,O1) on LBS(1.0) as a weak mechanism for a continuous LBS, LPPM(A,O3)
on LBS(0.5) as a medium-strength mechanism, and LPPM(A,O5) on LBS(0.1) as a strong
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mechanism on a sporadic LBS.

In Section 1.5.1, we use entropy to measure the uncertainty of the adversary. Here, we
assess the normalized entropy of the probability distribution of the location of user u at time
t, as a metric for her location privacy. The normalized entropy is computed as follows:

NH(u, t) = −
1

log(M)

∑

r∈R
P̂r{At

u = r |o} log(P̂r{At
u = r |o}) (3.29)

where log(M) is the maximum entropy over M regions.

According to the k-anonymity metric, the location-privacy of a user u at a given time
t is equal to the number of users who satisfy all of the following conditions: (i) they are
anonymous, (ii) they obfuscate their location by merging regions (which includes their actual
location), (iii) their obfuscated location (i.e., the set of merged regions) is a superset of the
obfuscated location of u at t. We divide this number of users by N , the total number of users,
to have the normalized k-anonymity:

NK(u, t) =
1

N

∑

v∈U
1atv∈otu∧otu⊆otv

(3.30)

Figure 3.6 illustrates the relation between the incorrectness (distortion) of the adversary
LP (u, t) = 1 − P̂r{At

u = atu |o} and the two above-mentioned metrics: normalized entropy
NH(u, t), and normalized k-anonymity NK(u, t). We see that the entropy is more correlated
to the adversary’s incorrectness than k-anonymity is. However, both entropy and k-anonymity
misestimate the true location privacy of users.

Entropy Metric Let us focus on Figure 3.6(a). All but few of the points fall into the
“NH < LP” triangle, which means that, in this setting, the entropy metric underestimates
location privacy. For example, consider the “∗”s on the NH = 0.6 horizontal line, all of
whose entropy is 0.6. The incorrectness metric (LP ) of these points ranges from 0.6 to 1.
Or, consider the vertical line LP = 1, where there are “∗”s corresponding to values of NH
ranging from 0.2 to 0.7. In both cases, the estimation of location privacy by NH is up to 5
times less than the true location privacy of users, which makes it an inappropriate and loose
lower bound for location privacy. We observe the same phenomenon in the results of the two
other LPPMs (represented by “·”s and “◦”s).

The reason why the entropy metric is not an appropriate metric to quantify location
privacy is that it ignores the true location of the user. This metric is rather a better metric
for the adversary to know how concentrated his estimation about the location of the user is.
Intuitively, the weaker an LPPM is the more concentrated the adversary’s estimation around
the user’s true location will be. But, for stronger LPPMs, the adversary’s estimation will be
more concentrated around locations with high prior probability and not the true location. So,
the entropy metric is not a good indicator of the user’s current privacy at each location.

k-anonymity Metric The results are even worse for k-anonymity in Figure 3.6(b), as there
is less correlation between NK and LP . In fact, k-anonymity in some cases underestimates
location privacy (consider the area where NK < 0.5 and LP > 0.5) and in some other cases
(NK > 0.5 and LP < 0.5) overestimates it. Hence, this is not an appropriate estimator for
location privacy either.
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K-anonymity metric fails to reflect the correct location privacy of users for multiple rea-
sons. First of all, the level of obfuscation on each location (that contributes to the location
privacy of a user) is totally independent of k. It rather depends on the relative location of
k − 1 other users who are currently near the user. Secondly, the metric completely ignores
the fact that the adversary can invert the obfuscated locations to their true values, given his
knowledge on the user’s location distribution. Thus, the error of the adversary in his inference
attack is not correlated with k determined by k-anonymity metric.

3.6 Summary

In this chapter, we have proposed a Bayesian inference scheme to reconstruct users’ loca-
tion information, given what an adversary observes from them, and what he knows a priori
about their mobility, their LBS access pattern, and the LPPM that anonymizes and obfus-
cates their location traces. We formalize the de-anonymization attack as a maximum weight
assignment problem and use Bayesian inference applied on hidden Markov models to com-
pute the likelihood of assigning a user to each pseudonym and to consequently solve the
problem. Furthermore, given the computed most likely assignment of users to pseudonym
(observed traces), we attack the LPPM output to reconstruct the users’ locations over time
using Bayesian forward-backward and dynamic-programming Viterbi algorithms. Hence, we
not only compute the posteriori location probability distribution for each user at each time
instant, but also we construct the most-likely (complete) trace for each user. These enable us
to quantify users’ location privacy, by comparing the attack results with the actual traces of
the users.

We have proposed using the Metropolis-Hastings algorithm, which is a Markov Chain
Monte Carlo (MCMC) method, in order to compute the a posteriori distribution over the set
of possible location traces. This algorithm is based on the creation a Markov chain on the
state space of users’ location traces, and sampling from this space by running a random walk
on that Markov chain. After generating enough samples, we can compute any function, in
particular the location privacy metric, on the set of samples as an estimation of the accurate
posterior value of that function. We have assumed users’ pseudonyms to be persistent over
time, i.e., users do not change their pseudonyms during the observation time period. This
assumption can be relaxed, especially by extending the Monte Carlo solution scheme, to also
evaluate the effectiveness of pseudonym change LPPMs.

In the end, we have shown the results obtained from running the proposed inference
attacks, implemented in a software tool called Location Privacy (and Mobility) Meter, on
some location traces, assuming some example LBS and LPPMs. We have also shown that
existing metrics entropy and k-anonymity are not appropriate metrics for quantifying location
privacy as they are not correlated with the adversary’s error in his inference attacks.

Related Publications [SFJH09, STD+11, STLBH11]
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The disclosure of users’ whereabouts to the LBS exposes aspects of their private life that is
not apparent at first, but can be inferred from the revealed location data (see Chapter 3 and
[FSH11, GP09, Kru07]). A large body of research has focused on developing location-privacy
protection mechanisms (LPPMs) that allow users to make use of LBSs and limit the amount
of disclosed sensitive information [BS03, CG09, FSH09, GL05, HGXA07, KGMP07, MRC09].
These protection mechanisms are based on hiding or perturbing the real locations of a user, or
even sending fake locations to the LBS, in order to increase the uncertainty of the adversary
about a user’s true whereabouts. However, the evaluation of these designs usually disregards
the fact that the adversary might have some knowledge about users’ access patterns to the
LBS and also about the algorithm implemented by the LPPM. As we show in Chapter 3, such
information allows the attacker to reduce his uncertainty on the user’s true location. Hence,
prior evaluations overestimate the location privacy offered by a protection system.

In this chapter, we focus on a broad range of LBSs and location sharing services in which
users reveal their location in a sporadic manner, e.g., via applications for location check-in
and location-tagging, or via applications for finding nearby points-of-interests, local events,
or nearby friends. We consider an adversary interested in uncovering the location of a user
at the time she sends the LBS query (i.e., an adversary performing localization attacks). We
focus on user-centric LPPMs in which the decisions taken to protect privacy (e.g., hiding,
perturbing, or faking the location) are made locally by the user. Hence, these LPPMs can
be easily integrated in the mobile device that she uses to access LBS. We note that the
principles behind our protection mechanism design are applicable to LBSs where users reveal
their location continuously (rather than sporadically), and where the adversary’s aim is to
track users continuously over space and time.

We propose an analytical framework that allows system designers to find the optimal
LPPM against a strategic adversary who, knowing each user’s LBS access pattern and the
underlying obfuscation algorithm, employs an optimal attack to localize them. The challenge
is to design an optimal protection mechanism when the inference attack, dependent on the
mechanism being designed, is unknown to the designer. As opposed to making any assumption
about the adversary’s inference algorithm (i.e., limiting his power), we co-infer the optimal
attack while finding the defense mechanism. Additionally, our methodology constrains the
search space to the LPPMs that obfuscate locations in such a way that the quality of the
LBS response is not degraded below a threshold imposed by the user, hence required service
quality for the user is guaranteed. We assume that the adversary is also aware of this user-
specified service quality constraint. To the best of our knowledge, this is the first analytical
framework that allows engineers to methodologically integrate adversarial knowledge in the
design of optimal user-centric privacy protection mechanisms.

We formalize the problem of finding the optimal LPPM anticipating the optimal inference
attack as an instance of a zero-sum Bayesian Stackelberg game. In this game, a leader and
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a follower interact strategically, with each one’s gain being the loss of the other. The leader
decides on her strategy knowing that it will be observed by the follower, who will optimize his
choice based on this observation. In our scenario, the user is the leader and the adversary is
the follower. Then, this game precisely models that the adversary knows the user’s choice of
protection mechanism and will use this knowledge to improve the effectiveness of his attack.
We extend the classic formulation of a Stackelberg game with an additional constraint to
ensure that the service quality is satisfactory for the user. This enables us to find the optimal
point in the tradeoff curve between privacy and service quality, which satisfies both user
privacy and service quality requirements.

Our solution is similar to previous work on security in which, as in the location-privacy
scenario, the defender can be modeled as a Stackelberg game leader, and the adversary as the
follower. The common theme is that the defender must commit to a defense strategy/protocol,
which is then disclosed to the adversary, who can then choose an optimal course of action after
observing the defender’s strategy. Paruchuri et al. [PPM+08] propose an efficient algorithm
for finding the leader’s optimal strategy considering as a main case study a patrolling agent
who searches for a robber in a limited area. In their case, the defender is unsure about the
type of the adversary (i.e. where the adversary will attack). In contrast, in our work it is
the adversary who is unsure about the type (i.e. the true location) of the user/defender. A
similar approach is used by Liu and Chawla [LC09] in the design of an optimal e-mail spam
filter, taking into account that spammers adapt their e-mails to get past the spam detec-
tors. The same problem is tackled by Brückner and Scheffer [BS11], who further compare
the Stackelberg-based approach with previous spam filters based on support vector machines,
logistic regression, and Nash-logistic regression. Korzhyk et al. [KYK+11] contrast the Stack-
elberg framework with the more traditional Nash framework, within a class of security games.
A recent survey [MZA+11] explores the connections between security solutions and game the-
ory. To the best of our knowledge, our work is the first that uses Bayesian Stackelberg games
to design optimal privacy-protection mechanisms.

We evaluate the LPPMs generated by our method by using real location traces. We show
how, for a given user’s LBS access pattern and service-quality threshold, our game-theoretic
approach enables us to simultaneously find the optimal LPPM and the optimal attack against
it. We confirm that there is a trade-off between the maximum achievable privacy and the
service quality, but once a certain privacy level is reached, loosening the quality requirements
further does not necessarily result in a privacy gain. We also find that the location-privacy
gain of using the optimal LPPM, with respect to a suboptimal one, is larger when the quality
constraint is tighter (compared to the case where users’ quality requirements allow the LPPM
to significantly perturb locations before sending them to the LBS).

4.1 The Problem Statement

In this section, we first explain our system model and assumptions, and then sketch the
problem that we solve. In Table 4.1, we summarize the notations introduced throughout the
section. Note that, as we focus on user-centric mechanisms, which give protection to each
user separately, throughout this chapter we omit the user identity u.
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ψ LBS access profile of the user. Element ψ(r) is the probability of being at

location r when accessing the LBS.

f(r̃|r) Location obfuscation function implemented by the LPPM: Probability of

replacing r with r̃.

h(r̂|r̃) Adversary’s attack function: Probability of estimating r̂ as user’s actual

location, if pseudolocation r̃ is observed.

dq(r̃, r) Incurred service-quality loss by the user if LPPM replaces location r

with pseudolocation r̃.

dp(r̂, r) Distance between locations r̂ and r: Privacy of the user at location r if

adversary’s estimate is r̂.

Qloss(ψ, f, dq) Expected quality loss of an LPPM with location obfuscation function f .

Qmax
loss Maximum tolerable service quality loss, determined by the user.

Privacy(ψ, f, h, dp) Expected location privacy of the user with profile ψ using protection f

against attack h.

Table 4.1: Table of notations.

4.1.1 User and Adversary

We assume that users connect sporadically to an LBS provider to which they need to reveal
their current location in order to obtain a service, i.e., there is a non-negligible time gap
between two successive accesses of a given user to the LBS. The access profile ψ of the user
is the probability distribution of the location r from which the user accesses the LBS. More
formally, ψ(r) = Pr{At = r |X t = 1}.1 We assume that the adversary has an estimation of
each user’s access profile. So, he knows the frequency with which the user issues queries from
regions in R, i.e., ψ.

4.1.2 Location-Privacy Protection Mechanism

We consider that users want to preserve their location privacy when they access the LBS.
Users implement a local and user-centric LPPM that transforms each true location r into
a pseudolocation r̃ ∈ R̃, which is then sent to the LBS instead of the actual location. For
each actual location r, the LPPM chooses a pseudolocation r̃ by sampling from the following
probability distribution:

f(r̃|r) = Pr{Ot = r̃ |At = r,X t = 1} (4.1)

As accesses to the LBS are sporadic, two successive query locations of the user are con-
ditionally independent given ψ. The larger the inter-query time is, the more independent
the two locations of the user in her successive LBS accesses are. This is also reflected in the
LPPM’s obfuscation algorithm that outputs pseudolocations that depend only on the user’s
current location.

1 We note that, similar to the mobility profile, the access profile is also time-dependent (e.g., users have
different access patterns in the morning than in the afternoon). This dependency also affects users’ location
privacy requirements, and service quality requirements. For the sake of simplicity, we omit the time-period
and provide a solution for each user in a given time period. But, we note that the method is easily adaptable
to more complex access patterns and privacy/quality requirements elicitation that account for such changes in
time (e.g., by applying the method to each time period separately).
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4.1.3 Service Quality Metric

In the aforementioned setting, the LBS response quality depends on the pseudolocation output
by the LPPM and not on the user’s actual location. The distortion introduced in the observed
pseudolocations determines the quality of service that the user experiences. The more similar
the actual and the observed location are, the higher the service quality is. We compute the
expected quality loss due to an LPPM f(.) as an average of dq(r̃, r) over all r and r̃:

Qloss(ψ, f, dq) =
∑

r,r̃

ψ(r) · f(r̃|r) · dq(r̃, r). (4.2)

Function dq(.) determines the dissimilarity between location r and pseudolocation r̃. The
semantics of this dissimilarity depend on the LBS under consideration and also on the user’s
specific service-quality expectations. In many applications, the service quality can be consid-
ered inversely proportional to the physical distance between r and r̃. For example, applications
that find nearby points of interest can give very different responses to r and to r̃ even if they
are only a couple of kilometers apart. In contrast, there exist LBSs in which the service
quality depends on other criteria, such as on whether r̃ is within a region of interest. For a
weather forecast application, for instance, any pseudolocation r̃ in the same city as the actual
location r would result in a high quality LBS response.

We assume that each user imposes a maximum tolerable service quality loss, Qmax
loss , caused

by sharing pseudolocations instead of their actual locations. Formally,

Qloss(ψ, f, dq) ≤ Qmax
loss . (4.3)

This constrains the LPPM obfuscation function f(r̃|r) to not output pseudolocations that,
on average, would result in lower quality. We note that the influence of threshold Qmax

loss on
the LPPM depends on the function dq(.), hence it is also dependent on the type of the LBS
the user is querying. In the case of an LBS that finds nearby points of interest, where dq(.) is
proportional to the physical distance between r and r̃, enforcing the quality threshold results
in ensuring a maximum expected distance between these two locations. For the weather
application, enforcing the quality threshold results in setting region boundaries within which
locations lead to the same forecast. For other location-based applications, the function dq(.)
and the threshold Qmax

loss is defined in a similar way.

4.1.4 Location Privacy Metric

The adversary’s goal is to infer the user’s actual events At = r, given the observed events
Ot = r̃. Recall that the adversary knows the user’s profile, ψ. He uses this background
knowledge to run an inference attack on the observed events in order to output estimations
r̂ of the user’s actual locations. Formally, the attack result can be described as a probability
density function h(.) such that

h(r̂|r̃) = Pr{At = r̂ |Ot = r̃}. (4.4)

Under the sporadic assumption about the LBS, the current (query) location of the user is
conditionally independent of her past and future observed locations, given her access profile.
This is reflected in that the computation of the estimated location r̂ at time t only depends
on the pseudolocation r̃ observed at the same time t.
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We note that the attack formulation is independent of whether the considered LPPM
anonymizes the events or not. In this work, we assume that the adversary knows the identity
of the users behind the events, but the framework can be adapted to anonymous LPPMs as
well. Note that even when users are anonymous, our optimal solution provides a guarantee
for their location privacy (even after a potential re-identification attack).

We quantify the user’s location privacy as the adversary’s expected error in his inference
attack (see Section 1.5.1), i.e., the expected distortion in the reconstructed event. We compute
the expectation over all r, r̃, and r̂:

Privacy(ψ, f, h, dp) =
∑

r̂,r̃,r

ψ(r) · f(r̃|r) · h(r̂|r̃) · dp(r̂, r) (4.5)

The distortion function quantifies the loss of privacy stemming from the inference attack.
The privacy loss depends on the locations’ semantics and also on the privacy requirements of
the user (i.e., some users might consider locations inside a hospital more sensitive than other
places), and dp(.) must be defined accordingly. For instance, if the user wants to hide just
her exact current location (as opposed to hiding her location area), the appropriate distortion
function could be the Hamming distance (probability of error) between the estimated location
r̂ and the actual location r:

dp(r̂, r) =

{
0, if r̂ = r

1, otherwise
(4.6)

In this case, any location different from the user’s actual location results in a high level
of location privacy. Alternatively, the user’s privacy might depend on the physical distance
between the estimated and actual locations, hence the distortion function can be modeled as
the Euclidean distance between these locations, i.e., the squared-error distortion:

dp(r̂, r) = (r̂ − r)2 (4.7)

4.1.5 Problem Statement

Given

1. a maximum tolerable service-quality loss Qmax
loss imposed by the user as a bound for

Qloss(.), computed using the quality function dq(.), and

2. a prior adversarial knowledge of the user’s profile ψ,

the problem is finding the LPPM obfuscation function f(.) that maximizes the user’s location
privacy as defined in (4.5). The solution must consider that the adversary

1. observes the LPPM’s output r̃, and

2. is aware of the LPPM’s internal algorithm f(.).

Hence, the adversary implements the optimal attack h(.) that estimates the true location
of the user with the least distortion as measured by dp(.).
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4.2 Game Formulation

The problem of finding an LPPM that offers optimal location privacy given the knowledge
of the adversary is an instance of a zero-sum Bayesian Stackelberg game. In a Stackelberg
game the leader, in our case the user, plays first by choosing an LPPM and committing to
it by running it on her actual location. The follower, in our case the adversary, plays next
by estimating the user’s location, knowing the LPPM that the user has committed to. It
is a Bayesian game because the adversary has incomplete information about the user’s true
location and plays according to his hypothesis about this location. It is also an instance of
a zero-sum game, as the adversary’s gain (or loss) of utility is exactly balanced by the losses
(or gains) of the utility of the user: the information gained (lost) by the adversary is the
location privacy lost (gained) by the user. We now proceed to define the game adapted to
our problem:

Step 0 Nature selects a location r ∈ R for the user to access the LBS, according to a
probability distribution ψ. That is, location r is selected with probability ψ(r).

Step 1 Given r, the user runs the LPPM f(r̃|r) to select a pseudolocation r̃ ∈ R̃, subject to
f(.) complying with the service quality constraint (4.3).

Step 2 Having observed r̃, the adversary selects an estimated location r̂ ∼ h(r̂|r̃), r̂ ∈ R.
The adversary knows the probability distribution f(r̃|r) used by the LPPM; he also
knows the user’s profile ψ, but not the true location r.

Final Step The adversary pays an amount dp(r̂, r) to the user. This amount represents the
adversary’s error (equivalently, the location privacy gained by the user).

The above description is common knowledge to both the adversary and the user. They
both aim to maximize their payoff, i.e. the adversary tries to minimize the expected amount
that he will pay, whereas the user tries to maximize it.

4.3 Solution

In this section, we describe a precise optimization problem that formalizes the objectives of
the user and of the adversary. We construct two linear programs that, given ψ, dp(.) and
dq(.), we compute the user’s optimal choice of protection mechanism f(.), and the adversary’s
optimal choice of inference attack h(.).

4.3.1 Optimal Strategy for the User

The adversary observes the pseudolocation r̃ output by the LPPM, he knows the function
f(r̃|r) implemented by the LPPM, and he also knows the user’s access profile ψ. Thus, he
can form the posterior distribution

Pr{r|r̃} =
Pr{r, r̃}

Pr{r̃}
=

f(r̃|r) · ψ(r)∑
r′ f(r̃|r

′) · ψ(r′)
(4.8)

on the true location r of the user, conditional on the observation r̃. The adversary’s objective
is then to choose r̂ to minimize the user’s conditional expected privacy, where the expectation
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is taken under Pr{r|r̃}. The user’s conditional expected privacy for an arbitrary r̂ is

∑

r

Pr{r|r̃} · dp(r̂, r), (4.9)

and for the minimizing r̂ it is

min
r̂

∑

r

Pr{r|r̃} · dp(r̂, r). (4.10)

If there are multiple values of r̂ that satisfy (4.10), then the adversary randomizes arbi-
trarily among them. The probability with which r̂ is chosen in this randomization is h(r̂|r̃).
Of course, h(r̂|r̃) will be positive only for minimizing values of r̂; for all other values h(r̂|r̃)
will be zero. When randomizing, (4.10) is rewritten as

∑

r,r̂

Pr{r|r̃} · h(r̂|r̃) · dp(r̂, r). (4.11)

Note that if there is only one value of r̂ satisfying (4.10), then this value is selected with
probability 1 in the randomization, whereas all other values are selected with probability 0,
so (4.11) reduces to (4.10). In this sense, (4.11) is a generalization of (4.10), but it should be
noted that both expressions compute the same conditional expected privacy.

We see that for a given r̃, the user’s conditional privacy is given by (4.10). The probability
that r̃ is output by the LPPM is Pr{r̃} =

∑
r f(r̃|r) · ψ(r). Hence, the user’s unconditional

expected privacy (averaged over all r̃) is

∑

r̃

Pr{r̃}min
r̂

∑

r

Pr(r|r̃) · dp(r̂, r) =
∑

r̃

min
r̂

∑

r

ψ(r) · f(r̃|r) · dp(r̂, r). (4.12)

To facilitate the computations, we define

xr̃ , min
r̂

∑

r

ψ(r) · f(r̃|r) · dp(r̂, r). (4.13)

Incorporating xr̃ into (4.12), we rewrite the unconditional expected privacy of the user as

∑

r̃

xr̃, (4.14)

which the user aims to maximize by choosing the optimal f(r̃|r). The minimum operator
makes the problem non-linear, which is undesirable, but (4.13) can be transformed to a series
of linear constraints:

xr̃ ≤
∑

r

ψ(r) · f(r̃|r) · dp(r̂, r), ∀r̂. (4.15)

It turns out that maximizing (4.14) under (4.13) is equivalent to maximizing (4.14) under
(4.15) [DPV08, Ch. 7, p. 224].

We construct the linear program for the user from (4.14) and (4.15). Note that variable
xr̃ is a decision variable in the linear program, i.e. it is among the quantities chosen by
the solver. This might appear counterintuitive, as xr̃ is defined in (4.13) as a function of
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f(.), rather than as an independent variable that can be freely selected. But, because of the
transformation, it is always guaranteed that (4.13) will hold.

The linear program for the user is the following: Choose f(r̃|r), xr̃,∀r, r̃ in order to

Maximize
∑

r̃

xr̃ (4.16)

subject to

xr̃ ≤
∑

r

ψ(r) · f(r̃|r) · dp(r̂, r), ∀r̂, r̃ (4.17)

∑

r

ψ(r)
∑

r̃

f(r̃|r) · dq(r̃, r) ≤ Qmax
loss (4.18)

∑

r̃

f(r̃|r) = 1, ∀r (4.19)

f(r̃|r) ≥ 0, ∀r, r̃ (4.20)

Inequalities (4.17) are the series of linear constraints (4.15), one series for each value of r′;
inequality (4.18) reflects the service quality constraint; constraints (4.19) and (4.20) reflect
that f(r̃|r) is a probability distribution function.

4.3.2 Optimal Strategy for the Adversary

The reasoning is similar for the formalization of the adversary’s optimization problem. When
the LPPM’s output is pseudolocation r̃, the adversary will solve (4.10) to find an estimate r̂.
In general, the adversary will find multiple minimizing values of r̂, and each of them will be
selected with some probability h(r̂|r̃). Given that the true location is r and that the observed
pseudolocation is r̃, the conditional expected user privacy is

∑

r̂

h(r̂|r̃) · dp(r̂, r). (4.21)

In her optimal strategy, the user chooses r̃ to maximize (4.21). So, given that the true
location is r, the conditional expected user privacy for the maximizing r̃ is

yr , max
r̃

∑

r̂

h(r̂|r̃) · dp(r̂, r). (4.22)

Similarly as before, the maximization can be generalized to a randomization among max-
imizing values of r̃. The probability with which r̃ is chosen is f(r̃|r).

The prior distribution ψ(r) contains the adversary’s knowledge of r. Thus, the uncondi-
tional expected user privacy is

∑

r

ψ(r) · yr, (4.23)

that the adversary aims to minimize by choosing h(r̂|r̃). Similarly as before, (4.22) can be
transformed to an equivalent series of linear constraints:

yr ≥
∑

r̂

h(r̂|r̃) · dp(r̂, r),∀r̃. (4.24)
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We construct the linear program for the adversary (which is the dual of the user’s linear
program) from (4.23) and (4.24): Choose h(r̂|r̃), yr, ∀r, r̃, r̂, and z ∈ [0,∞) in order to

Minimize
∑

r

ψ(r) · yr + z ·Qmax
loss (4.25)

subject to

yr ≥
∑

r̂

h(r̂|r̃) · dp(r̂, r) + z · dq(r̃, r),∀r, r̃ (4.26)

∑

r̂

h(r̂|r̃) = 1,∀r̃ (4.27)

h(r̂|r̃) ≥ 0,∀r̃, r̂ (4.28)

z ≥ 0 (4.29)

Note the role of variable z: In linear programming parlance, it is the shadow price of the
service quality constraint. Intuitively, z is the “exchange rate” between service quality and
privacy. Its value in the optimal solution indicates the amount of privacy (in privacy units)
that is lost (gained) if the service quality threshold Qmax

loss increases (decreases) by one unit of
quality.

For example, if z > 0 in the optimal solution, then any change ∆Qmax
loss in Qmax

loss will affect
the privacy achieved by z · ∆Qmax

loss . In this case, constraint (4.18) is satisfied as a strict
equality. In contrast, if constraint (4.18) is satisfied as a strict inequality, then, intuitively,
the selection of f(r̃|r) has not been constrained by Qmax

loss . In this case, any (small) changes
in Qmax

loss will not have any effect on f(r̃|r), nor on the privacy achieved. So, z would be zero.

Note that both linear programs (to obtain optimal strategies for the user and the adver-
sary) compute the unconditional expected privacy of the user (4.5). Previous expressions can
be derived from this one. For instance, if there is a single best choice of a pseudolocation r̃ for
each given location r, then f(r̃|r) is always either 0 or 1, so (4.10) is obtained. The optimal
solution of each linear program results in the same value for the privacy of the user. Hence,
in principle, we only need to compute one of the two to quantify maximum level of privacy
of the user. We choose to present both, because the user’s linear program incorporates the
service quality constraint in a more straightforward manner, whereas the adversary’s linear
program explicitly computes the “exchange rate” between service quality and privacy.

4.4 Evaluation

The proposed optimization framework enables us to determine the most effective location-
privacy preserving mechanism (LPPM) against optimal inference attacks. The optimal LPPM
is designed under the constraint of guaranteeing a minimum service quality such that the
location-based service remains useful for the user. In this section, we evaluate the relation
between location privacy and service quality for a few example location-based services (Recall
that the service-quality sensitivity of a LBS to location obfuscation is encoded through the
dissimilarity function dq(.)). Moreover, we evaluate the performance of non-optimal LPPMs
and non-optimal inference attacks against the optimal strategies.

We use real location traces of people (in Lausanne, Switzerland) who use various means of
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Figure 4.1: Spatial histogram showing the density of users per region (in log scale) in Lau-
sanne. The area size is 15.32km × 7.58km, divided into 20× 15 regions.

transportation.2 We select 11 users at random, and we focus on their location traces during
the day (8am to 8pm), when it is more probable that users use location-based services. The
duration of the considered traces is one month. The location area, within which they move,
is divided into 300 regions. Figure 4.1 shows the density of users across all the regions. The
grayness of the cells shows the density of its corresponding region in log scale. As many of
the regions are not (or very rarely) visited by many individual users, we compute each user’s
profile ψ by considering only the 30 most popular regions across the whole population. This
prevents sparse user profiles. A user’s profile is the normalized number of her visits to each
region.

Given distance functions dp(.) and dq(.) and service-quality loss threshold Qmax
loss , we com-

pute the optimal LPPM and its corresponding optimal attack by solving (4.16) and (4.25)
using Matlab’s linear programming solver. We then compare the obtained optimal protec-
tion mechanism and the optimal inference attack against obfuscation LPPMs and Bayesian
inference attacks, respectively.

4.4.1 Basic Obfuscation LPPM

The basic obfuscation LPPM, with an obfuscation level k = 1, 2, 3, . . ., is constructed in the
following way: For each location r, we find its k − 1 closest locations (using the Euclidean
distance between the centers of the regions). The probability distribution function f(.|r) will
be the uniform probability distribution on the set of the k−1 selected locations together with
the location r. That is, location r is replaced by each of the k locations, as a pseudolocation,
with the same probability 1

k
, and all the rest of locations have probability 0. Thus, in practice,

an actual location r is hidden among its k − 1 nearest locations. We choose this mechanism,
as it is very popular in the literature.

Given the user profile ψ and quality distance function dq(.), we use (4.2) to compute the
expected service-quality loss Qloss(ψ, f, dq) for any LPPM obfuscation f(.), whether it be
optimal or not.

2 The traces are obtained from the Lausanne Data Collection Campaign dataset,
http://research.nokia.com/page/11367
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4.4.2 Bayesian Inference Attack on an LPPM

We compare the effectiveness of our optimal attack with the Bayesian inference attack, which
has been shown effective in Chapter 3. In the Bayesian approach, for each pseudolocation r̃,
the posterior probability distribution over the locations is used to invert the noise added by
the LPPM. The posterior probability is computed as

h(r̂|r̃) =
Pr{r̂, r̃}

Pr{r̃}
=

f(r̃|r̂) · ψ(r̂)∑
r′ f(r̃|r

′) · ψ(r′)
. (4.30)

We use (4.5) to compute the expected location privacy of a user who adopts a given
(obfuscation or optimal) LPPM f(.) against a (Bayesian or optimal) inference attack h(.).
The expected location privacy also depends on the distortion function dp(.) that we choose
to use.

Briefly, if dp(.) is the Hamming distance, then the Bayesian attack chooses the location
with the highest posterior probability Pr{r̂|r̃}. If dp(.) is the Euclidean distance, the Bayesian
attack chooses the conditional expected value E{r̂|r̃}.

4.4.3 Optimal Inference Attack on an Arbitrary LPPM

In order to make a fair comparison between the effectiveness of the optimal and obfuscation
LPPM, we need to run the same attack on both of them. The Bayesian inference attack
described by (4.30) can be performed against both. However, we still need to design an
optimal attack against arbitrary LPPMs that have not been constructed in our game-theoretic
framework.

The optimal inference attack is the one that minimizes the expected user privacy:

h(r̂|r̃) = argmin
h
Privacy(ψ, f, h, dp). (4.31)

Given the user profile ψ, an LPPM f(.) and distortion function dp(.), the following linear
program finds the optimal attack h(.). Note that, compared to (4.25), there is no service
quality constraint here, as the LPPM has been assumed to be arbitrary.

Minimize
∑

r̂,r̃,r

ψ(r) · f(r̃|r) · h(r̂|r̃) · dp(r̂, r) (4.32)

subject to
∑

r̂

h(r̂|r̃) = 1,∀r̃, and h(r̂|r̃) ≥ 0,∀r̂, r̃ (4.33)

4.4.4 Location-Privacy Protection Mechanism Output

Consider a LBS user making use of our optimal LPPM on her mobile device. The way her
location appears in the eyes of the adversary is shown in Figure 4.2. For the sake of com-
parison, Figure 4.2 also shows how a basic obfuscation LPPM distributes the pseudolocations
over space. In order to make a fair comparison, we need to make sure that the cost of the
two LPPMs, in terms of service quality, is the same. To do so, we compute the quality loss
Qloss of the obfuscation LPPM and assign this loss as the quality threshold Qmax

loss of the op-
timal LPPM. Hence, the optimal LPPM cannot sacrifice the service quality more than the
obfuscation LPPM to gain higher location privacy.
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User’s Profile

(1)

Optimal LPPM, over all locations

(2)

Obfuscation LPPM, over all locations

(3)

Optimal LPPM. Loc(13,7)

(4)

Obfuscation LPPM. Loc(13,7)

(5)

Figure 4.2: Input/Output of LPPM. Profile of a user for whom the subsequent calculations are
made (sub-figure 1). Distribution Pr{r̃} of observed pseudolocations when using the optimal
LPPM with Qmax

loss = 0.8690 (sub-figure 2). Distribution Pr{r̃} of observed pseudolocations
when using obfuscation LPPM with Qloss(ψ, f, dq) = 0.8690 (sub-figure 3). Conditional
distribution Pr{r̃|r} when using the optimal LPPM on location r = (13, 7) (sub-figure 4).
Conditional distribution Pr{r̃|r} when using obfuscation LPPM on location r = (13, 7) (sub-
figure 5). In the grid, column 1 is the left-most column, and row 1 is the bottom row. We
assume Euclidean distortion dp and Hamming distortion dq.

Figures 4.2(2) and 4.2(3) show Pr{r̃}, the distribution of pseudolocations averaged over
all locations for optimal and basic obfuscation LPPMs, respectively. Given arbitrary LPPM
location obfuscation function f(.) and user profile ψ, the probability distribution of pseudolo-
cations is

Pr{r̃} =
∑

r

ψ(r) · f(r̃|r). (4.34)

As it is shown, the distribution corresponding to the optimal LPPM is more uniform,
making it more difficult for the adversary to invert it effectively.

In Figures 4.2(4) and 4.2(5), we show the distribution of pseudolocations for specific
location r = loc(13, 7). By observing how uniform their outputs are, we can easily make the
comparison between the two LPPMs. The obfuscation LPPM is obviously more concentrated
around the actual location, whereas the optimal LPPM (with the same service-quality loss
as the obfuscation method) broadens the set of pseudolocations to most of possible regions
including highly probable regions (i.e. regions r with a large ψ(r)). This higher diversity
brings higher privacy, as we will see later in this section.
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(b) Service-quality threshold Qmax
loss vs. Service-

quality loss Qloss(ψ, f, dq), for a given level of loca-
tion privacy Privacy(ψ, f, h, dp). The circles ◦ rep-
resent different values of Privacy(ψ, f, h, dp).

Figure 4.3: Tradeoff between Privacy and Service Quality: Optimal LPPM against the optimal
attack. The different lines represent users with diverse profiles ψ. We assume Euclidean
distortion dp and Euclidean distortion dq.

4.4.5 Tradeoff between Privacy and Service Quality

We now study the tradeoff between the level of privacy that the optimal LPPM provides,
against the optimal attack, and the service-quality loss that it causes. We plot in Figure 4.3(a)
the evolution of the service quality loss, as the optimal LPPM is configured to guarantee
different levels of service quality (for users with diverse profiles and for various service quality
thresholds). Each line in the figure represents one user and each ◦ represents one Qmax

loss . We
plot Privacy(ψ, f, h, dp) versus Qloss(ψ, f, dq).

Unsurprisingly, increasing the level of location-privacy protection significantly degrades
the service quality. Also, as expected, we can observe that the maximum achievable location
privacy is strongly dependent on the user profile. This is reflected by the separation between
the different lines. Each user can have up to a certain level of privacy, regardless of the
quality threshold (represented by ◦ in the figure). Hence, the service-quality loss remains
constant once this level has been reached. This is due to the presence of the optimal attack
that squeezes the location-privacy gain.

This effect is further illustrated in Figure 4.3(b), where the service-quality loss of optimal
LPPM is plotted against the service-quality threshold. Once the optimal LPPM offers the
maximal location privacy for a given user profile, loosening the service-quality constraint
does not significantly change the LPPM’s underlying function f , thus there is no reduction
in service quality. In other words, it is pointless to sacrifice the service quality, because doing
so does not increase the user’s location privacy.

4.4.6 Effectiveness of the Optimal Strategies

Assuming Euclidean distance functions dp(.) and dq(.), we compute the optimal LPPM and
attack methods for a set of service quality thresholdsQmax

loss . For each user, we run the Bayesian
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(b) Location privacy Privacy(ψ, f, h, dp) offered by
the optimal LPPM vs. location privacy offered by
the basic obfuscation LPPM, both evaluated against
the optimal attack.

Figure 4.4: Effectiveness of the optimal attack and optimal LPPM strategies. Different lines
represent users with diverse profiles ψ, and the circles ◦ represent different values of Qmax

loss .
We assume Euclidean distortion dp and Euclidean distortion dq.

inference attack on her optimal LPPM. We also evaluate the location privacy offered by the
basic obfuscation LPPM with respect to the optimal attack. We vary the obfuscation level
from 1 (minimum) to 30 (maximum), and for each case we compute the corresponding quality
loss. Then, this value is set as the threshold Qmax

loss for finding the optimal attack mechanism.

Figure 4.4(a) shows the superiority of the optimal attack to the Bayesian attack, when
the location privacy of users is protected by using the optimal LPPM: For any given user
and service-quality threshold, the location privacy that the user obtains is smaller when the
adversary implements the optimal strategy rather than the Bayesian inference attack.

Figure 4.4(b) shows the superiority of the optimal LPPM to the obfuscation LPPM,
against the optimal attack: For any given user and service-quality threshold, a user has a
higher privacy level when the LPPM implements the optimal strategy. As expected, the
privacy obtained by both mechanisms become equal when no service quality is guaranteed for
the user (i.e., Qmax

loss is set to its maximum value).

Consider a single user. To further investigate the effectiveness of optimal strategies, we
evaluate her privacy under four different combinations of optimal and non-optimal protec-
tion/attack methods that have been explained before.

Similar to Figure 4.2, we consider the basic obfuscation LPPM as the basis for generating
the service-quality threshold Qmax

loss . In all graphs of Figure 4.5 each dot represents one obfus-
cation level used in the basic obfuscation LPPM. The corresponding service-quality loss for
each obfuscation level is shown on the x-axis of all four plots. As it can be easily observed
from the figures, the optimal attack, compared with the Bayesian attack, always results in
a higher degradation of the user’s location privacy. Moreover, the optimal LPPM always
provides a higher level of privacy for the user (regardless of the service-quality threshold)
compared with the basic obfuscation LPPM.

The figures well illustrate how both user and adversary converge to use optimal strategies
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Figure 4.5: Service-quality threshold Qmax
loss vs. Location privacy Privacy(ψ, f, h, dp), for one

single user. The different lines represent combinations of optimal (◦) and basic obfuscation (•)
LPPMs tested against optimal (· · · ) and Bayesian-inference (–) attacks. The service-quality
threshold Qmax

loss is equal to the service quality obtained by the basic obfuscation LPPM when
the number of obfuscation levels used to perturb the location varies from 1 to 30 (its maximum
value).

against each other. The user’s favorite setting, i.e. the one that brings her a high level of
privacy, is (Optimal, Bayesian). Inversely, the (Obfuscation, Optimal) combination is the
favorite setting for the adversary, in which he pays the minimum cost of estimation-error.
However, neither of these two settings is a stable state. In the (Optimal, Bayesian) combina-
tion, the adversary would gain more by choosing the Optimal attack. In the (Obfuscation,
Optimal) combination, the user would gain more by choosing the Optimal LPPM. Hence, the
(Optimal, Optimal) combination is a stable equilibrium for both.

The fourth combination (Obfuscation, Bayesian) illustrates an interesting behavior. For
small values of quality threshold Qmax

loss (or, equivalently, smaller obfuscation levels) the user’s
privacy is lower than the (Optimal, Optimal) case. However at some middle point, its provided
privacy increases and surpasses the privacy obtained from the optimal methods. Indeed,
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for small Qmax
loss , the optimal LPPM uses all its available capacity to increase privacy by

distributing the user’s pseudolocations over a higher number of locations. So, it performs
better than the basic obfuscation LPPM, which is limited to distributing pseudolocations
only in a small set of regions. But when the obfuscation level (or, similarly, the service-
quality threshold) increases, the basic obfuscation LPPM does better: First, because it is
no longer severely limited. And, second, because it is paired against the Bayesian inference
attack, which is weaker than the optimal inference attack.

4.5 Summary

Accessing location-based services from mobile devices entails a privacy risk for users whose
sensitive information can be inferred from the locations they visit. This information leakage
raises the need for robust location-privacy protecting mechanisms (LPPMs). In this chapter,
we have proposed a game-theoretic framework that enables a designer to find the optimal
LPPM for a given location-based service, ensuring a satisfactory service quality for the user.
This LPPM is designed to provide user-centric location privacy, hence it is ideal to be imple-
mented in the users’ mobile devices.

Our method accounts for the fact that the strongest adversary not only observes the per-
turbed location sent by the user but also knows the algorithm implemented by the protection
mechanism. Hence, he can exploit the information leaked by the LPPM’s algorithm to re-
duce his uncertainty about the user’s true location. However, the user is only aware of the
adversary’s knowledge and does not make any assumption about his inference attack. Hence,
she prepares the protection mechanism against the most optimal attack. By modeling the
problem as a Bayesian Stackelberg competition, we ensure that the optimal LPPM is designed
anticipating such a strong inference attack. We have shown that our approach is superior to
other LPPMs such as basic location obfuscation. The superiority of the optimal LPPM over
alternatives is more significant when the service-quality constraint imposed by the user is
tightened. Hence, our solution is effective exactly where it will be used. Finally, our results
confirm that loosening the service-quality constraint allows for increased privacy protection,
but the magnitude of this increase strongly depends on the user profile, i.e., on the degree to
which a user’s location is predictable from her LBS access profile.

To the best of our knowledge, this is the first framework that explicitly includes the
adversarial knowledge into a privacy-preserving design process and that considers the common
knowledge between the privacy protector and the attacker. Our solution is a promising step
forward in the quest for robust and effective privacy preserving systems.

Related Publication [STT+12]



Conclusion

The plants say, “We are green of ourselves, we are gay,
smiling, and blooming and we are tall (by nature).”
The season of summer says (to them), “O peoples,
behold yourselves when I depart!”

Rumi

In this thesis, we focus on how to quantify and protect the location privacy of mobile users,
in the context of location-based services (LBSs). What users share with service providers in
various LBSs can lead to the disclosure of their personal information. Therefore, privacy
preserving mechanisms are used to reduce the amount of information that users reveal to
third parties (e.g., service providers). We provide an analytical framework to evaluate users’
location privacy. Our main emphasis is on the adversary model. We formalize the problem
of quantifying location privacy as an estimation problem: (i) the adversary has some prior
knowledge about users, (ii) he observes their access to an LBS that contains their (perhaps
anonymized and obfuscated) location information, and (iii) he tries to estimate users’ private
information that is hidden from him. We build an inference engine, using hidden Markov
models, to find users’ identities and estimate their location traces. We implement this engine
in an open-source software tool called location-privacy and mobility meter (LPM). The results
of using LPM on real location traces indicate that users’ location privacy not only depend
on the protection mechanism, but also on the adversary’s knowledge and his objectives and
inference attacks. We then formalize the problem of designing location-privacy preserving
mechanisms as a Stackelberg game between user and adversary. As the adversary does not
know a user’s actual location, yet he has a probabilistic belief about it, the game is also
Bayesian. By solving the game, we find the optimal strategy for the user against an adversary
who tries to minimize his estimation error (which is equivalent to the user’s privacy). Our
results indicate that the user’s strategy, which anticipates the adversary, provides a higher
level of privacy for users compared with basic obfuscation mechanisms.

This thesis is a step towards a better understanding and analysis of threats against users’
location privacy. It also provides solutions for protecting their location privacy in the context
of location-based services. Some research directions to continue this work are as follows.

In Chapter 1, we provide a three-layer model for locations. According to this simple model,
a location has geographical coordinates; it is a type of place (e.g., a university building); and
it is related to specific activities (e.g., education) that determine the type and semantic of the
location. Our main focus is on the bottom (geographical) level. As future work, the users’
profiles can be extended to the top (semantic) level. Each user can be associated with her
interest in visiting different types of locations. Furthermore, a user’s profile can model how a
user moves between locations with different semantics, or how frequently and for how long she
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visits different types of locations (e.g., a restaurant, a cinema). Subsequently, the protection
mechanisms and inference attacks need to be extended in a corresponding manner.

In Chapter 2, we provide an algorithm for constructing a user’s profile (which is the
adversary’s knowledge about the user). The main focus is on mobility profiles, i.e., the
probability distribution over the locations that a user visits. In this thesis, we assume that
users’ mobilities are independent of each other. As future work, this assumption can be
relaxed. Because of their personal and social ties, people spend a certain amount of their
time with some specific people, e.g., their family. Therefore, an adversary can model this in
the users’ profiles, and take this into account in the inference attacks.

In Chapter 3, we design inference attacks against location-privacy preserving mechanisms,
in order to evaluate the users’ location privacy. Within the evaluation time window, we assume
that users have persistent pseudonyms. Furthermore, we ignore other traces that are observed
from users (perhaps with different pseudonyms) before and after the evaluation time window.
As future work, we can extend our inference framework to also evaluate the effectiveness of
pseudonym-change protection mechanisms. Additionally, it is worth looking into the problem
of designing optimal pseudonym-change strategies for mobile users.

In Chapter 4, we focus on finding optimal defense strategies for users against localization
attacks. Whenever a user accesses an LBS with an obfuscated location, her concern is to
hide her current location from the adversary. Furthermore, we consider users who access the
LBS sporadically. So, given a user’s profile, we assume conditional independence between
two subsequent locations from which she accesses the LBS. As future work, we can relax this
independence assumption. Furthermore, we can apply our game theoretic methodology to
find the optimal defense strategy for users against tracking attacks.
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[PK08] Andreas Pfitzmann and Marit Köhntopp. Anonymity, unlinkability, unde-
tectability, unobservability, pseudonymity, and identity management - a con-
solidated proposal for terminology., 2008.



70 Bibliography

[PPM+08] Praveen Paruchuri, Jonathan P. Pearce, Janusz Marecki, Milind Tambe, Fer-
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