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Abstract

Unlearning algorithms aim to remove deleted data’s influence from trained models at
a cost lower than full retraining. However, prior guarantees of unlearning in literature
are flawed and don’t protect the privacy of deleted records. We show that when users
delete their data as a function of published models, records in a database become inter-
dependent. So, even retraining a fresh model after deletion of a record doesn’t ensure
its privacy. Secondly, unlearning algorithms that cache partial computations to speed up
the processing can leak deleted information over a series of releases, violating the privacy
of deleted records in the long run. To address these, we propose a sound deletion guar-
antee and show that the privacy of existing records is necessary for the privacy of deleted
records. Under this notion, we propose an accurate, computationally efficient, and secure
machine unlearning algorithm based on noisy gradient descent.

1 Introduction

Corporations today collect their customers’ private information to train Machine Learning
models that power a variety of services like recommendations, searches, targeted ads, etc.
To prevent any unintended use of personal data, privacy policies, such as the General Data
Protection Regulation [14] (GDPR) and the California Consumer Privacy Act [6] (CCPA),
require that these corporations provide the “Right to be Forgotten” (RTBF) to their users—
if a user wishes to revoke access to their data, an organization must comply by erasing all
information about her without undue delay (typically a month). Critically, models trained in
standard ways are susceptible to model inversion [13] and membership inference attacks [31],
demonstrating that training data can be exfiltrated from these models.

Periodic retraining of models after excluding deleted users can be computationally expen-
sive. Consequently, there is a growing interest in designing computationally cheap Machine
Unlearning algorithms as an alternative to retraining for erasing the influence of deleted data
from trained models. Since it is generally difficult to tell how a specific data point affects
a model, Ginart et al. [15] propose quantifying the worst-case information leakage from an
unlearned model through an unlearning guarantee on the mechanism, defined as a differential
privacy (DP) like (ε, δ)-indistinguishability between its output and that of retraining on the

1

http://arxiv.org/abs/2210.08911v2


updated database. With some minor variations in this definition, several mechanisms have
been proposed and certified as unlearning algorithms in literature [15, 20, 30, 24, 17, 32].

However, is indistinguishability to retraining a sufficient guarantee of deletion privacy?
We argue that it is not. In the real world, a user’s decision to remove his information is
often affected by what a deployed model reveals about him. Unfortunately, the same revealed
information may also affect other users’ decisions. Such adaptive requests make the records
in a database interdependent. For instance, if an individual is identified to be part of the
training set, many members of his group may request deletion. Therefore, the representation
of different groups in the unlearned model can reveal the individual’s affiliation, even when
he is no longer part of the dataset. We demonstrate on mechanism certified under existing
unlearning guarantees, including Gupta et al. [18]’s adaptive unlearning, that the identity of
the target record can be inferred from the unlearned model when requests are adaptive. Since
it is possible that adaptive deletion requests can encode patterns specific to a target record in
the curator’s database, we argue that any deletion privacy certification via indistinguishability
to retraining, as done in all prior unlearning definitions, is fundamentally flawed.

Is an unlearning guarantee a sound and complete measure of deletion privacy when requests
are non-adaptive? Again, we argue that it is neither. A sound deletion privacy guarantee
must ensure the non-recovery of deleted records from an infinite number of model releases
after deletion. However, approximate indistinguishability to retraining implies an inability to
accurately recover deleted data from a singular unlearned model only, which we argue is not
sufficient. We show that certain algorithms can satisfy an unlearning guarantee yet blatantly
reveal the deleted data eventually over multiple releases. The vulnerability arises in algo-
rithms that maintain partial computations in internal data-dependent states for speeding up
subsequent deletions. These internal states can retain information even after record deletion
and influence multiple future releases, making the myopic unlearning guarantee unreliable
in sequential deletion settings. Several proposed unlearning algorithms in literature [24, 18]
are stateful (rely on internal states) and, therefore, cannot be trusted. Secondly, existing
unlearning definitions are incomplete notions of deletion privacy they exclude valid deletion
mechanisms that do not imitate retraining. For instance, a (useless) mechanism that outputs
a fixed untrained model on any request is a valid deletion algorithm. However, since its output
is easily distinguishable from retraining, it fails to satisfy these unlearning guarantees.

This paper proposes a sound definition of data-deletion that does not suffer from the afore-
mentioned shortcomings. Under our paradigm, a data-deletion mechanism is reliable if A) it
is stateless, i.e., does not rely on any secret states that may be influenced by previously deleted
records; and B) it generates models that are indistinguishable from some deleted record inde-
pendent random variable. Statelessness thwarts the danger of sustained information leakage
through internal data structures after deletion. Moreover, by measuring its deletion privacy
via indistinguishability with any deleted-record independent random variable, as opposed to
the output of retraining, we ensure reliability in presence of adaptive requests that can create
dependence between current and deleted records in the database.

In general, we show that under adaptive requests, any data-deletion mechanism must be
privacy-preserving with respect to existing records to ensure the privacy of deleted records.
Privacy with respect to existing records is necessary to prevent adaptive requests from creating
any unwanted correlations among present and absent database entries that prevents deletion
of records in an information theoretic sense. We also prove that if a mechanism is differentially
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private with respect to the existing records and satisfies our data-deletion guarantee under
non-adaptive edit requests, then it also satisfies a data-deletion guarantee under adaptive
requests. That is, we prove a general reduction for our sound data-deletion guarantee under
non-adaptive requests to adaptive requests when the unlearning mechanism is differentially
private with respect to records not being deleted. We emphasize that we are not advocating
for doing data deletion through differentially-private mechanisms simply because it caps the
information content of all records equally, deleted or otherwise. Instead, a data-deletion
mechanism should provide two differing information reattainment bounds; one for records
currently in the database in the form of a differential privacy guarantee, and the other for
records previously deleted in the form of a non-adaptive data-deletion guarantee, as these two
information bounds together ensure deletion privacy under adaptive requests as well.

Based on our findings, we redefine the problem of data-deletion as designing a mechanism
that (1.) satisfies a data-deletion guarantee against non-adaptive deletion requests, (2.)
is differentially private for remaining records, and (3.) has the same utility guarantee as
retraining under identical differential privacy constraints. On top of these objectives, a data-
deletion mechanism must also be computationally cheaper than retraining for being useful.
We propose a data-deletion solution based on Noisy Gradient Descent (Noisy-GD), a popular
differentially private learning algorithm [3, 1], and show that our solution satisfies all the three
objectives while providing substantial computational savings for both convex and non-convex
losses. Our solution demonstrates a powerful synergy between data deletion and differential
privacy as the same noise needed for the privacy of records present in the database also rapidly
erases information regarding records deleted from the database. For convex and smooth losses,
we certify that under a (q, εdd)-Rényi data-deletion and (q, εdp)-Rényi DP constraint, our
Noisy-GD based deletion mechanism for d-dimensional models over n-sized databases with
requests that modify no more than r records can maintain a tight optimal excess empirical

risk of the order O
( qd
εdpn2

)
while being Ω(n log(min{nr , n

√
εdd
qd }) cheaper than retraining in

gradient complexity. For non-convex, bounded and smooth losses we show a computational
saving of Ω(dn log n

r ) in gradient complexity while satisfying the three objectives with an

excess risk bound of Õ
( qd
εdpn2 + 1

n

√
q
εdp

)
. Compared to our results, prior works have a worse

computation saving under same utility constraints [20, 17, 30, 32], do not satisfy differential
privacy [5, 18], or require unsafe internal data structures for matching our utility bounds [24].

2 Preliminaries

2.1 Indistinguishability and Differential Privacy

We provide the basics of indistinguishability of random variables (with more details in Ap-
pendix B). Let Θ,Θ′ be two random variables in space O with densities ν,ν′ respectively.

Definition 2.1 ((ε, δ)-indistinguishability [12]). We say Θ and Θ′ are (ε, δ)-indistinguishable

(denoted by Θ
ε,δ≈ Θ′) if, for all O ⊂ O,

P [Θ ∈ O] ≤ eεP
[
Θ′ ∈ O

]
+ δ and P

[
Θ′ ∈ O

]
≤ eεP [Θ ∈ O] + δ. (1)
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Definition 2.2 (Rényi divergence [28]). Rényi divergence of ν w.r.t. ν
′ of order q > 1 is

defined as

Rq
(
ν
∥
∥ν

′) =
1

q − 1
log Eq

(
ν
∥
∥ν

′) , where Eq
(
ν
∥
∥ν

′) = E
θ∼ν′

[(
ν(θ)

ν′(θ)

)q]

, (2)

when ν is absolutely continuous w.r.t. ν
′ (denoted as ν ≪ ν

′). If ν 6≪ ν
′, we’ll say

Rq (ν‖ν′) =∞.

Remark 2.1. Rényi divergence is asymmetric (Rq (ν‖ν′) 6= Rq (ν
′‖ν)). Mironov [23, Propo-

sition 3] show that Rq (ν‖ν′) ≤ ε0 implies indistinguishability only in one direction, i.e., for
any O ⊂ O, we have P [Θ ∈ O] ≤ eεP [Θ′ ∈ O] + δ, where ε = ε0 +

log 1/δ
q−1 for any 0 < δ < 1.

Definition 2.3 ((Rényi) Differential Privacy [12, 23]). A randomized mechanismM : X n → O
is said to be (ε, δ)-differentially private if M(D) ε,δ≈ M(D′) for all neighbouring databases
D,D′ ∈ X n. Similarly, M is (q, ε)-Rényi differentially private if Rq (M(D)‖M(D′)) ≤ ε.

2.2 (Adaptive) Machine Unlearning

Let X be the data domain. A database D is an ordered set of n records from X . We use O to
denote the space of models. A learning algorithm A : X n → O inputs a database D ∈ X n and
returns a (possibly random) model in O. Ginart et al. [15] defines a data deletion operation
for a machine learning algorithm A as follows.

Definition 2.4 (Data deletion operation [15]). Algorithm Ā : X n × X r × O → O is a
data deletion operation for a learning algorithm A : X n → O if for any database D ∈ X n,
Ā(D, S,A(D)) 0,0≈ A(D \ S) for all subset S ⊂ D of size r selected independently of A(D).

In our paper, we mostly consider batched replacement1 edit requests as stated below.

Definition 2.5 (Edit request). A replacement operation 〈ind,y〉 ∈ [n] × X on a database
D = (x1, · · · ,xn) ∈ X n performs the following modification:

D ◦ 〈ind,y〉 = (x1, · · · ,xind−1,y,xind+1, · · · ,xn). (3)

Let r ≤ n and Ur = [n]r6=×X r. An edit request u = {〈ind1,y1〉, · · · , 〈indr,yr〉} ∈ Ur on D is
defined as batch of r replacement operations modifying distinct indices atomically, i.e.

D ◦ u = D ◦ 〈ind1,y1〉 ◦ · · · ◦ 〈indr,yr〉, (4)

where indi 6= indj for all i 6= j.

Similar to Ginart et al. [15], we define a deletion or an unlearning algorithm as a (possibly
stochastic) mapping Ā : X n × Ur ×O → O that takes in a database D ∈ X n, an edit request
u ∈ Ur and the current model in O, and outputs an updated model in O. We adopt the

online setting of Neel et al. [24] in which a stream of edit requests (ui)i≥1
def
= (u1, u2, · · · ), with

ui ∈ Ur, arrive in sequence. In this formulation, the data curator (characterized by (A, Ā))

1We consider replacements instead of deletion operations to ensure that database size doesn’t change.
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executes the learning algorithm A on the initial database D0 ∈ X n during the setup stage
before arrival of the first edit request to generate the initial model Θ̂0 ∈ O, i.e. Θ̂0 = A(D0).
Thereafter at any edit step i ≥ 1, to reflect an incoming edit request ui ∈ Ur that transforms
Di−1 ◦ ui → Di, the curator executes the unlearning algorithm Ā on current database Di−1,
the edit request ui, and the current model Θ̂i−1 for generating the next model Θ̂i ∈ O, i.e.

Ā(Di−1, ui, Θ̂i−1) = Θ̂i−1. Furthermore, the curator keeps secret the sequence (Θ̂i)i≥0
def
=

(Θ̂0, Θ̂1, · · · ) of (un)learned models, only releasing publishable objects φi = fpub(Θ̂i), for all
i ≥ 0, generated using a publish function fpub : O → Φ. Here Φ is the space of publishable
objects like model predictions on an external dataset or noisy model releases.

Ginart et al. [15] note that the assumption of independence between a deletion request
and the preceding model in Definition 2.4 might not always hold. In real world, deletion
requests could often be adaptive, i.e., may depend on the prior published objects. For instance,
security researchers may demonstrate privacy attacks targeting minority subpopulation on
publicly available models, causing people in that subpopulation to request deletion of their
information from training data. Gupta et al. [18] model such an interactive environment
through an adaptive update requester. We provide the following generalized definition of an
Gupta et al. [18]’s update requester and describe its interaction with a curator in Algorithm 1.

Definition 2.6 (Update requester [18]). The update sequence (ui)i≥1 is generated by an update
requester Q that inputs a subset of interaction history between herself and the curator (A, Ā),
and outputs a new edit request for the current round. We quantify the strength of Q with two
integers (p, r). Here p is the maximum number of prior published objects that the requester Q
has access to for generating the subsequent request and r is the number of records that can be
edited per request. More formally, a p-adaptive r-requester is a mapping Q : Φ≤p × Ur∗ → Ur.
Given a sorted list of observable indices ~s = (s1, · · · , sp) ∈ N

p the ith edit request ui generated
by Q on interaction with (A, Ā) is defined as

ui = Q(φs1 , φs2 , · · · , φsj
︸ ︷︷ ︸

def
= φ~s<i

;u1, u2, · · · , ui−1
︸ ︷︷ ︸

def
= u<i

), (5)

where sj is the largest index in ~s that is less than i.

Algorithm 1 Interaction between (A, Ā) and requester Q.

Require: Database D0 ∈ X n, observable indices ~s ∈ N
p.

1: Initialize Θ̂0 ← A(D0)
2: Publish φ0 ← fpub(Θ̂0)
3: for i = 1, 2, · · · do
4: Get next request ui ← Q(φ~s<i;u<i)
5: Update model Θ̂i ← Ā(Di−1, ui, Θ̂i−1)
6: Publish φi ← fpub(Θ̂i)
7: Update database Di ← Di−1 ◦ ui
8: end for

We denote 0-adaptive requesters as non-adaptive and by∞-adaptivity we mean requesters
that have access to the entire history of interaction transcript (φ<i;u<i) at step i. Neel et al.
[24] and Gupta et al. [18] define non-adaptive and adaptive unlearning2 as follows.

2Definition 2.7 of adaptive unlearning is stronger than Gupta et al. [18]’s since theirs require only one-sided
indistinguishability with (1− γ) probability over generated edit requests u≤i.

5



Definition 2.7 ((Adaptive) machine unlearning [24, 18]). We say that Ā is a (ε, δ)-non-
adaptive-unlearning algorithm for A under a publish function fpub, if for all initial databases
D0 ∈ X n and all non-adaptive 1-requesters Q, the following condition holds. For every edit
step i ≥ 1, and for all generated edit sequences u≤i

def
= (u1, · · · , ui),

fpub(Ā(Di−1, ui, Θ̂i−1))
∣
∣
u≤i

ε,δ≈ fpub(A(Di)). (6)

If (6) holds for all ∞-adaptive 1-requesters Q, we say that Ā is an (ε, δ)-adaptive-unlearning
algorithm for A.

3 Existing Deletion Definitions are Unsound and Incomplete

In this section we investigate the failure of prior definitions of certified data-deletion proposed
for ensuring the "Right to be Forgotten" (RTBF) guideline. In particular, we shed light on
multiple reasons why both adaptive and non-adaptive machine unlearning as described in
Definition 2.7 and several other definitions in literature are flawed notions of data deletion for
enforcing RTBF.

Threat model. Suppose, for an arbitrary step i ≥ 1, an adversary is interested in finding
out the identity of a record in the database Di−1 that is being replaced by edit request ui.
Our adversary only has access to releases by the curator after deletion3, i.e. the infinite post-

deletion sequence φ≥i
def
= (φi, φi+1, · · · ). The adversary in our threat model is assumed to also

have some understanding of how users may react to published data, but does not have any
access to the published data or user requests. That is, our adversary has some knowledge

about the dependence relationship between the published objects random variables φ<i
def
=

(φ0, · · · , φi−1) and the corresponding edit requests random variables u<i
def
= (u1, · · · , ui−1),

but does not observe these random variables. For example, adversary may know that if a
certain individual is identified in the published object φ0, many members of his group will
request for deletion u1. Our adversary can use her knowledge about this dependence to infer
the affiliation of a deleted individual by evaluating the representations of different groups in
subsequent release φ1. To capture the worst-case scenario, we model the adversary as having
the ability to design an adaptive requester Q (as defined in Definition 2.6) that interacts
with the data curator in previous i − 1 steps, but the adversary does not have access to the
interaction transcript (φ<i;u<i) of Q.

Unsoundness due to adaptivity. We highlight the problem with unlearning on adap-
tive requests with a simple example. For a data domain X = {−2,−1, 1, 2}, consider the
following algorithm pair (A, Ā) for any database D ⊂ X and deletion S ⊂ D.

A(D) =
∑

x∈D
x, and Ā(D, S,A(D)) =

∑

x∈D\S
x. (7)

Note that pair (A, Ā) satisfies Ginart et al. [15]’s Definition 2.4 of a data deletion operation
as for any D ⊂ X and any S ⊂ D, we have Ā(D, S,A(D)) = A(D \ S). Now consider

3Our threat model doesn’t include attacks which involve comparing releases before and after deletion (such
as Chen et al. [8]’s). These types of attacks are not covered by RTBF as they rely on information published
before deletion request.
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two neighbouring databases D = {−2,−1, 2}, D′ = {−2, 1, 2} and the following dependence
between the learned model A(D̄) and deletion request S:

S =

{

{x ∈ X |x < 0} if A(D̄) < 0,

{x ∈ X |x ≥ 0} otherwise.
(8)

Knowing this dependence, an adversary can distinguish whether D̄ is D or D′ by looking
only at Ā(D̄,x,A(D̄)). This is because if D̄ = D, then the output after deletion is 2, and if
D̄ = D′ the output is −2. Note that even though Ā perfectly imitates retraining via A and
the adversary does not observe either the model A(D̄) or the request S, she can still ascertain
the identity (−1 or 1) of a deleted record.

Ginart et al. [15]’s Definition 2.4 isn’t suited for adaptive deletion as it explicitly requires
deletion requests to be selected independently of the learned model. However, Gupta et al.
[18]’s Definition 2.7 of an adaptive-unlearning algorithm seeks to ensure RTBF specifically
when requests could be adaptive. In the following theorem, we show using a similar con-
struction that algorithms certified to be (0, 0)-adaptive-unlearning can still blatantly violate
privacy of deleted records under adaptivity.

Theorem 3.1. There exists an algorithm pair (A, Ā) satisfying (0, 0)-adaptive-unlearning
under publish function fpub(θ) = θ such that by designing a 1-adaptive 1-requester Q, an
adversary can infer the identity of a record deleted by edit ui, at any arbitrary step i > 3, with
probability at-least 1− (1/2)i−3 from a single post-edit release φi, even with no access to Q’s
transcript (φ<i;u<i).

In Appendix C.1 we show that other unlearning definitions in literature, like that of Sekhari
et al. [30] and Guo et al. [17], are also unsound under adaptivity.

Unsoundness due to secret states. Both adaptive and non-adaptive unlearning guar-
antees in Definition 2.7 are bounds on information leakage about a deleted record through
a single released output. However, our adversary can observe multiple (potentially infinite)
releases after deletion. We identify a yet another reason for violation of RTBF under Defini-
tion 2.7, even when edit requests are non-adaptive. This vulnerability arises because Defini-
tion 2.7 permits the curator to store secret models while requiring indistinguishability only
over the output of a publishing function fpub. These secret models may propagate encoded
information about records even after their deletion from the database. So, every subsequent
release by an unlearning algorithm can reveal new information about a record that was pur-
portedly erased multiple edits earlier. We demonstrate in the following theorem that a certified
unlearning algorithm can reveal a limited amount of information about a deleted record per
release so as not to break the unlearning certification, yet eventually reveal everything about
the record to an adversary that observes enough future releases.

Theorem 3.2. For every ε > 0, there exists a pair (A, Ā) of algorithms that satisfy (ε, 0)-
non-adaptive-unlearning under some publish function fpub such that for all non-adaptive 1-
requesters Q, their exists an adversary that can correctly infer the identity of a record deleted
at any arbitrary edit step i ≥ 1 by observing only the post-edit releases φ≥i.

Although Ginart et al. [15]’s Definition 2.4 (and those of Guo et al. [17] and Sekhari et al.
[30]) directly release the (un)learned models without applying any explicit publish function
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fpub, the above vulnerability might still arise in the online setting if a certified deletion
operation relies on data-dependent states that aren’t updated with database. We remark
that Ginart et al. [15], in their online formulation, permits a deletion operation to maintain
"arbitrary metadata like data structures or partial computations that can be leveraged to
help with subsequent deletions", and so could be susceptible to the vulnerability we describe.

Incompleteness. Another shortcoming with existing unlearning definitions is that many
valid deletion algorithms may fail to satisfy them. For instance, consider a (useless) mechanism
Ā that outputs a fixed untrained model in θ ∈ O regardless of its inputs. It is easy to see that
Ā is a valid deletion algorithm for any learning algorithm as Ā(·) (and therefore fpub(Ā(·))
for any fpub) does not depend on the input database or the learned model. However, this Ā
does not satisfy Definition 2.4 or Definition 2.7 for any reasonable learning algorithm A. In
Appendix C.1 we show that unlearning definitions of Guo et al. [17] and Sekhari et al. [30]
are also incomplete.

4 Redefining Deletion in Machine Learning

In this section, we redefine data deletion in Machine Learning to address the problems with
existing notions of unlearning that we demonstrate in the preceding section. The first change
we propose is to rule out the possibility of information leakage through internal data structures
(as shown in Theorem 3.2) by requiring deletion algorithms to be stateless. That is, a data-
deletion algorithm Ā cannot depend on any secret data-dependent states and the generated
(un)learned models are released without applying any publish function fpub (or equivalently,
by allowing only an identity publish function fpub(θ) = θ in Algorithm 1).

Secondly, we propose a definition of data-deletion that fixes the security blindspot of
existing unlearning guarantees. As demonstrated in Section 3, adaptive requests can encode
patterns specific to a target record in the database which persists even after deletion of
the target record, making any indistinguishable-to-retraining based data-deletion guarantee
unreliable. In the following definition, we account for the worst-case influence of adaptive
requests by measuring the indistinguishability of a data-deletion mechanism’s output from
that of some mechanism that never sees the deleted record or edit requests influenced by it.

Definition 4.1 ((q, ε)-data-deletion under p-adaptive r-requesters). Let q > 1, ε ≥ 0, and
p, r ∈ N. We say that an algorithm pair (A, Ā) satisfies (q, ε)-data-deletion under p-adaptive
r-requesters if the following condition holds for all p-adaptive r-requester Q. For every step
i ≥ 1, there exists a randomized mapping π

Q
i : X n → O such that for all initial databases

D0 ∈ X n,
Rq

(

Ā(Di−1, ui, Θ̂i−1)
∥
∥
∥π

Q
i (D0 ◦ 〈ind,y〉)

)

≤ ε, (9)

for all ui ∈ Ur and all 〈ind,y〉 ∈ ui.

We prove that the above definition is a sound guarantee of RTBF. Suppose that an ad-
versary is interested in identifying a record at index ‘ind’ in D0 that is being replaced with
record y ∈ X by one of the replacement operations in edit request ui ∈ Ur. Note that
random variable π

Q
i (D0 ◦ 〈ind,y〉) contains no information about the deleted record D0[ind].

Inequality (9) above implies that even with the power of designing an adaptive requester Q,
no adversary observing the unlearned model Ā(Di−1, ui, Θ̂i−1) can be too confident that the
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observation was not π
Q
i (D0 ◦ 〈ind,y〉) instead (cf. Remark 2.1). We support this argument

with the following guarantee.

Theorem 4.1 (Data-deletion Definition 4.1 is sound). If the algorithm pair (A, Ā) satisfies
(q, ε)-data-deletion guarantee under all p-adaptive r-requesters, then even with the power of
designing an p-adaptive r-requester Q that interacts with the curator before deletion of a target
record at any step i ≥ 1, any adversary observing only the post-deletion models (Θ̂i, Θ̂i+1, · · · )
has its membership inference advantage for inferring a deleted target bounded as

Adv(MI) ≤ min

{
√
2ε,

qeε(q−1)/q

q − 1
[2(q − 1)]1/q − 1

}

. (10)

As q →∞, the bound in (10) approaches min
{√

2ε, eε − 1
}
. Note that the bound in (10)

approaches 0 as ε→ 0, so Definition 4.1 is sound.

Remark 4.2 (Data-deletion generalizes prior unlearning definitions under non-adaptivity).
A non-adaptive requester Q is equivalent to fixing the request sequence (ui)i≥1 a-priori. Since
for any 〈ind,y〉 ∈ ui, database Di−1 ◦ ui = (D0 ◦ 〈ind,y〉) ◦ u1 ◦ · · · ◦ ui, note that database
Di−1 ◦ ui is a function of D0◦〈ind,y〉 given a non-adaptive Q. So if Q is non-adaptive, we can
set π

Q
i (D0 ◦ 〈ind,y〉) = π(Di−1 ◦ ui) in (9) for any randomized map π : X n → O, including

the learning algorithm A.

4.1 Link to Differential Privacy

A DP guarantee on A and Ā is a bound on the information contained in an (un)learned model
about individual records present in a database. From the post-processing and composition
property, a DP guarantee also bounds the worst case dependence that adaptive requests can
introduce between a target record and rest of the database. By virtue of this property, we
show a reduction from adaptive to non-adaptive data-deletion in the following theorem when
A and Ā also satisfy Rényi DP.

Theorem 4.3 (From adaptive to non-adaptive deletion). If an algorithm pair (A, Ā) satisfies
(q, εdd)-data-deletion under all non-adaptive r-requesters and is also (q, εdp)-Rényi DP with
respect to records not being deleted, then it also satisfies (q, εdd+pεdp)-data-deletion under all
p-adaptive r-requesters.

Remark 4.4. Gupta et al. [18] also prove a reduction from adaptive to non-adaptive unlearn-
ing (Definition 2.7) under differential privacy. We remark that our reduction is fundamentally
different from theirs as they require DP to hold with with regard to a change of description of
internal randomness as opposed to standard data item replacement in ours. We discuss the
key differences in Appendix D.1.

To complete the picture, we show in the following theorem that to satisfy data-deletion
under adaptive requests, both A and Ā must preserve the privacy of existing records.

Theorem 4.5 (Privacy of remaining records is necessary for adaptive deletion). Let Test :
O → {0, 1} be a membership inference test for A to distinguish between neighbouring databases
D,D′ ∈ X n. Similarly, let Test : O → {0, 1} be a membership inference test for Ā to distin-
guish between D̄, D̄′ ∈ X n that are neighbouring after applying edit ū ∈ U1. If Adv(Test) > δ

9



and Adv(Test) > δ, then the pair (A, Ā) cannot satisfy (q, ε)-data-deletion under 1-adaptive
1-requester for any

ε < max

{
δ4

2
, log(q − 1) +

q

q − 1
log

(
1 + δ2

q21/q

)}

. (11)

4.2 (Un)Learning Framework: ERM

Let space of model parameters be Rd and ℓ(θ;x) : Rd×X → R be a loss function of a parameter
θ ∈ R

d for a record x ∈ X . We consider the problem of empirical risk minimization (ERM)
of the average ℓ(θ;x) over records in the database D ∈ X n under L2 regularization, that is,
the minimization objective is

LD(θ) =
1

n

∑

x∈D
ℓ(θ;x) + r(θ), with r(θ) =

λ ‖θ‖22
2

. (12)

The excess empirical risk of a model Θ on D is defined as

err(Θ;D) = E [LD(Θ)− LD(θ∗D)] , (13)

where θ∗D = argmin
θ∈Rd

LD(θ), and expectation is over Θ.

Problem Definition. Let constants q > 1, 0 < εdd ≤ εdp, and α > 0. Our goal
in this paper is to design a learning mechanism A : X n → R

d and a deletion mechanisms
Ā : X n × Ur × R

d → R
d for ERM such that

(1.) both A and Ā satisfy (q, εdp)-Rényi DP with respect to records in the input database,

(2.) pair (A, Ā) satisfies (q, εdd)-data-deletion guarantee for all non-adaptive r-requesters Q,

(3.) and, all models (Θ̂i)i≥0 produced by (A, Ā,Q) on any D0 ∈ X n have err(Θ̂i;Di) ≤ α.

Objectives (1.) and (2.) together ensure that (A, Ā) satisfy data-deletion for adaptive
requests, and objective (3.) ensures (un)learned models are useful4.

A deletion algorithm Ā is only useful if it’s computationally cheaper than retraining with
A. We judge the benefit of Ā over A for ith request ui by difference in retraining Cost(A;Di−1◦
ui) and deletion Cost(Ā;Di−1, ui, Θ̂i−1).

5 Deletion Using Noisy Gradient Descent

This section proposes a simple and effective data-deletion solution based on Noisy-GD [1, 3,
7], a popular privacy-preserving ERM mechanism described in Algorithm 2. Appendix G.3
provides its Rényi DP guarantees.

Our proposed approach falls under the Descent-to-Delete framework proposed by Neel
et al. [24], wherein, after each deletion request ui, we run Noisy-GD starting from the previous
model Θ̂i−1 and perform a small number of gradient descent steps over records in the modified
database Di = Di−1 ◦ ui; sufficient to erase information regarding deleted records in the
subsequent model Θ̂i. Our algorithms (ANoisy-GD, ĀNoisy-GD) is defined as follows.

4Constraint α in (3.) should be close to the optimal excess risk attainable by ERM on Di under (q, εdp)-
Rényi DP.
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Algorithm 2 Noisy-GD: Noisy Gradient Descent

Require: Database D ∈ X n, model Θ ∈ R
d, number of iterations K ∈ N.

1: Initialize Θ0 = Θ
2: for k = 0, 1, · · · ,K − 1 do
3: ∇LD(Θηk) =

1
n

∑

x∈D∇ℓ(Θηk;x) +∇r(Θηk)
4: Θη(k+1) = Θηk − η∇LD(Θηk) +

√
2ηN

(
0, σ2Id

)

5: end for
6: return ΘηK

Definition 5.1 (Noisy-GD based data-deletion solution). Let KA,KĀ ∈ N and ρ be a
Gaussian weight initialization distribution in R

d. For any D ∈ X n, our learning algorithm
ANoisy-GD : X n → R

d is defined as

ANoisy-GD(D) = Noisy-GD(D,Θ,KA), (14)

where Θ ∼ ρ. And, for any edit request u ∈ Ur on database D ∈ X n and any model Θ ∈ R
d,

our deletion algorithm ĀNoisy-GD : X n × Ur × R
d → R

d is defined as

ĀNoisy-GD(D, u,Θ) = Noisy-GD(D ◦ ui,Θ,KĀ). (15)

Our curator (ANoisy-GD, ĀNoisy-GD) with any initial database D0 ∈ X n interacts with any
update requester Q as described in Algorithm 4 with publish function fpub(θ) = θ.

For this setup, our objective is to provide conditions under which the algorithm pair
(ANoisy-GD, ĀNoisy-GD) satisfies objectives (1.), (2.), and (3.) as stated in the problem defi-
nition and analyze the computational savings of using ĀNoisy-GD over ANoisy-GD in terms of
gradient complexity.

5.1 Deletion and Utility Under Convexity

We give the following set of guarantees for algorithm pair (ANoisy-GD, ĀNoisy-GD) when loss
function ℓ(θ;x) is convex.

Theorem 5.1 (Utility, privacy, deletion, and computation tradeoffs). Let constants λ, β, L > 0,
q > 1, and 0 < εdd ≤ εdp. Define constant κ = λ+β

λ . Let the loss function ℓ(θ;x) be twice
differentiable, convex, L-Lipschitz, and β-smooth, the regularizer be r(θ) = λ

2 ‖θ‖
2
2. If the

learning rate be η = 1
2(λ+β) , the gradient noise variance is σ2 = 4qL2

λεdpn2 , and the weight initial-

ization distribution is ρ = N
(

0, σ2

λ(1−ηλ/2)Id

)

, then

(1.) both ANoisy-GD and ĀNoisy-GD are (q, εdp)-Rényi DP for any KA,KĀ ≥ 0,

(2.) pair (ANoisy-GD, ĀNoisy-GD) satisfies (q, εdd)-data-deletion all non-adaptive r-requesters

if KĀ ≥ 4κ log
εdp
εdd

, (16)
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(3.) and all models in sequence (Θ̂i)i≥0 produced by interaction between (ANoisy-GD, ĀNoisy-GD)
and Q on any D0 ∈ X n, where Q is any r-requester, have an excess empirical risk
err(Θ̂i;Di) = O

(
qd

εdpn2

)

if

KA ≥ 4κ log

(
εdpn

2

4qd

)

, and KĀ ≥ 4κ log max

{

5κ,
8εdpr

2

qd

}

. (17)

Our excess empirical risk upper bound in Theorem 5.1 matches the theoretical lower bound
of Ω(min

{
1, d

ε2n2

}
) in Bassily et al. [3] for the best attainable empirical risk of any (ε, δ)-DP

algorithms on Lipschitz, smooth, strongly-convex loss functions5. Thus, our deletion algo-
rithm ĀNoisy-GD incurs no additional loss in utility, yet saves substantial computation costs.

Our deletion algorithm is stateless and offers a computation saving of Ω(n log min{nr , n
√

εdd
qd })

in gradient complexity per-request (i.e., n(KA − KĀ)) while guaranteeing privacy, adaptive
deletion, and optimal utility. This saving is better than all existing unlearning algorithms in
literature that we know of, and we present a detailed comparison in Table 1.

Also, observe that for satisfying (q, εdp)-Rényi DP and (q, εdd)-data-deletion for non-
adaptive r-requesters, the number of iterations KĀ needed is independent of the size, r,
of the deletion batch, depending solely on the ratio εdd

εdp
. However, the number of iterations

required for ensuring optimal utility with differential privacy grows with r. We highlight

that when deletion batches are sufficiently small, i.e., r ≤
√

qd
εdd

, doing enough unlearning

iterations for satisfying (q, εdd)-data-deletion guarantee is also sufficient for ensuring optimal
utility of unlearned model under (q, εdp)-Rényi DP constraint.

Unlearning Algorithm
Requires secret

states?
Compute savings

for ith edit

Noisy-m-A-SGD [Thm. 1, [32]] No Ω
(√

d
(

1−
√
d
n

))

Perturbed-GD [Thm. 9, [24]] Yes Ω
(

n log
(
εn√
d

))

Perturbed-GD [Thm. 28, [24]] No Ω
(

n log
(

εn
log2(id)

√
d

))

Noisy-GD [Thm. 5.1, Ours] No Ω
(

n logmin
{

n, εn√
d

})

Table 1: Comparison of the computation savings in gradient complexity per edit request along
with requirement of secret states with prior unlearning algorithms. Edit requests are non-
adaptive and modify r = 1 record in n-sized databases. We assume the loss ℓ(θ;x) of models
in R

d to be convex, 1-Lipschitz, and O(1)-smooth, and L2 regularization constant to be O(1).
For a fair comparison, we require that each of them satisfy (1 + 2

ε log(1/δ),
ε
2)-data-deletion

guarantee (which implies one-sided (ε, δ)-unlearning (cf. Remark 2.1 & 4.2)) and have the
same excess empirical risk bound α = O(1).

5Recall from Remark 2.1 that (q, εdp)-Rényi DP implies (ε, δ)-DP for q = 1 + 2
ε
log(1/δ) and εdp = ε/2.

When ε = Θ(log(1/δ)), one can evaluate that q
εdp

= Θ( log(1/δ)
ε2

).
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5.2 Deletion and Utility under Non-Convexity

For non-convex loss function ℓ(θ;x), we provide the following set of guarantees for pair
(ANoisy-GD, ĀNoisy-GD).

Theorem 5.2 (Accuracy, privacy, deletion, and computation tradeoffs). Let constants λ, β, L,
σ2, η > 0, constants q,B > 1, and constants 0 < εdd ≤ εdp < d. Let the loss function ℓ(θ;x) be
σ2 log(B)

4 -bounded, L-Lipschitz and β-smooth, the regularizer be r(θ) = λ
2 ‖θ‖

2
2, and the weight

initialization distribution be ρ = N
(

0, σ
2

λ Id

)

. Then,

(1.) both ANoisy-GD and ĀNoisy-GD are (q, εdp)-Rényi DP for any η ≥ 0 and any KA,KĀ ≥ 0

if σ2 ≥ qL2

εdpn2
· ηmax{KA,KĀ}, (18)

(2.) pair (ANoisy-GD, ĀNoisy-GD) satisfy (q, εdd)-data-deletion under all non-adaptive r-requesters
for any σ2 > 0, if learning rate is η ≤ λεdd

64dqB(β+λ)2 and number of iterations satisfy

KA ≥
2B

λη
log

(
q log(B)

εdd

)

, and KĀ ≥ KA −
2B

λη
log

(

log(B)

2
(
εdd +

r
n log(B)

)

)

, (19)

(3.) and all models in sequence (Θ̂i)i≥0 output by (ANoisy-GD, ĀNoisy-GD,Q) on any D0 ∈ X n,
where Q is an r-requester, satisfy err(Θ̂i;Di) = Õ

(

dq
εdpn2 + 1

n

√
qεdd
εdp

)

when inequalities

in (18) and (19) are equalities.

The Rényi DP result in (1.) is a restatement of Abadi et al. [1, Theorem 1] (discussed
further in Appendix G.3). Our deletion and utility results in (2.) and (3.) build on recent
breakthroughs in rapid convergence guarantees of Noisy-GD under isoperimetry [35, 9].

Under non-convexity, all prior works on deletion have focused on empirical analysis for
utility. As far as we know, we are the first to provide utility guarantees in this setting.
Moreover, our non-convex utility bound exceeds the optimal privacy-preserving utility under

convexity by only a factor of Õ
(
1
n

√
qεdd
εdp

)
, which becomes small for large databases or small

deletion to privacy budget ratio.
Our result offers a strict computational benefit in using ĀNoisy-GD whenever the fraction

of edited records in a single update request satisfies r
n ≤ 1

2 −
εdd
logB . For instance, in the

deletion regime where we want εdd = log(B)/4, relying on ĀNoisy-GD rather than retraining
with ANoisy-GD is Ω(dn log n

r ) cheaper.

Remark 5.3. Both Theorems 5.1 and 5.2 also hold when gradients ∇ℓ(θ;x) are clipped to
L instead of assuming L-Lipschitzness. Appendix F.1 discusses how gradient clipping is com-
patible with other assumptions we make.
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6 Conclusions

We showed that current data deletion methods in literature are inadequate under both adap-
tive and non-adaptive requests, and proposed a new notion of data deletion that aligns with
the "Right to be Forgotten." We also showed the importance of protecting the privacy of
existing records in order to ensure privacy of deleted records for adaptive deletion requests,
and provide a general reduction from adaptive to non-adaptive deletion guarantees under DP.
Our results on Noisy-GD based deletion algorithm, for both convex and non-convex losses,
show significant computation savings compared to retraining at no loss in utility.
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A Table of Notations

Symbol Meaning

O Arbitrary model parameter space.
Φ Space of publishable objects.
d,Rd Dimension of model parameters and d-dimensional Euclidean space.
n Database size.
X ,Xn Data universe and Domain of all datasets of size n.
ν,ν′,π,µ Arbitrary distributions on O or on R

d.
Q An edit requester.
r, p Integers representing the power of an adaptive requester.
U ,Ur Space of singular and batched replacement edits in [n]×X .
u, ui, Ui Arbitrary edit request, ith edit request in Ur and its random variable.
D,Di An example database and database after ith update.
x,y Singular data records from universe X .
η Step size or learning rate in Noisy-GD.
σ2 Variance scaling used in weight initialization distribution or gradient noise.
ℓ(θ;x) Twice continuously differentiable loss function on models in R

d.

r(θ) L2 regularizer λ ‖θ‖22 /2.
L(θ),LD(θ) Arbitrary optimization objective and an r(θ) regularized objective on D over ℓ(θ;x).
err(Θ;D) Excess empirical risk of random model Θ over objective LD.
π(D) An mapping from Xn to distributions on R

d; sometimes distributions are Gibbs.
ΛD Normalization constant of the Gibbs distribution π(D).
π
u
i A distribution independent of record deleted by request u on database Di−1.
Tk A map over R

d.
ρ Weight initialization distribution for Noisy-GD.
v,v′ Vector fields on R

d.
θ∗
D
, θ∗

Di
Risk minimizer for LD and LDi

.
q Order of Rényi divergence.
εdp, εdd Differential privacy budget and data-deletion budget in q-Rényi divergence.
ε, δ Parameters for DP-like indistinguishability.
A,ANoisy-GD Learning algorithm and Noisy-GD based learning algorithm respectively.
Ā, ĀNoisy-GD Data-deletion algorithm and Noisy-GD based data-deletion algorithm respectively.
KA,KĀ Number of learning and data-deletion iterations in Noisy-GD.
k, t Index of a Noisy-GD iteration and continuous time variable for tracing diffusions.
Θηk,Θ

′

ηk Parameters at iteration k of Noisy-GD.

Θt,Θ
′

t Parameters at time t of tracing diffusion for Noisy-GD.
µt,µ

′

t Probability density for Θt,Θ
′

t.
Z,Zk,Z

′

k Random variables taken from N (0, Id).
dZt, dZ

′

t Two independent Weiner process.
λ, β,B, L L2 regularizer constant and smoothness, boundedness, and Lipschitzness constants.
ClipL(·) Operator that clips vectors in R

d to a magnitude of L.
Rq (ν‖ν′) ,Eq (ν‖ν′) Rényi divergence and qth moment of likelihood ratio r.v. between ν and ν

′.
I (ν‖ν′) , Iq (ν‖ν′) Fisher and q-Rényi Information of distribution of ν w.r.t ν

′.
W2 (ν,ν

′) Wasserstein distance between distribution ν and ν
′.

KL(ν‖ν′) Kullback-Leibler divergence of distribution ν w.r.t. ν
′.

Pt,G,G∗ Markov semigroup, its infinitesimal generator, and its Fokker-Planck operator.
Entπ(f

2) Entropy of function f2 under any arbitrary distribution π.
H(·) Differential entropy of a distribution.
LS(c) Log-sobolev inequality with constant c.
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B Divergence Measures and Their Properties

Let Θ,Θ′ ∈ O be two random variables with probability measures ν,ν′ respectively. We
abuse the notations to denote respective probability densities with ν,ν′ as well. We say that
ν is absolutely continuous with respect to ν

′ (denoted by ν ≪ ν
′) if for all measurable sets

O ⊂ O, ν(O) = 0 whenever ν
′(O) = 0.

Definition B.1 ((ε, δ)-indistinguishability [12]). We say ν and ν
′ are (ε, δ)-indistinguishable

if for all O ⊂ O,

P
Θ∼ν

[Θ ∈ O] ≤ eε P
Θ′∼ν′

[
Θ′ ∈ O

]
+ δ and P

Θ′∼ν′

[
Θ′ ∈ O

]
≤ eε P

Θ∼ν

[Θ ∈ O] + δ. (20)

In this paper, we measure indistinguishability in terms of Rényi divergence.

Definition B.2 (Rényi divergence [28]). Rényi divergence of ν w.r.t. ν
′ of order q > 1 is

defined as

Rq
(
ν
∥
∥ν

′) =
1

q − 1
log Eq

(
ν
∥
∥ν

′) , where Eq
(
ν
∥
∥ν

′) = E
θ∼ν′

[(
ν(θ)

ν′(θ)

)q]

, (21)

when ν is absolutely continuous w.r.t. ν
′ (denoted as ν ≪ ν

′). If ν 6≪ ν
′, we’ll say

Rq (ν‖ν′) = ∞. We abuse the notation Rq (Θ‖Θ′) to denote divergence Rq (ν‖ν′) between
the measures of Θ,Θ′.

A bound on Rényi divergence implies a one-directional (ε, δ)-indistinguishability as de-
scribed below.

Theorem B.1 (Conversion theorem of Rényi divergence [23, Proposition 3]). Let q > 1 and
ε > 0. If distributions ν,ν′ satisfy Rq (ν‖ν′) < ε0, then for any O ⊂ O,

P
Θ∼ν

[Θ ∈ O] ≤ eε P
Θ′∼ν′

[
Θ′ ∈ O

]
+ δ, (22)

for ε = ε0 +
log 1/δ
q−1 and any 0 < δ < 1.

We use the following properties of Rényi divergence in some of our proofs.

Theorem B.2 (Mononicity of Rényi divergence [23, Proposition 9]). For 1 ≤ q0 < q, and
arbitrary probability measures ν and ν

′ over O, Rq0 (ν‖ν′) ≤ Rq (ν‖ν′).

Theorem B.3 (Rényi composition [23, Proposition 1]). If A1, · · · ,Ak are randomized al-
gorithms satisfying, respectively, (q, ε1)-Rényi DP, · · · , (q, εk)-Rényi DP then their composed
mechanism defined as (A1(D), · · · ,Ak(D)) is (q, ε1 + · · ·+ εk)-Rényi DP. Moreover, ith algo-
rithm can be chosen on the basis of the outputs of algorithms A1, · · · ,Ai−1.

Theorem B.4 (Weak triangle inequality of Rényi divergence [23, Proposition 12]). For any
distribution ρ on O, the Rényi divergence of ν w.r.t. ν

′ satisfies the following weak triangle
inequality:

Rq
(
ν
∥
∥ν

′) ≤ Rq (ν‖ρ) + R∞
(
ρ
∥
∥ν

′) . (23)

Another popular notion of information divergence is the Kullback-Leibler divergence.
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Definition B.3 (Kullback-Leibler divergence [21]). Kullback-Leibler (KL) divergence KL (ν‖ν′)
of ν w.r.t. ν

′ is defined as

KL
(
ν
∥
∥ν

′) = E
θ∼ν

[

log
ν(θ)

ν′(θ)

]

. (24)

Rényi divergence generalizes Kullback-Leibler divergence as limq→1Rq (ν‖ν′) = KL (ν‖ν′)
[33]. Some other divergence notions that we rely on are the following.

Definition B.4 (Wasserstein distance [34]). Wasserstein distance between ν and ν
′ is

W2

(
ν,ν′) = inf

Π
E

Θ,Θ′∼Π

[∥
∥Θ−Θ′∥∥2

2

] 1
2
, (25)

where Π is any joint distribution on O ×O with ν and ν
′ as its marginal distributions.

Definition B.5 (Relative Fisher information [27]). If ν ≪ ν
′ and ν

ν′ is differentiable, then
relative Fisher information of ν with respect to ν

′ is defined as

I
(
ν
∥
∥ν

′) = E
θ∼ν

[∥
∥
∥
∥
∇ log

ν(θ)

ν′(θ)

∥
∥
∥
∥

2

2

]

. (26)

Definition B.6 (Relative Rényi information [35]). Let q > 1. If ν ≪ ν
′ and ν

ν′ is differen-
tiable, then relative Rényi information of ν with respect to ν

′ is defined as

Iq
(
ν
∥
∥ν

′) =
4

q2
E
θ∼ν′





∥
∥
∥
∥
∥
∇
(
ν(θ)

ν′(θ)

)q/2
∥
∥
∥
∥
∥

2

2



 = E
θ∼ν′

[(
ν(θ)

ν′(θ)

)q−2 ∥∥
∥
∥
∇
(
ν(θ)

ν′(θ)

)∥
∥
∥
∥

2

2

]

. (27)

C Proofs for Section 3

Theorem 3.1. There exists an algorithm pair (A, Ā) satisfying (0, 0)-adaptive-unlearning
under publish function fpub(θ) = θ such that by designing a 1-adaptive 1-requester Q, an
adversary can infer the identity of a record deleted by edit ui, at any arbitrary step i > 3, with
probability at-least 1− (1/2)i−3 from a single post-edit release φi, even with no access to Q’s
transcript (φ<i;u<i).

Proof. Let data universe be X , the internal state space O, and publishable outcome space Φ
be R. Consider the task of releasing a sequence of medians using function med : R∗ → R in the
online setting when the initial database D0 ∈ X n is being modified by some adaptive requester
Q. Given a database D ∈ X n, our learning algorithm is defined as A(D) = med(D). For an
arbitrary edit request u ∈ Ur, our unlearning algorithm is defined as Ā(D, u, •) = med(D◦u).
Let the publish function fpub : O → Φ be an identity function, i.e. fpub(θ) = θ.

For any initial database D0 ∈ X n and an adaptive sequence (ui)i≥1 generated by any
∞-adaptive 1-requester Q, note that

fpub(Ā(Di−1, ui, •)) = fpub(A(Di)), for all i ≥ 1 and any • ∈ O. (28)

Therefore, Ā is a (0, 0)-adaptive unlearning algorithm for A under fpub.
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Now suppose that n is odd and D0 consists of unique entries. W.L.O.G assume that
the median record med(D0) is at index indm and its owner will be deleting it at step i by
sending a non-adaptive edit request ui = {〈indm,y〉} such that y 6= med(D0). We design the
following 1-adaptive 1-requester Q that sends edit requests in the first i − 1 steps to ensure
with high probability that the published outcome at step i remains the deleted record, i.e.,
med(Di) = med(D0):

Q(φ0, u1, u2, · · · , uj−1) = {〈indj, φ0〉} ∀ 1 ≤ j < i, (29)

where indj is randomly sampled from [n] \ {ind1, · · · , indj−1} without replacement. Note that
by the end of interaction, Q replaces at-least i−2 unique records in D0 with φ0 = med(D0). If
one of those original records was larger than med(D0) and another was smaller than med(D0),
then it is guaranteed that med(Di) = med(D0). Therefore, P [med(Di) = med(D0)] is at-least

P

[

∃indl, indu ∈ {ind1, · · · , indi−1} s.t. D0[ind
l] < D0[ind

m] < D0[ind
u]
]

≥ 1− 2×
(⌊n⌋/2
i− 2

)/(
n

i− 2

)

≥ 1−
(
1

2

)i−3

.

Theorem 3.2. For every ε > 0, there exists a pair (A, Ā) of algorithms that satisfy (ε, 0)-
non-adaptive-unlearning under some publish function fpub such that for all non-adaptive 1-
requesters Q, their exists an adversary that can correctly infer the identity of a record deleted
at any arbitrary edit step i ≥ 1 by observing only the post-edit releases φ≥i.

Proof. For a query h : X → {0, 1}, consider the task of learning the count over a database that
is being edited online by a non-adaptive 1-requesterQ. SinceQ is non-adaptive by assumption,
it is equivalent to the entire edit sequence {ui}i≥1 being fixed before interaction. We design
an algorithm pair (A, Ā) for this task with secret model space being O = N

3 and published
outcome space being Φ = R, with the publish function being fpub(〈a, b, c〉) = a+b/c+Lap

(
1
ε

)

(with the convention that b/c = 0 if b = c = 0). At any step i ≥ 0, our internal model
Θ̂i = 〈cnti,deli, i〉 encodes the current count of h on database Di, the count of h on records
previously deleted by u≤i, and the current step index i. Our learning algorithm initializes the
secret model as Θ̂0 = A(D0) = 〈

∑

x∈D0
h(x), 0, 0〉, and, for an edit request ui = {〈indi,yi〉},

our algorithm Ā updates the secret model Θ̂i−1 → Θ̂i following the rule

Θ̂i = Ā(Di−1, ui, Θ̂i−1) = 〈cnti,deli, i〉 where

{

cnti = cnti−1 + h(yi)− h(Di−1[indi]),

deli = deli−1 + h(Di−1[indi]).

Note that ∀i ≥ 1, ∆i
def
= deli/i ∈ [0, 1]. Therefore, from properties of Laplace mechanism [12],

it is straightforward to see that for all i ≥ 1,

fpub(Ā(Di−1, ui, Θ̂i−1))
∣
∣u≤i =

∑

x∈Di

h(x) + ∆i + Lap

(
1

ε

)

ε,0≈
∑

x∈Di

h(x) + Lap

(
1

ε

)

= fpub(A(Di)).
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Hence, Ā is an (ε, 0)-unlearning algorithm for A under fpub.
To show that an adversary can still infer the identity of record deleted by edit request

ui = (indi, •), consider a database D′
i−1 that differs from Di−1 only at index indi such that

h(D′
i−1[indi]) 6= h(Di−1[indi]). Let random variable sequences φ≥i and φ′≥i denote the releases

by Ā in the scenarios that the (i − 1)th database was Di−1 and D′
i−1 respectively. The

divergence between these two random variable sequences reflect the capacity of any adversary
to infer the record deleted by ui. Since, we have identical databases after ui, i.e. Dj−1 ◦ uj =
D′
j−1 ◦ uj for all j ≥ i, note that both φj and φ′j are independent Laplace distributions with

a shift of exactly 1
j units. Therefore,

max
O⊂Φ∗

log
P [φ≥i ∈ O]

P

[

φ′≥i ∈ O
] =

∞∑

j=i

max
Oj⊂R

log
P [φj ∈ Oj ]

P

[

φ′j ∈ Oj
] =

∞∑

j=i

log eε/j =∞.

C.1 Unsoundness and Incompleteness of Offline Unlearning Definitions

In this subsection, we show that our criticisms on soundness and completeness of unlearning
notions under adaptive requests in Section 3 also apply to the following unlearning definition
variants of Guo et al. [17], Sekhari et al. [30].

Definition C.1 ((ε, δ)-certified removal [17]). A removal mechanism Ā performs (ε, δ)-
certified removal for learning algorithm A if for all databases D ⊂ X and deletion subset
S ⊂ D,

Ā(D, S,A(D)) ε,δ≈ A(D \ S). (30)

Definition C.2 ((ε, δ)-unlearning [30]). For all D ⊂ X of size n and deletion subset S ⊂ D
such that |S| ≤ m, a learning algorithm A and an unlearning algorithm Ā is (ε, δ)-unlearning
if

Ā(T (D), S,A(D)) ε,δ≈ Ā(T (D \ S),∅,A(D \ S)), (31)

where ∅ denotes the empty set and T (D) denotes the data statistics available to Ā about D.

Unsoundness. Unlike Definition 2.4, Definitions C.1 and C.2 make no assumptions about
dependence between the deletion request S and the learned model A(D). So, request S can
depend on A(D). This dependence is common in the real world; for example, a user deletes
her information if she doesn’t like what model A(D) reveals about her. We recall the example
we provide in Section 3 to show that Definitions C.1 and C.2, are unsound under adaptivity.

For the universe of records X = {−2,−1, 1, 2}, consider the following learning and un-
learning algorithms:

A(D) =
∑

x∈D
x, and Ā(D, S,A(D)) =

∑

x∈D\S
x. (32)

Note that for any D ⊂ X and any S ⊂ D, the above algorithm pair (A, Ā) satisfies Defini-
tions C.1, C.2 and 2.4 for ε = δ = 0 and T (D) = D. Suppose the adversary is aware that the
following dependence holds between the learned model A(D) and deletion request S:

S =

{

{x < 0 : ∀x ∈ X} if A(D) < 0,

{x > 0 : ∀x ∈ X} otherwise.
(33)
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Consider two neighbouring databases D−1 = {−2,−1, 2} and D1 = {−2, 1, 2}. Knowing the
above dependence, an adversary can determine whether D = D−1 or D = D1 by looking only
at Ā(D, S,A(D)). This is because if D = D−1, then the observation after unlearning is 2,
and if D = D1, the observation after unlearning is −2. So, even though (A, Ā) satisfies the
guarantees of Guo et al. [17] and Sekhari et al. [30], it blatantly reveals the identity (−1 or
1) of a deleted record to an adversary observing only the post-deletion release.

Note that Ginart et al. [15]’s Definition 2.4 assumes that the requests S is selected in-
dependently of the learned model A(D). So, our construction does not apply, keeping the
possibility that their definition is sound. We remark, however, that algorithms satisfying
their definitions cannot be trusted in settings where we expect some dependence between
deletion requests and the learned models.

Incompleteness. Definitions C.1 and C.2 are also incomplete. Consider an unlearning
algorithm Ā that outputs a fixed output x1 ∈ X if the deletion request S = ∅ and outputs
another fixed output x2 ∈ X if the deletion request S 6= ∅. It is easy to see that Ā is a
valid deletion algorithm as its output does not depend on the input database D or the learned
model A(D). However, note that Ā does not satisfy the unlearning Definition C.2, for any
learning algorithm A. And, for a learning algorithm A(D) =

∑

x∈D x, one can also verify
that the pair (A, Ā) does not satisfy Definitions C.1 either.

D Proofs for Section 4

Theorem 4.1 (Data-deletion Definition 4.1 is sound). If the algorithm pair (A, Ā) satisfies
(q, ε)-data-deletion guarantee under all p-adaptive r-requesters, then even with the power of
designing an p-adaptive r-requester Q that interacts with the curator before deletion of a target
record at any step i ≥ 1, any adversary observing only the post-deletion releases (Θ̂i, Θ̂i+1, · · · )
has its membership inference advantage for inferring a deleted target bounded as

Adv(MI) ≤ min

{
√
2ε,

qeε(q−1)/q

q − 1
[2(q − 1)]1/q − 1

}

. (34)

Proof. For an arbitrary step i ≥ 1, suppose one of the replacement operations in the edit
request ui ∈ Ur replaces a record at index ‘ind’ from the database Di−1 with ‘y’. In the
worst case, this record Di−1[ind] might have been there from the start, i.e. D0[ind] = D0[ind],
and influenced all the decisions of the adaptive requester Q in the edit steps 1, · · · , i − 1.
To prove soundness, we need to show that if (A, Ā) satisfies (q, ε)-data-deletion, then even
in this worst-case scenario, no adaptive adversary can design a membership inference test
MI(Θ̂i, Θ̂i+1, · · · ) ∈ {0, 1} that can distinguish with high probability the null hypothesis
H0 = {D0[ind] = x} from the alternate hypothesis H1 = {D0[ind] = x′} for any x,x′ ∈ X .
That is, the advantage of any test MI, defined as

Adv(MI)
def
= P

[

MI(Θ̂i, Θ̂i+1, · · · ) = 1|H0

]

− P

[

MI(Θ̂i, Θ̂i+1, · · · ) = 1|H1

]

, (35)

must be small. Since after processing edit request ui, the databases Di,Di+1, · · · no longer
contain the deleted record Di−1[ind], the data-processing inequality implies that future models
Θ̂i+1, Θ̂i+2, · · · cannot have more information about Di−1[ind] that what is present in Θ̂i.
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Therefore, any test MI(Θ̂i, Θ̂i+1, · · · ) has a smaller advantage than the optimal test MI∗(Θ̂i) ∈
{0, 1} that only uses Θ̂i.

Also, since (A, Ā) satisfy (q, ε)-data-deletion for any p-adaptive r-requester Q, we know
from Definition 4.1 that there exists a mapping π

Q
i such that for all D0 ∈ X n, the model Θ̂i

generated by the interaction between (A, Ā,Q) on D0 after ith edit satisfies the inequality

Rq

(

Θ̂i

∥
∥
∥π

Q
i (D0 ◦ 〈ind,y〉)

)

≤ ε. As the database D0 ◦ 〈ind,y〉 is identical under both hypoth-

esis H0 and H1, we have Rq

(

Θ̂i|Hb

∥
∥
∥Θ̄
)

≤ ε for b ∈ {0, 1}, where Θ̄ = π
Q
i (D0 ◦ 〈ind,y〉).

From Rényi divergence to (ε, δ)-indistinguishability conversion described in Remark 2.1, we
get

P

[

MI∗(Θ̂i) = 1|H0

]

≤ eε′(δ)P
[
MI∗(Θ̄) = 1

]
+ δ, and (36)

P

[

MI∗(Θ̂i) = 0|H1

]

≤ eε′(δ)P
[
MI∗(Θ̄) = 0

]
+ δ, (37)

where ε′(δ) = ε+ log 1/δ
q−1 for any 0 < δ < 1. On adding the two inequalities, we get:

Adv(MI) ≤ Adv(MI∗) = P

[

MI∗(Θ̂i) = 1|H0

]

− P

[

MI∗(Θ̂i) = 1|H1

]

≤ min
δ
eε

′(δ) − 1 + 2δ

=
qeε(q−1)/q

q − 1
[2(q − 1)]1/q − 1

Alternatively, from monotonicity of Rényi divergence w.r.t. order q and the fact that Rényi

divergence converges to KL divergence as q → 1, we have from Rq

(

Θ̂i|Hb

∥
∥
∥Θ̄
)

≤ ε for

b ∈ {0, 1} that

KL
(

Θ̂i|Hb

∥
∥
∥Θ̄
)

≤ Rq

(

Θ̂i|Hb

∥
∥
∥Θ̄
)

≤ ε

=⇒ TV

(

Θ̂i|Hb; Θ̄
)

≤
√
ε

2
, (From Pinkser inequality)

for b ∈ {0, 1}. So, from triangle inequality on total variation distance, we have

TV

(

Θ̂i|H0; Θ̂i|H1

)

≤ TV

(

Θ̂i|H0; Θ̄
)

+TV

(

Θ̂i|H0; Θ̄
)

≤
√
2ε. (38)

So, advantage of any membership inference attack MI must have an advantage satisfying

Adv(MI) = P

[

MI(Θ̂i) = 1|H0

]

− P

[

MI(Θ̂i) = 1|H1

]

≤
√
2ε. (39)

Theorem 4.5 (Privacy of remaining records is necessary for adaptive deletion). Let Test :
O → {0, 1} be a membership inference test for A to distinguish between neighbouring databases
D,D′ ∈ X n. Similarly, let Test : O → {0, 1} be a membership inference test for Ā to distin-
guish between D̄, D̄′ ∈ X n that are neighbouring after applying edit ū ∈ U1. If Adv(Test) > δ
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and Adv(Test) > δ, then the pair (A, Ā) cannot satisfy (q, ε)-data-deletion under 1-adaptive
1-requester for any

ε < max

{
δ4

2
, log(q − 1) +

q

q − 1
log

(
1 + δ2

q21/q

)}

. (40)

Proof. By assumption, we know that there exists tests Test,Test : O → {0, 1} such that

Adv(Test)
def
= P [Test(A(D)) = 1]− P

[
Test(A(D′)) = 1

]
> δ, (41)

and for all θ ∈ O,

Adv(Test)
def
= P

[
Test(Ā(D̄, ū, θ)) = 1

]
− P

[
Test(Ā(D̄′, ū, θ)) = 1

]
> δ. (42)

Define O′ = {θ ∈ O|Test(θ) = 1} and Ō′ = {θ ∈ O|Test(θ) = 1}. We have that the total
variation distance between A(D) and A(D′) is lower bounded as

TV
(
A(D); A(D′)

)
= sup

O⊂O
|P [A(D) ∈ O]− P

[
A(D′) ∈ O

]
| (43)

> P
[
A(D) ∈ O′]− P

[
A(D′) ∈ O′] (44)

= P [Test(A(D)) = 1]− P
[
Test(A(D′)) = 1

]
> δ. (45)

Similarly, we also have that for all θ ∈ O, the total variation distance between Ā(D̄, ū, θ) and
Ā(D̄′, ū, θ) is lower bounded as

TV
(
Ā(D̄, ū, θ); Ā(D̄′, ū, θ)

)
= sup

O⊂O
|P
[
Ā(D̄, ū, θ) ∈ O

]
− P

[
Ā(D̄′, ū, θ) ∈ O

]
| (46)

> P
[
Ā(D̄, ū, θ) ∈ Ō′]− P

[
Ā(D̄′, ū, θ) ∈ Ō′] (47)

= P
[
Test(Ā(D̄, ū, θ)) = 1

]
− P

[
Test(Ā(D̄′, ū, θ)) = 1

]
> δ.

(48)

Assume W.L.O.G. that ū replaces at index n and the edited databases D̄ ◦u, D̄′ ◦u differs
only at index 1. Also assume that D,D′ differs at index n.

Recall from Definition 4.1 that satisfying (q, ε)-data-deletion under 1-adaptive 1-requesters
requires existence of a map π

Q
n : X n → O for each Q such that for all D0 ∈ X n,

Rq

(

Ā(Dn−1, un, Θ̂n−1)
∥
∥
∥π

Q
n (D0 ◦ un)

)

≤ ε, (49)

To prove the theorem statement, we show that for a starting database D0 ∈ {D,D′} and
an edit request un = ū that deletes the differing record in choices of D0 at edit step n, there
exists a 1-adaptive 1-requester Q that sends adaptive edit requests u1, · · · , un−1 in the first
n−1 steps such that no map π

Q
n exists that satisfies (49) for both choices of D0 when ε follows

inequality (40).
Consider the following construction of 1-adaptive 1-requester Q that only observes the

first model Θ̂0 = A(D0) and generates the edit requests (u1, · · · , un−1) as follows:

Q(Θ̂0;u1, u2, · · · , ui−1) =

{

〈i, D̄[i]〉 if Test(Θ̂0) = 1,

〈i, D̄′[i]〉 otherwise.
(50)
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This requester Q transforms any initial database D0 to Dn−1 = D̄ if the outcome Test(Θ̂0) =
1, otherwise to Dn−1 = D̄′. Consider an adversary that does not observe the interaction
transcript (Θ̂<n;u<n), but is interested in identifying whether D0 was D or D′. The adversary
gets to observe only the output Θ̂n = Ā(Dn−1, un, Θ̂n−1) generated after processing the edit
request un = ū. On this observation, the adversary runs the membership inference test
MI(Θ̂n) = Test(Θ̂n). The membership inference advantage of MI is

Adv(MI;D,D′)
def
= P

[

MI(Θ̂n) = 1|D0 = D
]

− P

[

MI(Θ̂n) = 1|D0 = D′
]

=
∑

b∈{0,1}
P

[

Test(Θ̂n) = 1|Test(Θ̂0) = b
]

× P

[

Test(Θ̂0) = b|D0 = D
]

−
∑

b∈{0,1}
P

[

Test(Θ̂n) = 1|Test(Θ̂0) = b
]

× P

[

Test(Θ̂0) = b|D0 = D′
]

=
(

P

[

Test(Θ̂n) = 1|Dn−1 = D̄
]

− P

[

Test(Θ̂n) = 1|Dn−1 = D̄′
])

Adv(Test;D,D′)

= Adv(Test; D̄, D̄′, ū)×Adv(Test;D,D′) > δ2.

So, from the contrapositive of our soundness Theorem 4.1, we have that (A, Ā) cannot be an
(ε, q)-data-deletion algorithm for ε and q satisfying

δ2 > min

{
√
2ε,

qeε(q−1)/q

q − 1
[2(q − 1)]1/q − 1

}

(51)

⇐⇒ ε < max

{
δ4

2
, log(q − 1) +

q

q − 1
log

(
1 + δ2

q21/q

)}

. (52)

Theorem 4.3 (From adaptive to non-adaptive deletion). If an algorithm pair (A, Ā) satisfies
(q, εdd)-data-deletion under all non-adaptive r-requesters and is also (q, εdp)-Rényi DP with
respect to records not being deleted, then it also satisfies (q, εdd+pεdp)-data-deletion under all
p-adaptive r-requesters.

Proof. To prove this theorem, we need to show that for any p-adaptive r-requester Q, there
exists a construction for a map π

Q
i : X n → O such that for all D0 ∈ X n, the sequence of

model (Θ̂i)i≥0 generated by the interaction between (Q,A, Ā) on D0 satisfies the following
inequality for all i ≥ 1:

Rq

(

Ā(Di−1, ui, Θ̂i−1)
∥
∥
∥π

Q
i (D0 ◦ 〈ind,y〉)

)

≤ εdd + pεdp, for all ui ∈ Ur and 〈ind,y〉 ∈ ui.
(53)

Fix a database D0 ∈ X n and an edit request ui ∈ Ur. Let D′
0 ∈ X n be a neighbouring database

defined to be D′
0 = D0 ◦ 〈ind,y〉 for an arbitrary replacement operation 〈ind,y〉 ∈ ui. Given

any p-adaptive r-requester Q, let (Θ̂i)i≥0 and (Ui)i≥1 be the sequence of released model and
edit request random variables generated on Q’s interaction with (A, Ā) with initial database
as D0. Similarly, let (Θ̂′

i)i≥0 and (U ′
i)i≥1 be the corresponding sequences generated due to the

interaction among (Q,A, Ā) on D′
0.
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Since (A, Ā) is assumed to satisfy (q, εdd)-data-deletion guarantee under non-adaptive r-
requesters, recall from Remark 4.2 that there exists a mapping π : X n → O such that for any

fixed edit sequence u≤i
def
= (u1, u2, · · · , ui),

Rq

(

Θ̂i|U≤i=u≤i

∥
∥
∥π(D0 ◦ u≤i)

)

≤ εdd (54)

=⇒ Rq

(

Ā(D0 ◦ U<i, ui, Θ̂i)|U<i=u<i

∥
∥
∥π(D0 ◦ U ′

<i ◦ ui)|U<i=u<i

)

≤ εdd. (55)

Note that since the replacement operation 〈ind,y〉 is part of the edit request ui, we have
D0 ◦ U ′

<i ◦ ui = D′
0 ◦ U ′

<i ◦ ui. Moreover, since the sequence U ′
<i of edit requests is generated

by the interaction of (Q,A, Ā) on D′
0 = D0 ◦ 〈ind, u〉 and the ith edit request ui is fixed

beforehand, we can define a valid construction of a map π
Q
i : X n → O as per Definition 4.1

as follows:
π
Q
i (D0 ◦ 〈ind,y〉) = π(D′

0 ◦ U ′
<i ◦ ui). (56)

For brevity, let Θ̂u = Ā(D0◦U<i, ui, Θ̂i−1), and Θ̂′
u = π

Q
i (D0 ◦〈ind,y〉). For this construction,

we prove the requisite bound in (53) as follows.

Rq

(

Θ̂u

∥
∥
∥Θ̂′

u

)

≤ Rq

(

(Θ̂u, U<i)
∥
∥
∥(Θ̂′

u, U
′
<i)
)

(Data processing inequality [33, Theorem 1])

=
1

q − 1
log

∫

θ

∑

u<i

J(θ, u<i)
q

J ′(θ, u<i)q−1
dθ

(J & J ′ are joint PDFs of (Θ̂u, U<i) & (Θ̂′
u, U

′
<i))

=
1

q − 1
log
∑

u<i

P [U<i = u<i]
q

P
[
U ′
<i = u<i

]q−1

{
∫

θ

pΘ̂u|U<i=u<i
(θ)q

pΘ̂′
u|U ′

<i=u<i
(θ)q−1

dθ

}

≤ 1

q − 1
log
∑

u<i

P [U<i = u<i]
q

P
[
U ′
<i = u<i

]q−1 exp((q − 1)εdd) (From (55))

= εdd +Rq
(
U<i

∥
∥U ′

<i

)

≤ εdd +Rq

((

Θ̂s1 , · · · , Θ̂sp

)∥
∥
∥

(

Θ̂′
s1 , · · · , Θ̂′

sp

))

(If Q sees outputs at steps s1, · · · , sp)
≤ εdd + pεdp. (Via Rényi composition)

D.1 Our Reduction Theorem 4.3 versus Gupta et al. [18]’s Reduction

Adaptive unlearning guarantee in [18, Definition 2.3] is designed to ensure that no adaptive
requester Q can force the output distribution of the unlearning algorithm Ā(Di−1, ui, Θ̂i−1)
to diverge substantially from that of retraining algorithm A(Di) with high probability. Such
an attack is possible in unlearning algorithms that rely on some persistent states that are
only randomized once during initialization. For example, Bourtoule et al. [5]’s SISA unlearn-
ing algorithm randomly partitions the initial database D0 during setup and uses the same
partitioning for processing edit requests, deleting records from respective shards on request.
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Gupta et al. [18] show that an adaptive update requester Q can interactively send deletion
requests u1, · · · , ui to SISA so that after some time, the partitioning of remaining records in
Di = D0 ◦ u1 · · · ui follows a pattern that is unlikely to occur on repartitioning of Di if we
execute A(Di).

They provide a general reduction [18, Theorem 3.1] from adaptive to non-adaptive un-
learning guarantee under differential privacy. Their reduction relies on DP with regards to a
change in the description of learning/unlearning algorithm’s internal randomness and not with
regards to the standard replacement of records. DP with respect to internal description of
randomness means that an adversary observing an unlearned model remains uncertain about
persistent states like database partitioning in SISA during setup. So from a triangle inequality
type argument, Gupta et al. [18] show that with DP with respect to learning/unlearning algo-
rithms’ coins along with a non-adaptive unlearning guarantee implies an adaptive unlearning
guarantee.

Our work shows that satisfying adaptive unlearning definition of Gupta et al. [18] still does
not guarantee data deletion. In Theorem 3.1, we demonstrate that there exists an algorithm
pair (A, Ā) satisfying adaptive unlearning Definition 2.7 (a strictly stronger version of [18,
Definition 2.3]), but still causes blatant non-privacy of deleted records in post-deletion release.
The vulnerability we identify occurs because an adaptive requester can learn the identity of
any target record before it is deleted and re-encode it back in the curator’s database by sending
edit requests. Because of this, an adversary (who knows how the adaptive requester works
but does not have access to the requester’s interaction transcript) can extract the identity
of the target record from the model released after processing the deletion request. In our
work, we argue that a reliable (and necessary) way to prevent this attack is to make sure
that no adaptive requester ever learns the identity of a target record from the pre-deletion
model releases it has access to. Consequently, our reduction in Theorem 4.3 from adaptive to
non-adaptive requests relies on differential privacy with respect to the standard replacement
of records instead.

E Calculus Refresher

Given a twice continuously differentiable function L : O → R, where O is a closed subset of
R
d, its gradient ∇L : O → R

d is the vector of partial derivatives

∇L(θ) =
(
∂L(θ)
∂θ1

, · · · , ∂L(θ)
∂θ2

)

. (57)

Its Hessian ∇2L : O → R
d×d is the matrix of second partial derivatives

∇2L(θ) =
(
∂2L(θ)
∂θiθj

)

1≤i,j≤d
. (58)

Its Laplacian ∆L : O → R is the trace of its Hessian ∇2L, i.e.,

∆L(θ) = Tr
(
∇2L(θ)

)
. (59)

Given a differentiable vector field v = (v1, · · · ,vd) : O → R
d, its divergence div (v) : O →

R is

div (v) (θ) =

d∑

i=1

∂vi(θ)

∂θi
. (60)
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Some identities that we would rely on:

1. Divergence of gradient is the Laplacian, i.e.,

div (∇L) (θ) =
d∑

i=1

∂2L(θ)
∂θ2i

= ∆L(θ). (61)

2. For any function f : O → R and a vector field v : O → R
d with sufficiently fast decay

at the border of O,
∫

O
〈v(θ),∇f(θ)dθ〉 = −

∫

O
f(θ)(div (v))(θ)dθ. (62)

3. For any two functions f, g : O → R, out of which at least for one the gradient decays
sufficiently fast at the border of O, the following also holds.

∫

O
f(θ)∆g(θ)dθ = −

∫

O
〈∇f(θ),∇g(θ)〉dθ =

∫

O
g(θ)∆f(θ)dθ. (63)

4. Based on Young’s inequality, for two vector fields v1,v2 : O → R
d, and any a, b ∈ R

such that ab = 1, the following inequality holds.

〈v1,v2〉 (θ) ≤
1

2a
‖v1(θ)‖22 +

1

2b
‖v2(θ)‖22 . (64)

Wherever it is clear, we would drop (θ) for brevity. For example, we would represent div (v) (θ)
as only div (v).

F Loss Function Properties

In this section, we provide the formal definition of various properties that we assume in the
paper. Let ℓ(θ;x) : Rd × X → R be a loss function on R

d for any record x ∈ X .

Definition F.1 (Lipschitzness). A function ℓ(θ;x) is said to be L Lipschitz continuous if for
all θ, θ′ ∈ R

d and any x ∈ X ,

|ℓ(θ;x)− ℓ(θ′;x)| ≤ L
∥
∥θ − θ′

∥
∥
2
. (65)

If ℓ(θ;x) is differentiable, then it is L-Lipschitz if and only if ∇ℓ(θ;x) ≤ L for all θ ∈ R
d.

Definition F.2 (Boundedness). A function ℓ(θ;x) is said to be B-bounded if for all x ∈ X ,
its output takes values in range [−B,B].

Definition F.3 (Convexity). A continuous differential function ℓ(θ;x) is said to be convex
if for all θ, θ′ ∈ R

d and x ∈ X ,

ℓ(θ′;x) ≥ ℓ(θ;x) +
〈
∇ℓ(θ;x), θ′ − θ

〉
, (66)

and is said to be λ-strongly convex if

ℓ(θ′;x) ≥ ℓ(θ;x) +
〈
∇ℓ(θ;x), θ′ − θ

〉
+
λ

2

∥
∥θ′ − θ

∥
∥2

2
. (67)
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Theorem F.1 ([26, Theorem 2.1.4]). A twice continuously differentiable function ℓ(θ;x)
is convex if and only if for all θ ∈ R

d and x ∈ X , its hessian matrix ∇2
ℓ(θ;x) is posi-

tive semidefinite, i.e., ∇2
ℓ(θ;x) < 0 and is λ-strongly convex if its hessian matrix satisfies

∇2
ℓ(θ;x) < λId.

Definition F.4 (Smoothness). A continuously differentiable function ℓ(θ;x) is said to be
β-Smooth if for all θ, θ′ ∈ R

d and x ∈ X ,
∥
∥∇ℓ(θ;x)−∇ℓ(θ′;x)

∥
∥
2
≤ β

∥
∥θ − θ′

∥
∥
2
. (68)

Theorem F.2 ([26, Theorem 2.1.6]). A twice continuously differentiable convex function
ℓ(θ;x) is β-smooth if and only if for all θ ∈ R

d and x ∈ X ,

∇2
ℓ(θ;x) 4 βId. (69)

F.1 Effect of Gradient Clipping

First order optimization methods on a continuously differentiable loss function ℓ(θ;x) over a

database D ∈ X n with gradient clipping ClipL(v) = v/max
(

1,
‖v‖2
L

)

is equivalent to opti-

mizing

LD(θ) =
1

|D|
∑

x∈D
ℓ̄(θ;x) + r(θ), (70)

where ℓ̄(θ;x) is a surrogate loss function that satisfies ∇ℓ̄(θ;x) = ClipL(∇ℓ(θ;x)). This
surrogate loss function inherits convexity, boundedness, and smoothness properties of ℓ(θ;x),
as shown below.

Lemma F.3 (Gradient clipping retains convexity). If ℓ(θ;x) is a twice continuously differ-
entiable convex function for every x ∈ R

d, then surrogate loss ℓ̄(θ;x) resulting from gradient
clipping is also convex for every x ∈ R

d.

Proof. Note that the clip operation ClipL(v) is a closed-form solution of the orthogonal pro-
jection onto a closed ball of radius L and centered around origin, i.e.

ClipL(v) = argmin
‖v′‖2≤L

∥
∥v − v′∥∥

2
. (71)

By properties of orthogonal projections on closed convex sets, for every v,v′ ∈ R
d,

〈
v′ −ClipL(v),v − ClipL(v)

〉
≤ 0 if and only if

∥
∥v′∥∥

2
≤ L. (72)

Therefore, for any θ ∈ R
d, and x ∈ X , we have

〈
∇ℓ̄(θ + hv̂;x)−∇ℓ̄(θ;x),∇ℓ(θ;x)−∇ℓ̄(θ;x)

〉
≤ 0, (73)

〈
∇ℓ̄(θ;x)−∇ℓ̄(θ + hv̂;x),∇ℓ(θ + hv̂;x)−∇ℓ̄(θ + hv̂;x)

〉
≤ 0, (74)

for all unit vectors v̂ ∈ R
d and magnitude h > 0. For the directional derivative of vector

field ∇ℓ̄(θ;x) along v̂, defined as ∇v̂∇ℓ̄(θ;x) = limh→0+
∇ℓ̄(θ+hv̂;x)−∇ℓ̄(θ;x)

h , the above two
inequalities imply

〈
∇v̂∇ℓ̄(θ;x),∇ℓ(θ;x)−∇ℓ̄(θ;x)

〉
= 0, (75)
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for all v̂. Therefore, when ∇ℓ̄(θ;x) 6= ∇ℓ(θ;x), we must have ∇2
ℓ̄(θ;x) = 0. And, when

∇ℓ(θ;x) = ∇ℓ̄(θ;x), gradients aren’t clipped, which implies the rate of change of ℓ(θ;x)
along any direction v̂ is

∇v̂ · ∇ℓ̄(θ;x) = lim
h→0+

〈∇ℓ̄(θ + hv̂;x)−∇ℓ(θ;x)
h

, v̂

〉

=

{

v̂⊤∇2
ℓ(θ;x)v̂ if ∃h > 0 s.t. ∇ℓ̄(θ + hv̂;x) = ∇ℓ(θ + hv̂;x)

0 otherwise
≥ 0.

Lemma F.4 (Gradient clipping retains boundedness). If ℓ(θ;x) is a continuously differen-
tiable and B-bounded function for every x ∈ X , then the surrogate loss ℓ̄(θ;x) resulting from
gradient clipping is also B-bounded.

Proof. Since ℓ(θ;x) is continuously differentiable, its B-boundedness implies path integral of
∇ℓ(θ;x) along any curve between θ, θ′ ∈ R

d is less than 2B. Since ClipL(·) operation clips the
gradient magnitude, the path integral of ∇ℓ̄(θ;x) is also less than 2B. That is, the maximum
and minimum values that ℓ̄(θ;x) takes differ no more than 2B. By adjusting the constant
of path integral, we can always ensure ℓ̄(θ;x) takes values in range [−B,B] without affecting
first order optimization algorithms.

Lemma F.5 (Gradient clipping retains smoothness). If ℓ(θ;x) is a continuously differentiable
and β-smooth function for every x ∈ R

d, then surrogate loss ℓ̄(θ;x) resulting from gradient
clipping is also β-smooth for every x ∈ R

d.

Proof. Note that the gradient clipping operation is equivalent to an orthogonal projection
operation into a ball of radius L, i.e. ClipL(v) = argminv′{‖v′ − v‖2 : v ∈ R

d, ‖v′‖2 ≤ L}.
Since orthogonal projection onto a closed convex set is a 1-Lipschitz operation, for any θ, θ′ ∈
R
d,

∥
∥∇ℓ̄(θ;x)−∇ℓ̄(θ′;x)

∥
∥
2
≤
∥
∥∇ℓ(θ;x)−∇ℓ(θ′;x)

∥
∥
2
≤ β

∥
∥θ − θ′

∥
∥
2
. (76)

Additionally, the surrogate loss ℓ̄(θ;x) is twice differentiable almost everywhere if ℓ(θ;x)
is smooth, which follows from the following Rademacher’s Theorem.

Theorem F.6 (Rademacher’s Theorem [25]). If f : Rn → R
n is Lipschitz continuous, then

f is differentiable almost everywhere in R
n.

All our results in Section 5 rely on the above four properties on losses and therefore apply
with gradient clipping instead of the Lipschitzness assumption.

G Additional Preliminaries and Proofs for Section 5

G.1 Langevin Diffusion and Markov Semigroups

Langevin diffusion process on R
d with noise variance σ2 under the influence of a potential

L : Rd → R is characterized by the Stochastic Differential Equation (SDE)

dΘt = −∇L(Θt)dt+
√
2σ2dZt, (77)
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where dZt = Zt+dt − Zt ∼
√
dtN (0, Id) is the d-dimensional Weiner process.

We present some preliminaries on the diffusion theory used in our analysis. Let pt(θ0, θt)
denote the probability density function describing the distribution of Θt, on starting from
Θ0 = θ0 at time t = 0. For SDE (77), the associated Markov semigroup P, is defined as
a family of operators (Pt)t≥0, such that an operator Pt sends any real-valued measurable
function f : Rd → R to

Ptf(θ0) = E [f(Θt)|Θ0 = θ0] =

∫

f(θt)pt(θ0, θt)dθt. (78)

The infinitesimal generator G def
= lims→0

1
s [Pt+s − Ps] for this diffusion semigroup is

Gf = σ2∆f − 〈∇L,∇f〉 . (79)

This generator G, when applied on a function f(θt), gives the infinitesimal change in the value
of a function f when θt undergoes diffusion as per (77) for dt time. That is,

∂tPtf(θ0) =

∫

∂tpt(θ0, θt)f(θt)dθt =

∫

pt(θ0, θt)Gf(θt)dθt. (80)

The dual operator of G is the Fokker-Planck operator G∗, which is defined as the adjoint
of generator G, in the sense that

∫

fG∗gdθ =
∫

gGfdθ, (81)

for all real-valued measurable functions f, g : Rd → R. Note from (80) that, this operator
provides an alternative way to represent the rate of change of function f at time t:

∂tPtf(θ0) =

∫

f(θt)G∗pt(θ0, θt)dθt. (82)

To put it simply, Fokker-Planck operator gives the infinitesimal change in the distribution of
Θt with respect to time. For the Langevin diffusion SDE (77), the Fokker-Planck operator is
the following:

∂tpt(θ) = G∗pt(θ) = div (pt(θ)∇L(θ)) + σ2∆pt(θ). (83)

From this Fokker-Planck equation, one can verify that the stationary or invariant distribu-
tion π of Langevin diffusion, which is the solution of ∂tpt = 0, follows the Gibbs distribution

π(θ) ∝ e−L(θ)/σ2 . (84)

Since π is the stationary distribution, note that for any measurable function f : Rd → R,

E
π
[Gf ] =

∫

fG∗πdθ = 0. (85)
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G.2 Isoperimetric Inequalities and Their Properties

Convergence properties of various diffusion semigroups have been extensively analyzed in
literature under certain isoperimetric assumptions on the stationary distribution π [2]. One
such property of interest is the logarithmic Sobolev (LS) inequality [16], which we define next.

The carré du champ operator Γ of a diffusion semigroup with invariant measure µ is
defined using its infinitesimal generator G as

Γ(f, g) =
1

2
[G(fg)− fGg − gGf ] , (86)

for every f, g ∈ L
2(µ). Carré du champ operator represent fundamental properties of a Markov

semigroup that affect its convergence behaviour. One can verify that Langevin diffusion
semigroup’s carré du champ operator (on differentiable f, g) is

Γ(f, g) = σ2 〈∇f,∇g〉 . (87)

We use shorthand notation Γ(f) = Γ(f, f) = σ2 ‖∇f‖2.

Definition G.1 (Logarithmic Sobolev Inequality (see Bakry et al. [2, p. 24])). A distribution
with probability density π is said to satisfy a logarithmic Sobolev inequality (LS(c)) (with
respect to Γ in (87)) if for all functions f ∈ L

2(µ) with continuous derivatives ∇f ,

Entπ(f
2) ≤ 1

2c

∫
Γ(f2)

f2
πdθ =

2σ2

c

∫

‖∇f‖22 πdθ, (88)

where entropy Entπ is defined as

Entπ(f
2) = E

π

[
f2 log f2

]
− E

π

[
f2
]
logE

π

[
f2
]
. (89)

Logarithmic Sobolev inequality is a very non-restrictive assumption and is satisfied by a
large class of distributions. The following well-known result show that Gaussians satisfy LS
inequality.

Lemma G.1 (LS inequality of Gaussian distributions (see Bakry et al. [2, p. 258])). Let ρ

be a Gaussian distribution on R
d with covariance σ2/λ (i.e., the Gibbs distribution (84) with

L(·) being the L2 regularizer r(θ) = λ
2 ‖θ‖

2
2). Then ρ satisfies LS(λ) tightly (with respect to Γ

in (87)), i.e.

Entρ(f
2) =

2σ2

λ

∫

‖∇f‖22 ρdθ. (90)

Additionally, if µ is a distribution on R
d that satisfy LS(c), then the convolution µ⊛ρ, defined

as the distribution of Θ + Z where Θ ∼ µ and Z ∼ π, satisfies LS inequality with constant
(
1
c +

1
λ

)−1.

Bobkov [4] show that like Gaussians, all strongly log concave distributions (or more gen-
erally, log-concave distributions with finite second order moments) satisfy LS inequality (e.g.
Gibbs distribution π with any strongly convex L). LS inequality is also satisfied under non-
log-concavity too. For example, LS inequality is stable under Lipschitz maps, although such
maps can destroy log-concavity.
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Lemma G.2 (LS inequality under Lipschitz maps (see Ledoux [22])). If π is a distribution
on R

d that satisfies LS(c), then for any L-Lipschitz map T : R
d → R

d, the pushforward
distribution T#π, representing the distribution of T (Θ) when Θ ∼ π, satisfies LS(c/L2).

LS inequality is also stable under bounded perturbations to the distribution, as shown in
the following lemma by Holley and Stroock [19].

Lemma G.3 (LS inequality under bounded perturbations (see Holley and Stroock [19])). If π
is the probability density of a distribution that satisfies LS(c), then any probability distribution
with density π

′ such that 1√
B
≤ π(θ)

π′(θ) ≤
√
B everywhere in R

d for some constant B > 1

satisfies LS(c/B).

Logarithmic Sobolev inequality is of interest to us due to its equivalence to the following
inequalities on Kullback-Leibler and Rényi divergence.

Lemma G.4 (LS inequality in terms of KL divergence [35]). The distribution π satisfies
LS(c) inequality (with respect to Γ in (87)) if and only if for all distributions µ on R

d such
that µ

π
∈ L

2(π) with continuous derivatives ∇µ

π
,

KL (µ‖π) ≤ σ2

2c
I (µ‖π) . (91)

Proof. Set f2 in (88) to µ

π
to obtain (91). Alternatively, set µ = f2π

E
π

[f2]
in (91) to obtain

(88).

Lemma G.5 (Wasserstein distance bound under LS inequality [27, Theorem 1]). If distri-
bution π satisfies LS(c) inequality (with respect to Γ in (87)) then for all distributions µ on
R
d,

W2 (µ,π)
2 ≤ 2σ2

c
KL (µ‖π) . (92)

Lemma G.6 (LS inequality in terms of Rényi Divergence [35]). The distribution π satisfies
LS(c) inequality (with respect to Γ in (87)) if and only if for all distributions µ on R

d such
that µ

π
∈ L

2(π) with continuous derivatives ∇µ

π
, and any q > 1,

Rq (µ‖π) + q(q − 1)∂qRq (µ‖π) ≤
q2σ2

2c

Iq (µ‖π)
Eq (µ‖π)

. (93)

Proof. For brevity, let the functions R(q) = Rq (µ‖π), E(q) = Eq (µ‖π), and I(q) = Iq (µ‖π).
Let function f2(θ) =

(
µ(θ)
π(θ)

)q
. Then,

E
π

[
f2
]
= E

π

[(
µ

π

)q]

= E(q), (From (21))

and,

E
π

[
f2 log f2

]
= E

π

[(
µ

π

)q
log
(
µ

π

)q]

= q∂qE
π

[∫

q

(
µ

π

)q
log
(
µ

π

)

dq

]

= q∂qE
π

[(
µ

π

)q]

= q∂qE(q).

(From Lebniz rule and (21))
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Moreover,

E
π

[

‖∇f‖22
]

= E
π

[∥
∥
∥
∥
∇
(
µ

π

) q
2

∥
∥
∥
∥

2

2

]

=
q2

4
I(q) (From (27))

On substituting (88) with the above equalities, we get:

Entπ(f
2) ≤ 2σ2

c
E
π

[

‖∇f‖22
]

⇐⇒ q∂qE(q)− E(q) logE(q) ≤ q2σ2

2c
I(q)

⇐⇒ q∂q logE(q) − logE(q) ≤ q2σ2

2c

I(q)

E(q)

⇐⇒ q∂q ((q − 1)R(q))− (q − 1)R(q) ≤ q2σ2

2c

I(q)

E(q)
(From (21))

⇐⇒ R(q) + q(q − 1)∂qR(q) ≤
q2σ2

2c

I(q)

E(q)

G.3 (Rényi) Differential Privacy Guarantees on Noisy-GD

In this section, we recap the differential privacy bounds in literature for Noisy-GD Algorithm 2.

Theorem G.7 (Rényi DP guarantee for Noisy-GD Algorithm 2). If ℓ(θ;x) is L-Lipschitz,
then Noisy-GD satisfies (q, ε)-Rényi DP with ε = qL2

σ2n2 · ηK.

Proof. The L2 sensitivity of gradient ∇LD(θ) def
= 1

n

∑

x∈D∇ℓ(θ;x) +∇r(θ) computed in step
2 of Algorithm 2 for neighboring databases in X n that differ in a single record is 2L

n since
ℓ(θ;x) is L-Lipschitz.

Conditioned on observing the intermediate model Θηk = θk at step k, the next model
Θη(k+1) after the noisy gradient update is a Gaussian mechanism with noise variance 2σ2/η.
So, for neighboring databases D,D′ ∈ X n, we have from the Rényi DP bound of Gaussian
mechanisms proposed by Mironov [23, Proposition 7] that

Rq

(

Θη(k+1) |Θηk=θk

∥
∥
∥Θ′

η(k+1) |Θ′
ηk=θk

)

≤ ηqL2

n2σ2
, (94)

where (Θηk)0≤k≤K and (Θ′
ηk)0≤k≤K are intermediate parameters in Algorithm 2 when run on

databases D and D′ respectively. Finally, from Rényi composition Mironov [23, Proposition
1], we have

Rq
(
ΘηK

∥
∥Θ′

ηK

)
≤ Rq

(
(Θ0,Θη, · · · ,ΘηK)

∥
∥(Θ′

0,Θ
′
η, · · · ,Θ′

ηK)
)

≤
K−1∑

k=0

Rq

(

Θη(k+1) |Θηk=θk

∥
∥
∥Θ′

η(k+1) |Θ′
ηk=θk

)

≤ qL2

n2σ2
· ηK.
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Remark G.8. Different papers discussing Noisy-GD variants adopt different notational con-
ventions for the total noise added to the gradients. The noise variance in our Algorithm 2
is 2ησ2; but is η2σ2L2

n2 in the full-batch setting of DP-SGD by Abadi et al. [1]. To translate
the bound in Theorem G.7, one can simply rescale σ across different conventions to have the
same noise variance, i.e., 2ησ2 = η2σ̂2L2

n2 .

Our Theorem G.7 is somewhat identical to Abadi et al. [1]’s (ε, δ)-DP bound. To ver-
ify this, note from Rényi divergence to (ε, δ)-indistinguishability conversion discussed in Re-
mark 2.1 that (1+2

ε log
1
δ ,

ε
2)-Rényi DP implies (ε, δ)-DP. So, setting the bound in Theorem G.7

to be smaller than ε
2 and substituting q = 1 + 2

ε log
1
δ , we get

(

ε+ 2 log 1
δ

ε

)

L2

n2σ2
· ηK ≤ ε

2
⇐⇒

√

K(ε+ 2 log 1
δ )

ε
≤ σ̂.

For ε ≤ 2 log 1
δ , we get the same noise bound as in Abadi et al. [1, Theorem 1] for their

(full-batch) DP-SGD algorithm.
Next, we recap the tighter Rényi DP guarantee of Chourasia et al. [10] under stronger

assumptions on the loss function.

Theorem G.9 (Rényi DP guarantee for Noisy-GD Algorithm 2 [10]). If ℓ(θ;x) is convex,
L-Lipschitz, and β-smooth and r(θ) is the L2 regularizer with constant λ, then Noisy-GD with
learning rate η < 1

β+λ satisfies (q, ε)-Rényi DP with ε = 4qL2

λσ2n2

(
1− e−ληK/2

)
.

G.4 Proofs for Subsection 5.1

In this appendix, we provide a proof of our Theorem 5.1 which applies to convex losses ℓ(θ;x)
under L2 regularizer r(θ). Let D0 ∈ X n be any arbitrary database, and Q be any non-adaptive
r-requester.

Our first goal in this section is to prove (q, εdd)-data-deletion guarantees on our proposed
algorithm pair (ANoisy-GD, ĀNoisy-GD) (in Definition 5.1) under Q. That is, if (Θ̂i)i≥0 is the
sequence of models produced by the interaction between (ANoisy-GD, ĀNoisy-GD,Q) on D0, we
need to show that their exists a mapping π

Q
i such that for all i ≥ 1 and any ui ∈ Ur,

Rq

(

Ā(Di−1, ui, Θ̂i−1)
∥
∥
∥π

Q
i (D0 ◦ 〈ind,y〉)

)

≤ εdd for all 〈ind,y〉 ∈ ui. (95)

For an arbitrary replacement operation 〈ind,y〉 in ui, we define a map π
Q
i (D0 ◦〈ind,y〉) =

Θ̂′
i, where the model sequence (Θ̂′

i)i≥0 is produced by the interaction of between algorithms
(ANoisy-GD, ĀNoisy-GD,Q) on initial database D0 ◦ 〈ind,y〉. Since non-adaptive requester Q
is equivalent to fixing the edit sequence (ui)i≥1 a-priori, note that showing the data-deletion
guarantee reduces to proving the following DP-like bound

Rq

(

Ā(Di−1, ui, Θ̂i−1)
∥
∥
∥Ā(D′

i−1, ui, Θ̂
′
i−1)

)

≤ εdd, (96)

for for all u≤i and for all neighbouring databases D0,D′
0 s.t. D′

0 = D0 ◦〈ind,y〉 with 〈ind,y〉 ∈
ui.

Note from our Definition 5.1 that the sequence of models (Θ̂0, · · · , Θ̂i) can be seen as
being generated from a continuous run of Noisy-GD, where:
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1. for iterations 0 ≤ k < KA, the loss function is LD0 ,

2. for the iterations KA + (j − 1)KĀ ≤ k < KA + jKĀ on any 1 ≤ j ≤ i − 1, the loss
function is LDj , and

3. for the iterations KA + (i− 1)KĀ ≤ k < KA + iKĀ, the loss function is LDi−1◦ui .

Let (Θηk)0≤k≤KA+iKĀ
be the sequence representing the intermediate parameters of this ex-

tended Noisy-GD run. Similarly, let (Θ′
ηk)k≥0 be the parameter sequence corresponding to the

extended run on the neighbouring database D′
0. Since 〈ind,y〉 ∈ ui, note from the construc-

tion that D′
i−1 ◦ui = Di−1 ◦ ui, meaning that the loss functions while processing request ui is

identical for the two processes, i.e. LDi−1◦ui = LD′
i−1◦ui . For brevity, we refer to the database

seen in iteration k of the two respective extended runs as D(k) and D′(k) respectively. In
short, these two discrete processes induced by Noisy-GD follow the following update rule for
any 0 ≤ k < KA + iKĀ:

{

Θη(k+1) = Θηk − η∇LD(k)(Θηk) +
√

2ησ2Zk

Θ′
η(k+1) = Θ′

ηk − η∇LD′(k)(Θ
′
ηk) +

√

2ησ2Z′
k,

where Zk,Z
′
k ∼ N (0, Id) , (97)

and Θ0 and Θ′
0 are sampled from same the weight initialization distribution ρ. To prove the

bound in (96), we follow the approach proposed in Chourasia et al. [10] of interpolating the
two discrete stochastic process of Noisy-GD with two piecewise-continuous tracing diffusions
Θt and Θ′

t in the duration ηk < t ≤ η(k + 1), defined as follows.

{

Θt = Tk(Θηk)− (t−ηk)
2 ∇

(
LD(k)(Θηk)− LD′(k)(Θηk)

)
+
√
2σ2(Zt − Zηk),

Θ′
t = Tk(Θ

′
ηk) +

(t−ηk)
2 ∇

(

LD(k)(Θ
′
ηk)− LD′(k)(Θ

′
ηk)
)

+
√
2σ2(Z′

t − Z′
ηk),

(98)

where Zt,Z
′
t are two independent Weiner processes, and Tk is a map on R

d defined as

Tk = Id −
η

2
∇
(
LD(k) + LD′(k)

)
. (99)

Note that equation (98) is identical to (97) when t = η(k + 1), and can be expressed by the
following stochastic differential equations (SDEs):

{

dΘt = −gk(Θηk)dt+
√
2σ2dZt

dΘ′
t = +gk(Θ

′
ηk)dt+

√
2σ2dZ′

t,
where gk(Θ) =

1

2n
∇
[
ℓ(Θ;D(k)[ind])− ℓ(Θ;D′(k)[ind])

]
,

(100)
and initial condition limt→ηk+ Θt = Tk(Θηk), limt→ηk+ Θ′

t = Tk(Θ
′
ηk). These two SDEs can

be equivalently described by the following pair of Fokker-Planck equations.

Lemma G.10 (Fokker-Planck equation for SDE (100)). Fokker-Planck equation for SDE in
(100) at time ηk < t ≤ η(k + 1), is







∂tµt(θ) = div
(

µt(θ)E [gk(Θηk)|Θt = θ]
)

+ σ2∆µt(θ),

∂tµ
′
t(θ) = div

(

µ
′
t(θ)E

[

−gk(Θ′
ηk)
∣
∣
∣Θ′

t = θ
])

+ σ2∆µ
′
t(θ),

(101)

where µt and µ
′
t are the densities of Θt and Θ′

t respectively.
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µηk

µ
′
ηk

Tk#µηk

Tk#µ
′
ηk

µ
′
η(k+1)

µ
′
∞

µη(k+1)

µ∞

(a)

(a)

(b)

(b)

Rk RkRk+1R∞ = qL2

λn2σ2

(I) Phase I: Processing requests u<i,
i.e. 0 ≤ k < KA + (i − 1)KĀ.

µηk Tk#µηk

µ′ηk Tk#µ′ηk
µ′η(k+1)

µη(k+1)

µ′∞

µ∞
R∞ = 0

(a)

(a)
(b)

(b)Rk Rk Rk+1

(II) Phase II: Processing request ui,
i.e. KA+(i− 1)KĀ ≤ k < KA+ iKĀ.

Figure 1: Diagram illustrating the technical overview of Theorem G.15. Here µηk and µηk′

represent the kth iteration parameter distribution of Θηk and Θ′
ηk respectively. We interpolate

the two discrete processes in two steps: (a) an identical transformation Tk (as defined in (99),

and (b) a diffusion process. If divergence before descent step is Rk = Rq

(

µηk

∥
∥
∥µ

′
ηk

)

, the

stochastic mapping Tk in (a) doesn’t increase the divergence, while the diffusion (b) either
increases it upto an asymptotic constant in phase I or decreases it exponentially to 0 in phase
II.

Proof. Conditioned on observing parameter Θηk = θηk, the process (Θt)ηk<t≤η(k+1) is a
Langevin diffusion along a constant Vector field (i.e. on conditioning, we get a Langevin
SDE (77) with ∇L(θ) = gk(θηk) for all θ ∈ R

d). Therefore as per (83), the conditional
probability density µt|ηk(·|θηk) of Θt given Θηk follows the following Fokker-Planck equation:

∂tµt|ηk(·|θηk) = div
(
µt|ηk(·|θηk)gk(θηk)

)
+ σ2∆µt|ηk(·|θηk) (102)

Taking expectation over µηk which is the distribution of Θηk,

∂tµt(·) =
∫

µηk(θηk)
{
div
(
µt|ηk(·|θηk)gk(θηk)

)
+ σ2∆µt|ηk(·|θηk)

}
dθηk

= div

(∫

gk(θηk)µt,ηk(·, θηk)dθηk
)

+ σ2∆µt(·)

= div

(

µt(·)
{∫

gk(θηk)µηk|t(θηk|·)dθηk
})

+ σ2∆µt(·)

= div
(

µt(·)E [gk(Θηk)|Θt = ·]
)

+ σ2∆µt(·).

where µηk,|t is the conditional density of Θηk given Θt. Proof for second Fokker-Planck
equation is similar.

We provide an overview of how we bound equation (96) in Figure 1. Basically, our analysis

has two phases; in phase (I) we provide a bound on Rq

(

Θ̂i−1

∥
∥
∥Θ̂′

i−1

)

that holds for any choice
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of number of iterations KA and KĀ, and in phase (II) we prove an exponential contraction in

the divergence Rq

(

Ā(Di−1, ui, Θ̂i−1

∥
∥
∥Ā(D′

i−1, ui, Θ̂
′
i−1)

)

with number of iterations KĀ.

We first introduce a few lemmas that will be used in both phases. The first set of follow-
ing lemmas show that the transformation Θηk,Θ

′
ηk → Tk(Θηk), Tk(Θηk) preserves the Rényi

divergence. To prove this property, we show that Tk is a differentiable bijective map in
Lemma G.12 and apply the following Lemma from Vempala and Wibisono [35].

Lemma G.11 (Vempala and Wibisono [35, Lemma 15]). If T : Rd → R
d is a differentiable

bijective map, then for any random variables Θ,Θ′ ∈ R
d, and for all q > 0,

Rq
(
T (Θ)

∥
∥T (Θ′)

)
= Rq (Θ‖Θ) . (103)

Lemma G.12. If ℓ(θ;x) is a twice continuously differentiable, convex, and β-smooth loss
function and regularizer is r(θ) = λ

2 ‖θ‖
2
2, then the map Tk defined in (99) is:

1. a differentiable bijection for any η < 1
λ+β , and

2. (1− ηλ)-Lipschitz for any η ≤ 2
2λ+β .

Proof. Differentiable bijection. To see that Tk is injective, assume Tk(θ) = Tk(θ
′) for some

θ, θ′ ∈ R
d. Then, by (β + λ)-smoothness of L def

= (LD(k) + LD′(k))/2,
∥
∥θ − θ′

∥
∥
2
=
∥
∥Tk(θ) + η∇L(θ)− Tk(θ′)− η∇L(θ′)

∥
∥
2

= η
∥
∥∇L(θ)−∇L(θ′)

∥
∥
2

≤ η(λ+ β)
∥
∥θ − θ′

∥
∥
2
.

Since η < 1/(λ + β), we must have ‖θ − θ′‖2 = 0. For showing Tk is surjective, consider the
proximal mapping

proxL(θ) = argmin
θ′∈Rd

‖θ′ − θ‖22
2

− ηL(θ′). (104)

Note that proxL(·) is strongly convex for η < 1
λ+β . Therefore, from KKT conditions, we have

θ = proxL(θ)− η∇L(proxL(θ)) = Tk(proxL(θ)). Differentiability of Tk follows from the twice
continuously differentiable assumption on ℓ(θ;x).

Lipschitzness. Let L def
= (LD(k) + LD′(k))/2. For any θ, θ′ ∈ R

d,
∥
∥Tk(θ)− Tk(θ′)

∥
∥2

2
=
∥
∥θ − η∇L(θ)− θ′ + η∇L(θ′)

∥
∥2

2

=
∥
∥θ − θ′

∥
∥2

2
+ η2

∥
∥∇L(θ)−∇L(θ′)

∥
∥2

2
− 2η

〈
θ − θ′,∇L(θ)−∇L(θ′

〉
.

We define a function g(θ) = L(θ)− λ
2 ‖θ‖

2
2, which is convex and β-smooth. By co-coercivity

property of convex and β-smooth functions, we have

〈
θ − θ′,∇g(θ)−∇g(θ′)

〉
≥ 1

β

∥
∥∇g(θ)−∇g(θ′)

∥
∥2

2

=⇒
〈
θ − θ′,∇L(θ)−∇L(θ′)

〉
− λ

∥
∥θ − θ′

∥
∥2

2
≥ 1

β

(
∥
∥∇L(θ)−∇L(θ′)

∥
∥2

2
+ λ2

∥
∥θ − θ′

∥
∥2

2

− 2λ
〈
θ − θ′,∇L(θ)−∇L(θ′)

〉
)

=⇒
〈
θ − θ′,∇L(θ)−∇L(θ′)

〉
≥ 1

2λ+ β

∥
∥∇L(θ)−∇L(θ′)

∥
∥2

2
+
λ(λ+ β)

2λ+ β

∥
∥θ − θ′

∥
∥2

2
.
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Substituting this in the above inequality, and noting that η ≤ 2
2λ+β , we get

∥
∥Tk(θ)− Tk(θ′)

∥
∥2

2
≤
(

1− 2ηλ(λ+ β)

2λ+ β

)
∥
∥θ − θ′

∥
∥2

2
+

(

η2 − 2η

β + 2λ

)
∥
∥∇L(θ)−∇L(θ′)

∥
∥2

2

≤
(

1− 2ηλ(λ+ β)

2λ+ β

)
∥
∥θ − θ′

∥
∥2

2
+

(

η2λ2 − 2ηλ2

β + 2λ

)
∥
∥θ − θ′

∥
∥2

2

= (1− ηλ)2
∥
∥θ − θ′

∥
∥2

2
.

The second set of lemmas presented below describe how Rq (Θt‖Θt) evolves with time
in both phases I and II. Central to our analysis is the following lemma which bounds the
rate of change of Rényi divergence for any pair of diffusion process characterized by their
Fokker-Planck equations.

Lemma G.13 (Rate of change of Rényi divergence [10]). Let Vt, V ′
t : Rd → R

d be two time
dependent vector field such that maxθ∈Rd ‖Vt(θ)− V ′

t (θ)‖2 ≤ L for all θ ∈ R
d and t ≥ 0. For

a diffusion process (Θt)t≥0 and (Θ′
t)t≥0 defined by the Fokker-Planck equations

{

∂tµt(θ) = div (µt(θ)Vt(θ)) + σ2∆µt(θ) and

∂tµ
′
t(θ) = div (µ′

t(θ)V
′
t (θ)) + σ2∆µ

′
t(θ),

(105)

respectively, where µt and µt are the densities of Θt and Θ′
t, the rate of change of Rényi

divergence between the two at any t ≥ 0 is upper bounded as

∂tRq
(
µt

∥
∥µ

′
t

)
≤ qL2

2σ2
− qσ2

2

Iq (µt‖µ′
t)

Eq (µt‖µ′
t)
. (106)

We will apply the above lemma to the Fokker-Planck equation (101) of our pair of tracing
diffusion SDE (98) and solve the resulting differential inequality to prove the bound in (96).
To assist our proof, we rely on the following lemma showing that our two tracing diffusion
satisfy the LS inequality described in Definition G.1, which enables the use the inequality (93)
in Lemma G.6.

Lemma G.14. If loss ℓ(θ;x) is convex and β-smooth, regularizer is r(θ) = λ
2 ‖θ‖

2
2, and

learning rate η ≤ 2
2λ+β , then the tracing diffusion (Θt)0≤t≤η(KA+iKĀ) and (Θ′

t)0≤t≤η(KA+iKĀ)

defined in (98) with Θ0,Θ
′
0 ∼ ρ = N

(

0, σ2

λ(1−ηλ/2) Id
)

satisfy LS inequality with constant

λ(1− ηλ/2).
Proof. For any iteration 0 ≤ k < KA + iKĀ in the extended run of Noisy-GD, and any
0 ≤ s ≤ η, let’s define two functions Ls,L′s : Rd → R as follows:

Ls =
1 + s/η

2
LD(k) +

1− s/η
2
LD′(k), and L′s =

1− s/η
2
LD(k) +

1 + s/η

2
LD′(k). (107)

Since r(·) is the L2(λ) regularizer and ℓ(θ;x) is convex and β-smoothness, both Ls and L′s
are λ-strongly convex and (λ + β)-smooth for all 0 ≤ s ≤ η and any k. We define maps
Ts, T

′
s : R

d → R
d as

Ts(θ) = θ − η∇Ls(θ), and T ′
s(θ) = θ −∇L′s(θ). (108)
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From a similar argument as in Lemma G.12, both Ts and T ′
s are (1−ηλ)-Lipschitz for learning

rate η ≤ 2
2λ+β .

Note that the densities of Θt and Θ′
t of the tracing diffusion for t = ηk + s can be

respectively expressed as

µt = Ts#(µηk)⊛N
(
0, 2sσ2Id

)
, and µ

′
t = T ′

s#(µ
′
ηk)⊛N

(
0, 2sσ2Id

)
, (109)

where µηk and µ
′
ηk represent the distributions of Θηk and Θ′

ηk. We prove the lemma via
induction.

Base step: Since Θ0,Θ
′
0 are both Gaussian distributed with variance σ2

λ(1−ηλ/2) , from

Lemma G.1 they satisfy LS inequality with constant λ(1− ηλ/2).
Induction step: Suppose µηk and µ

′
ηk satisfy LS inequality with constant λ(1 − ηλ/2).

Since equation (109) shows that µt,µ
′
t are both Gaussian convolution on a pushforward dis-

tribution of µηk,µ
′
ηk respectively over a Lipschitz function, from Lemma G.1 and Lemma G.2,

both µt,µ
′
t satisfy LS inequality with constant

(
(1− ηλ)2
λ(1− ηλ/2) + 2s

)−1

≥ λ(1− ηλ/2) × [(1 − ηλ)2 + λη(2− ηλ)]−1

︸ ︷︷ ︸

=1

, (110)

for all ηk ≤ t ≤ η(k + 1).

We are now ready to prove the data-deletion bound in (96).

Theorem G.15 (Data-Deletion guarantee on (ANoisy-GD, ĀNoisy-GD) under convexity). Let

the weight initialization distribution be ρ = N
(

0, σ2

λ(1−ηλ/2)

)

, the loss function ℓ(θ;x) be

convex, β-smooth, and L-Lipschitz, the regularizer be r(θ) = λ
2 ‖θ‖

2
2, and learning rate be

η < 1
λ+β . Then Algorithm pair (A, Ā) satisfies a (q, εdd)-data-deletion guarantee under all

non-adaptive r-requesters for any noise variance σ2 > 0 and KA ≥ 0 if

KĀ ≥
2

ηλ
log

(
4qL2

λεddσ2n2

)

. (111)

Proof. Following the preceding discussion, to prove this theorem, it suffices to show that
the inequality (96) holds under the stated conditions. Consider the Fokker-Planck equation
described in Lemma G.10 for the pair of tracing diffusions SDEs in (100): at any time t in
duration ηk < t ≤ η(k + 1) for any iteration 0 ≤ k < KA + iKĀ,







∂tµt(θ) = div
(

µt(θ)E [gk(Θηk)|Θt = θ]
)

+ σ2∆µt(θ),

∂tµ
′
t(θ) = div

(

µ
′
t(θ)E

[

−gk(Θ′
ηk)
∣
∣
∣Θ′

t = θ
])

+ σ2∆µ
′
t(θ),

(112)

where µt and µ
′
t are the distribution of Θt and Θ′

t. Since ℓ(θ;x) is L-Lipschitz and for any
KA + (i− 1)KĀ ≤ k < KA + iKĀ we have D(k)[ind] = D′(k)[ind], note from the definition of
gk(θ) in (100) that

∥
∥
∥E [gk(Θηk)|Θt = θ]− E

[
−gk(Θ′

ηk)
∣
∣Θ′

t = θ
]
∥
∥
∥
2
≤
{

2L
n if k < KA + (i− 1)KĀ

0 otherwise
. (113)
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Therefore, applying Lemma G.13 to the above pair of Fokker-Planck equations gives that for
any t in duration ηk < t ≤ η(k + 1),

∂tRq
(
µt

∥
∥µ

′
t

)
≤ 2qL2

σ2n2
1 {t ≤ η(KA + (i− 1)KĀ)} −

qσ2

2

Iq (µt‖µ′
t)

Eq (µt‖µ′
t)
. (114)

Equation (114) suggests a phase change in the dynamics at iteration k = KA +(i− 1)KĀ. In
phase I, the divergence bound increases with time due to the effect of the differing record in
database pairs (Dj ,D′

j)0≤j≤i−1. In phase II however, the update request ui makes Di−1 ◦ui =
D′
i−1 ◦ ui, and so doing gradient descent rapidly shrinks the divergence bound. This phase

change is illustrated in the Figure 1.
For brevity, we denote R(q, t) = Rq (µt‖µ′

t). Since η < 1
λ+β <

2
2λ+β , from Lemma G.14,

the distribution µ
′
t satisfies LS inequality with constant λ(1 − λη/2). So, we can apply

Lemma G.6 to simplify the above partial differential inequality as follows.

∂tR(q, t) + λ(1− λη/2)
(
R(q, t)

q
+ (q − 1)∂qR(q, t)

)

≤ 2qL2

σ2n2
1 {t ≤ η(KA + (i− 1)KĀ)} .

(115)

For brevity, let constant c1 = λ(1− λη/2) and constant c2 =
2L2

σ2n2 . We define u(q, t) = R(q,t)
q .

Then,

∂tR(q, t) + c1

(
R(q, t)

q
+ (q − 1)∂qR(q, t)

)

≤ c2q × 1 {t ≤ η(KA + (i− 1)KĀ)}

=⇒ ∂tu(q, t) + c1u(q, t) + c1(q − 1)∂qu(q, t) ≤ c2 × 1 {t ≤ η(KA + (i− 1)KĀ)} .
For some constant q̄ > 1, let q(s) = (q̄−1) exp [c1 {s− η(KA + iKĀ)}]+1 and t(s) = s. Note

that dq(s)
ds = c1(q(s)− 1) and dt(s)

ds = 1. Therefore, for any ηk < s ≤ η(k + 1), the differential
inequality followed along the path u(s) = u(q(s), t(s)) is

du(s)

ds
+ c1u(s) ≤ c2 × 1 {t ≤ η(KA + (i− 1)KĀ)} (116)

=⇒ d

ds
{ec1su(s)} ≤ c2 × 1 {t ≤ η(KA + (i− 1)KĀ)} . (117)

Since the map Tk(·) in (99) is a differentiable bijection for η < 1
λ+β as per Lemma G.12, note

that Lemma G.11 implies that lims→ηk+ u(s) = u(ηk). Therefore, we can directly integrate
in the duration 0 ≤ t ≤ η(KA + iKĀ) to get

[ec1su(s)]
η(KA+iKĀ)
0 ≤

∫ η(KA+(i−1)KĀ)

0
c2e

c1sds

=⇒ ec1η(KA+iKĀ)u(η(Kp + iKu))− u(0) ≤
c2
c1
[ec1η(KA+(i−1)KĀ) − 1]

=⇒ u(η(KA + iKĀ)) ≤
c2
c1
e−c1ηKĀ . (Since u(0) = R(q(0), 0)/q(0) = 0.)

Noting that q(0) ≥ 1, on reverting the substitution, we get

Rq̄

(

µη(KA+iKĀ)

∥
∥
∥µ

′
η(KA+iKĀ)

)

≤ 2q̄L2

λσ2n2(1− ηλ/2) exp (−ηλKĀ(1− ηλ/2))

≤ 4q̄L2

λσ2n2
exp

(

−ηλKu

2

)

(Since η < 1
λ+β )

42



Recall from our construction that µη(KA+iKĀ) and µ
′
η(KA+iKĀ) are the distributions of outputs

Ā(Di−1, ui, Θ̂i−1) and Ā(D′
i−1, ui, Θ̂

′
i−1) respectively. Therefore, choosing KĀ as specified in

the theorem statement concludes the proof.

Our next goal in this section is to provide utility guarantees for the algorithm pair
(ANoisy-GD, ĀNoisy-GD) in form of excess empirical risk bounds. For that, we introduce some
additional auxiliary results first. The following Lemma G.16 shows that excess empirical risks
does not increase too much on replacing r records in a database, and Lemma G.17 provides
a convergence guarantee on the excess empirical risk of Noisy-GD algorithm under convexity.

Lemma G.16. Suppose the loss function ℓ(θ;x) is convex, L-Lipschitz, and β-smooth, and
the regularizer is r(θ) = λ

2 ‖θ‖
2
2. Then, the excess empirical risk of any randomly distributed

parameter Θ for any database D ∈ X n after applying any edit request u ∈ Ur that modifies no
more than r records is bounded as

err(Θ;D ◦ u) ≤
(

1 +
β

λ

)[

2 err(Θ;D) + 16r2L2

λn2

]

. (118)

Proof. Let θ∗D and θ∗D◦u be the minimizers of objectives LD(·) and LD◦u(·) as defined in (12).
From λ-strong convexity of the LD,

LD(θ∗D◦u)− LD(θ∗D) ≥
λ

2
‖θ∗D◦u − θ∗D‖22 . (119)

From optimality of θ∗D◦u and L-Lipschitzness of ℓ(θ;x), we have

LD(θ∗D◦u) = LD◦u(θ∗D◦u) +
1

n

(
∑

x∈D
ℓ(θ∗D◦u;x)−

∑

x∈D◦u
ℓ(θ∗D◦u;x)

)

≤ LD◦u(θ∗D) +
1

n

(
∑

x∈D
ℓ(θ∗D◦u;x)−

∑

x∈D◦u
ℓ(θ∗D◦u;x)

)

= LD(θ∗D) +
1

n

∑

x∈D
(ℓ(θ∗D◦u;x)− ℓ(θ∗D;x)) +

1

n

∑

x∈D◦u
(ℓ(θ∗D;x)− ℓ(θ∗D◦u;x))

≤ LD(θ∗D) +
2rL

n
‖θ∗D◦u − θ∗D‖2 .

Combining the two inequalities give

‖θ∗D◦u − θ∗D‖2 ≤
4rL

λn
. (120)

Therefore, from (λ+ β)-smoothness of LD◦u and λ-strong convexity of LD, we have

err(Θ;D ◦ u) = E [LD◦u(Θ)− LD◦u(θ
∗
D◦u)]

≤ λ+ β

2
E

[

‖Θ− θ∗D◦u‖22
]

≤ (λ+ β)
[

E

[

‖Θ− θ∗D‖22
]

+ ‖θ∗D − θ∗D◦u‖22
]

≤
(

1 +
β

λ

)[

2E [LD(Θ)− LD(θ∗D)] +
16r2L2

λn2

]

.
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Lemma G.17 (Accuracy of Noisy-GD). For convex, L-Lipschitz, and, β-smooth loss function
ℓ(θ;x) and regularizer r(θ) = λ

2 ‖θ‖
2
2, if learning rate η < 1

λ+β , the excess empirical risk of
ΘηK = Noisy-GD(D,Θ0,K) for any D ∈ X n is bounded as

err(ΘηK ;D) ≤ err(Θ0;D)e−ληK/2 +
(

1 +
β

λ

)

dσ2. (121)

Proof. Let Θηk denote the kth iteration parameter of Noisy-GD run. Recall that k + 1th
noisy gradient update step is

Θη(k+1) = Θηk − η∇LD(Θηk) +
√

2ησ2Zk. (122)

From (β + λ)-smoothness of LD, we have

LD(Θη(k+1)) ≤ LD(Θηk) +
〈
∇LD(Θηk),Θη(k+1) −Θηk

〉
+
β + λ

2

∥
∥Θη(k+1) −Θηk

∥
∥2

2

= LD(Θηk)− η ‖∇LD(Θηk)‖22 +
√

2ησ2 〈∇LD(Θηk),Zk〉

+
η2(β + λ)

2
‖∇LD(Θηk)‖22 + ησ2(β + λ) ‖Zk‖22

− η
√

2ησ2(β + λ) 〈∇LD(Θηk),Zk〉

On taking expectation over the joint distribution of Θηk,Θη(k+1),Zk, the above simplifies to

E
[
LD(Θη(k+1))

]
≤ E [LD(Θηk)]−η

(

1− η(λ+ β)

2

)

E

[

‖∇LD(Θηk)‖22
]

+ηdσ2(β+λ). (123)

Let θ∗D = argmin
θ∈Rd

LD(θ). From λ-strong convexity of LD, for any θ ∈ R
d, we have

‖∇LD(θ)‖22 ≥ 2λ(LD(θ)− LD(θ∗D)). (124)

Let γ = λη(2− η(λ+ β)). Plugging this in the above inequality, and subtracting LD(θ∗D) on
both sides, for η < 1

λ+β , we get

E
[
LD(Θη(k+1))− LD(θ∗D)

]
≤ (1− γ)E [LD(Θηk)− LD(θ∗D)] + ηdσ2(β + λ)

≤ (1− γ)k+1
E [LD(Θ0)− LD(θ∗)] + ηdσ2(β + λ)(1 + · · ·+ (1− γ)k+1)

≤ e−γ(k+1)/2
E [LD(Θ0)− LD(θ∗D)] +

ηdσ2(β + λ)

γ
.

For η < 1
λ+β , note that γ ≥ λη, and so

err(ΘηK ;D) ≤ err(Θ0;D)e−ληK/2 +
(

1 +
β

λ

)

dσ2. (125)

Finally, we are ready to prove our main Theorem 5.1 showing that the algorithm pair
(ANoisy-GD, ĀNoisy-GD) solves the data-deletion problem as described in Section 4. We basically
combine the Rényi DP guarantee in Theorem G.9, non-adaptive data-deletion guarantee in
Theorem G.15, and prove excess empirical risk bound using Lemma G.17 and Lemma G.16.
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Theorem 5.1 (Utility, privacy, deletion, and computation tradeoffs). Let constants λ, β, L > 0,
q > 1, and 0 < εdd ≤ εdp. Define constant κ = λ+β

λ . Let the loss function ℓ(θ;x) be twice
differentiable, convex, L-Lipschitz, and β-smooth, the regularizer be r(θ) = λ

2 ‖θ‖
2
2. If the

learning rate be η = 1
2(λ+β) , the gradient noise variance is σ2 = 4qL2

λεdpn2 , and the weight initial-

ization distribution is ρ = N
(

0, σ2

λ(1−ηλ/2)Id

)

, then

(1.) both ANoisy-GD and ĀNoisy-GD are (q, εdp)-Rényi DP for any KA,KĀ ≥ 0,

(2.) pair (ANoisy-GD, ĀNoisy-GD) satisfies (q, εdd)-data-deletion all non-adaptive r-requesters

if KĀ ≥ 4κ log
εdp
εdd

, (126)

(3.) and all models in (Θ̂i)i≥0 produced by (ANoisy-GD, ĀNoisy-GD,Q) on any D0 ∈ X n, where

Q is any r-requester, have an excess empirical risk err(Θ̂i;Di) = O
(

qd
εdpn2

)

if KA ≥ 4κ log

(
εdpn

2

4qd

)

, and KĀ ≥ 4κ log max

{

5κ,
8εdpr

2

qd

}

. (127)

Proof. (1.) Privacy. By Theorem G.9, the Noisy-GD with K iterations will be (q, εdp)-
Rényi DP for the stated choice of loss function, regularizer, and learning rate as long as

σ2 ≥ 4qL2

λεdpn2

(
1− e−ληK/2

)
. Therefore, if we set σ2 = 4qL2

λεdpn2 , Noisy-GD is (q, εdp)-Rényi DP

for any K. For the same σ2, both ANoisy-GD and ĀNoisy-GD are also (q, εdp)-Rényi DP for any
KA and KĀ as they run Noisy-GD on respective databases for generating the output.

(2.) Deletion. By Theorem G.15, for the stated choice of loss function, regularizer, learn-
ing rate, and weight initialization distribution, the algorithm pair (ANoisy-GD, ĀNoisy-GD) sat-

isfies (q, εdd)-data-deletion under all non-adaptive r-requesters Q if KĀ ≥ 2
ηλ log

(
4qL2

λεddσ2n2

)

.

By plugging in σ2 = 4qL2

λεdpn2 and η = 1
2(λ+β) , this constraint simplifies to KĀ ≥ 4κ log

εdp
εdd

.

(3.) Accuracy. We prove the induction hypothesis that under the conditions stated in

the theorem, err(Θ̂i;Di) ≤ 10κqdL2

λεdpn2 for all i ≥ 0.

Base case: The minimizer θ∗D0
of LD0 satisfies

∇LD0(θ
∗
D0

) =
1

n

∑

x∈D0

∇ℓ(θ∗D0
;x)− λθ∗D0

= 0 =⇒
∥
∥θ∗D0

∥
∥
2
≤ L

λ
. (128)

As a result, the excess empirical risk of initialization weights Θ0 ∼ ρ = N
(

0, σ2

λ(1−ηλ/2)Id

)

on

LD0 is bounded as
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err(Θ0;D0) = E
[
LD0(Θ0)− LD0(θ

∗
D0

)
]

≤ (λ+ β)

2
E

[∥
∥Θ0 − θ∗D0

∥
∥2

2

]

(From (λ+ β)-smoothness of LD0)

=
(λ+ β)

2

[∥
∥θ∗D0

∥
∥2

2
+ E

[

‖Θ0‖22
]

− 2E
[〈
θ∗D0

,Θ0

〉]]

≤
(

1 +
β

λ

)[
L2

2λ
+

σ2d

2− λη

]

(From (128) and E

[

‖Z‖22
]

= d if Z ∼ N (0, Id).)

≤ κ
[
L2

2λ
+ dσ2

]

.

Since Θ̂0 = ANoisy-GD(D0) = Noisy-GD(D0,Θ0,KA), by Lemma G.17, runningKA ≥ 2κ log
(
εdpn

2

4qd

)

iterations gives

err(Θ̂0;D0) ≤ err(Θ0;D0)e
−ληKA/2 + κdσ2

≤ κ
[
L2

2λ
+ dσ2

]

e−ληKA/2 + κdσ2

≤ κL2

2λ
e−ληKA/2 +

8κqdL2

λεdpn2
(On substituting σ2 = 4qL2

λεdpn2 )

≤ 10κqdL2

λεdpn2
(Since KA ≥ 4κ log

(
εdpn

2

4qd

)

)

Induction step: Assume that err(Θ̂i−1;Di−1) ≤ 10κqdL2

λεdpn2 . Since Θ̂i = ĀNoisy-GD(Di−1, ui, Θ̂i−1) =

Noisy-GD(Di, Θ̂i−1,KĀ), by Lemma G.17 and Lemma G.16, running KĀ ≥ 2κ log max
{

5κ, 8r
2

qd

}

iterations gives

err(Θ̂i;Di) ≤ κ
[

2err(Θ̂i−1;Di−1) +
16r2L2

λn2

]

e−ληKĀ/2 + κdσ2

≤ κ
[
20κqdL2

λεdpn2
+

16r2L2

λn2

]

e−ληKĀ/2 +
4κqdL2

λεdpn2
(Substituting σ2)

≤ 16κr2L2

λn2
e−ληKĀ/2 +

8κqdL2

λεdpn2
(Since KĀ ≥ 4κ log(5κ))

≤ 10κqdL2

λεdpn2
(Since KĀ ≥ 4κ log

8εdpr
2

qd )

G.5 Proofs for Subsection 5.2

In this Appendix, we provide a proof of our data-deletion and utility guarantee in Theorem 5.2
which applies to non-convex but bounded losses ℓ(θ;x) under L2 regularizer r(θ). Suppose
D0 ∈ X n is an arbitrary database, Q is any non-adaptive r-requester, and (Θ̂i)i≥0 is the
model sequence generated by the interaction of (ANoisy-GD, ĀNoisy-GD,Q). Our first goal will
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be to prove (q, εdd)-data deletion guarantee on (ANoisy-GD, ĀNoisy-GD) and we will later use it
for arguing utility as well. Recall from Definition 4.1 that to prove (q, εdd)-data-deletion, we
need to construct a map π

Q
i : X n → O such that for all i ≥ 1 and any ui ∈ Ur,

Rq

(

Ā(Di−1, ui, Θ̂i−1)
∥
∥
∥π

Q
i (D0 ◦ 〈ind,y〉)

)

≤ εdd for all 〈ind,y〉 ∈ ui. (129)

Our construction of πQ
i for this proof is completely different from the one described in Ap-

pendix G.4. As discussed in Remark 4.2, since Q is non-adaptive, it suffices to show that
there exists a map π : X n → O such that for all i ≥ 1,

Rq

(

Ā(Di−1, ui, Θ̂i−1)
∥
∥
∥π(Di)

)

≤ εdd, (130)

for all D0 ∈ X n and all edit sequences (ui)i≥1 from Ur.
Our mapping of choice for the purpose is the Gibbs distribution with the following density:

π(D)(θ) ∝ e−LD(θ)/σ2 . (131)

The high-level intuition for this construction is that Noisy-GD can be interpreted as Un-
adjusted Langevin Algorithm (ULA) [29], which is a discretization of the Langevin diffusion
(described in eqn. (77)) that eventually converges to this Gibbs distribution (see Appendix G.1
for a quick refresher). However, showing a convergence for ULA (in indistinguishability no-
tions like Rényi divergence) to this Gibbs distribution, especially in form of non-asymptotic
bounds on the mixing time and discretization error has been a long-standing open problem.
Recent breakthrough results by Vempala and Wibisono [35] followed by Chewi et al. [9] re-
solved this problem with an elegant argument, relying solely on isoperimetric assumptions
over (131) that hold for non-convex losses. Our data-deletion argument leverages this rapid
convergence result to basically show that once Noisy-GD reaches near-indistinguishability to
its Gibbs mixing distribution, maintaining indistinguishability to subsequent Gibbs distri-
bution corresponding to database edits require much fewer Noisy-GD iterations than fresh
retraining (i.e. data deletion is faster than retraining).

We start by presenting Chewi et al. [9]’s convergence argument adapted to our Noisy-
GD formulation, with a slightly tighter analysis that results in a log(q) improvement in the
discretization error over the original. Consider the discrete stochastic process (Θηk)0≤k≤K
induced by parameter update step in Noisy-GD algorithm when run for K iterations on a
database D with an arbitrary start distribution Θ0 ∼ µ0. We interpolate each discrete update
from Θηk to Θη(k+1) via a diffusion process Θt defined over time ηk ≤ t ≤ η(k + 1) as

Θt = Θηk − (t− ηk)∇LD(Θηk) +
√
2σ2(Zt − Zηk), (132)

where Zt is a Weiner process. Note that if Θηk models the parameter distribution after the
kth update, then Θη(k+1) models the parameter distribution after the k + 1th update. On
repeating this construction for all k = 0, · · · ,K, we get a tracing diffusion {Θt}t≥0 for Noisy-
GD (which is different from (98)). We denote the distribution of random variable Θt with µt.
The tracing diffusion during the duration ηk ≤ t ≤ η(k + 1) is characterized by the following
Fokker-Planck equation.
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Lemma G.18 (Proposition 14 [9]). For tracing diffusion Θt defined in (132), the equivalent
Fokker-Planck equation in the interval ηk ≤ t ≤ η(k + 1) is

∂tµt(θ) = div

({

E [∇LD(Θηk)−∇LD(Θt)|Θt = θ] + σ2∇ log
µt(θ)

π(D)(θ)

}

µt(θ)

)

, (133)

where π(D) is the Gibbs distribution defined in (131).

Proof. Conditioned on observing parameter Θηk = θηk, the process (Θt)ηk≤t≤η(k+1) is a
Langevin diffusion along a constant Vector field ∇LD(θηk). Therefore, the conditional prob-
ability density µt|ηk(·|θηk) of Θt given θηk follows the following Fokker-Planck equation.

∂tµt|ηk(·|θηk) = σ2∆µt|ηk(·|θηk) + div
(
µt|ηk(·|θηk)∇LD(θηk)

)
(134)

Taking expectation over Θηk, we have

∂tµt(·) =
∫

µηk(θηk)
{
σ2∆µt|ηk(·|θηk) + div

(
µt|ηk(·|θηk)∇LD(θηk)

)}
dθηk

= σ2∆µt(·) + div (µt(·)∇LD(·)) + div

(

µt(·)
∫

[∇LD(θηk)−∇LD(·)]µηk|t(θηk|·)dθηk
)

updreq = σ2div

(

µt(·)∇ log
µt(·)

π(D)(·)

)

+ div
(

E [∇LD(Θηk)−∇LD(·)|Θt = ·]µt(·)
)

,

where µηk|t is the conditional density of Θηk given Θt. For the last equality, we have used the
fact that ∇LD = −σ2∇ logπ(D) from (131).

The following lemma provides a partial differential inequality that bounds the rate of
change in Rényi divergence Rq (µt‖π(D)) using Fokker-Planck equation (133) of Noisy GD’s
tracing diffusion.

Lemma G.19 ([9, Proposition 15]). Let ρt := µt/π(D) where π(D) is the Gibbs distribution
defined in (131) and ψt := ρ

q−1
t /Eq (ρt‖π(D)). The rate of change in Rq (µt‖π(D)) along

racing diffusion in time ηk ≤ t ≤ η(k + 1) is bounded as

∂tRq (µt‖π(D)) ≤ −
3qσ2

4

Iq (µt‖π(D))
Eq (µt‖π(D))

+
q

σ2
E

[

ψt(Θt) ‖∇LD(Θηk)−∇LD(Θt)‖22
]

. (135)

Proof. For brevity, let ∆t(·) = E [∇LD(Θηk)−∇LD(Θt)|Θt = ·] in context of this proof.
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From Lebinz integral rule, we have

∂tRq (µt‖π(D)) =
q

(q − 1)Eq (µt‖π(D))

∫ (
µt

π(D)

)q−1

∂tµtdθ

=
q

(q − 1)Eq (µt‖π(D))

∫

ρ
q−1
t div

({
∆t + σ2∇ log ρt

}
µt

)
dθ (From (133))

= − q

(q − 1)Eq (µt‖π(D))

∫ 〈

∇
(

ρ
q−1
t

)

,∆t + σ2∇ log ρt

〉

µtdθ

= − q

Eq (µt‖π(D))

∫

ρ
q−2
t

〈

∇ρt,∆t + σ2
∇ρt
ρt

〉

µtdθ

= − q

Eq (µt‖π(D))







σ2Iq (µt‖π(D)) +
2

q
E
µt

[

ρ
q/2−1
t

〈

∇
(

ρ
q/2
t

)

,∆t

〉]

︸ ︷︷ ︸

def
=F1







(From (27))

Note that the expectation in ∆t(·) is over the conditional distribution µηk|t while the expec-
tation in F1 is over µt. Therefore, we can combine the two to get an expectation over the
unconditional joint distribution over Θt and Θηk as follows.

−F1 = E
Θt∼µt

[

ρ
q/2−1
t (Θt)

〈

∇
(

ρ
q/2
t

)

(Θt), E
Θηk∼µηk|t

[∇LD(Θt)−∇LD(Θηk)]

〉]

= E
µηk,t

[

ρ
q/2−1
t (Θt)

〈

∇
(

ρ
q/2
t

)

(Θt),∇LD(Θt)−∇LD(Θηk)
〉]

≤ σ2

2q
E

[

ρ
−1
t (Θt)

∥
∥
∥∇
(

ρ
q/2
t

)

(Θt)
∥
∥
∥

2

2

]

+
q

2σ2
E

[

ρ
q−1
t (Θt) ‖∇LD(Θt)−∇LBk

(Θηk)‖22
]

=
qσ2

8
Iq (ρt‖µ) +

q

2σ2
E

[

ρ
q−1
t (Θt) ‖∇LD(Θt)−∇LBk

(Θηk)‖22
]

(From (27))

Substituting it in the preceding inequality proves the proposition.

We need to solve the PDI (135) to get a convergence bound for Noisy-GD. To help in that,
we first introduce the change of measure inequalities shown in Chewi et al. [9].

Lemma G.20 (Change of measure inequality [9]). If ℓ(θ;x) is β-smooth, and regularizer is
r(θ) = λ

2 ‖θ‖
2
2, then for any probability density µ on R

d,

E
µ

[

‖∇LD‖22
]

≤ 4σ4 E
π(D)

[∥
∥
∥
∥
∇
√

µ

π(D)

∥
∥
∥
∥

2

2

]

+ 2dσ2(β + λ), (136)

where π(D) is the Gibbs distribution defined in (131).
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Proof. Consider the Langevin diffusion (77) described in Appendix G.1 over the potential LD.
The Gibbs distribution π(D) is its stationary distribution, and the diffusion’s infinitesimal
generator G applied on the LD gives

GLD = σ2∆LD − ‖∇LD‖22 . (137)

Therefore,

E
µ

[

‖∇LD‖22
]

= σ2E
µ
[∆LD]− E

µ
[GLD] (From (137))

≤ dσ2(β + λ)−
∫

GLD
(

µ

π(D) − 1

)

π(D)dθ (From β-smoothness and (85))

= dβσ2(β + λ) +

∫ [

‖∇LD‖22 − σ2∆LD
](

µ

π(D) − 1

)

π(D)dθ

= dβσ2(β + λ) +

∫

‖∇LD‖22 (µ− π(D))dθ

+ σ2
∫ 〈

∇LD,∇
[(

µ

π(D) − 1

)

π(D)
]〉

dθ (From (63))

= dβσ2(β + λ) +

∫

‖∇LD‖22 (µ− π(D))dθ + σ2
∫ 〈

∇LD,−
∇LD
σ2

〉

(µ− π(D))dθ

+ σ2
∫ 〈

∇LD,∇
µ

π(D)

〉

π(D)dθ (Since ∇π(D) = −∇LD
σ2

π(D))

= dβσ2(β + λ) + 0 + 2σ2
∫ 〈√

µ

π(D)∇LD,∇
√

µ

π(D)

〉

π(D)dθ

≤ dβσ2(β + λ) +
1

2
E
µ

[

‖∇LD‖22
]

+ 2σ4 E
π(D)

[∥
∥
∥
∥
∇
√

µ

π(D)

∥
∥
∥
∥

2

2

]

(From (64) with a = 2σ2)

Another change in measure inequality needed for the proof is the Donsker-Varadhan vari-
ational principle.

Lemma G.21 (Donsker-Varadhan Variational principle [11]). If ν and ν
′ are two distributions

on R
d such that ν≪ ν

′, then for all functions f : Rd → R,

E
Θ∼ν

[f(Θ)] ≤ KL
(
ν
∥
∥ν

′)+ log E
Θ′∼ν′

[
exp(f(Θ′))

]
. (138)

We are now ready to prove the rate of convergence guarantee for Noisy-GD following
Chewi et al. [9]’s method, but with a more refined analysis that leads to a improvement of
log q factor in the discretization error (compared to the original [9, Theorem 4]).

Theorem G.22 (Convergence of Noisy-GD in Rényi divergence). Let constants β, λ, σ2 > 0
and q,B > 1. Suppose the loss function ℓ(θ;x) is (σ2 log(B)/4)-bounded and β-smooth, and
regularizer is r(θ) = λ

2 ‖θ‖
2
2. If step size is η ≤ λ

64Bq2(β+λ)2
, then for any database D ∈ X n and

any weight initialization distribution µ0 for Θ0, the Rényi divergence of distribution µηK of
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output model ΘηK = Noisy-GD(D,Θ0,K) with respect to the Gibbs distribution π(D) defined
in (131) shrinks as follows:

Rq (µηK‖π(D)) ≤ q exp
(

−ληK
2B

)

Rq (µ0‖π(D)) +
32dηqB(β + λ)2

λ
. (139)

Proof. From (β + λ)-smoothness of loss LD we have that for any ηk ≤ t ≤ η(k + 1),

‖∇LD(Θηk)−∇LD(Θt)‖22 ≤ (β + λ)2 ‖Θηk −Θt‖22
= (β + λ)2

∥
∥
∥(t− ηk)∇LD(Θηk)−

√

2(t− ηk)σ2Zk
∥
∥
∥

2

2

(From (132))

≤ 2η2(β + λ)2 ‖∇LD(Θηk)‖22 + 4ησ2(β + λ)2 ‖Zk‖22
≤ 4η2(β + λ)2 ‖∇LD(Θηk)−∇LD(Θt)‖22
+ 4η2(β + λ)2 ‖∇LD(Θt)‖22 + 4ησ2(β + λ)2 ‖Zk‖22

Let ρt := µt

π(D) and ψt := ρ
q−1
t /Eq (ρt‖π(D)). If η ≤ 1

2
√
2(β+λ)

, we rearrange to get the

following and use it to get the following bound on the discretization error in (135):

E

[

ψt(Θt) ‖∇LBk
(Θηk)−∇LD(Θt)‖22

]

≤ 8η2(β + λ)2 E
[

ψt(Θt) ‖∇LD(Θt)‖22
]

︸ ︷︷ ︸

def
=F1

+ 32ησ2(β + λ)2 E
[

ψt(Θt) ‖Zk‖22 /4
]

︸ ︷︷ ︸

def
=F2

.

Hence, for solving the PDI (135), we have to bound the three expectations F1 and F2.

1. Bounding F1. Note that E
Θt∼µt

[ψt(Θt)] =
∫
ψt(θ)µt(θ)dθ =

1
Eq(ρt‖π(D))

∫
µ
q
t

π(D)q−1dθ = 1.

So, ψtµt(θ) := ψt(θ)µt(θ) is a probability density function on R
d. On applying the mea-

sure change Lemma G.20 on it, we get

F1 = E
ψtµt

[

‖∇LD‖22
]

≤ 4σ4 E
π(D)





∥
∥
∥
∥
∥
∇
√

ψtµt
π(D)

∥
∥
∥
∥
∥

2

2



+ 2dσ2(β + λ) (From (136))

= 4σ4 E
π(D)






∥
∥
∥∇
√

ρ
q
t

∥
∥
∥

2

2

Eq (µt‖π(D))




+ 2dσ2(β + λ)

= σ4q2
Iq (µt‖π(D))
Eq (µt‖π(D))

+ 2dσ2(β + λ). (From (27))

2. Bounding F2. Since ψtµt is a valid density on R
d, the joint density ψtµt,z(θ, z) :=

ψt(θ)µt,z(θ, z) where µt,z is the joint density of Θt and Zk is also a valid density. Note
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that the F2 is an expectation on ‖Zk‖22 taken over the joint density ψtµt,z. We can
perform a measure change operation using Donsker-Varadhan principle to get

F2 = E
ψtµt,z

[

‖Zk‖22 /4
]

≤ KL (ψtµt,z‖µt,z) + log E
µz

[

exp(‖Zk‖22 /4)
]

,

where we simplified the second term using the fact that the marginal µz of µt,z is a
standard normal Gaussian. The random variable ‖Zk‖22 is distributed according to the
Chi-squared distribution χ2

d with d degrees of freedom. Since the moment generating
function of Chi-squared distribution is Mχ2

d
(t) = E

X∼χ2
d

[exp(tX)] = (1− 2t)−d/2 for t <

1
2 , we can simplify the second term in F2 as

log E
µz

[

exp(‖Zk‖22 /4)
]

= logMχ2
d

(
1

4

)

=
d log 2

2
. (140)

The KL divergence term can be simplified as follows.

KL(ψtµt,z‖µt,z) =
∫ ∫

ψtµt,z(θt, z) log ψt(θt)dθtdz

=

∫

ψtµt log
ρ
q−1
t

Eq (µt‖π(D))
dθt (On marginalization of z)

=
q − 1

q

∫

µtψt log

{
ρ
q
t

Eq (µt‖π(D))
− log Eq (µt‖π(D))1/(q−1)

}

dθt

=
q − 1

q
{KL(µtψt‖π(D))− Rq (µt‖π(D))}

≤ KL(µtψt‖π(D)) (Since Rq (µt‖π(D)) > 0)

Note that under the assumptions of the Theorem, π(D) satisfies log-Sobolev inequal-
ity (88) with constant λ/B (i.e. satisfies LS(λ/B)). To see this, recall from Lemma G.1

that the Gaussian distribution ρ(θ) = N
(

0, σ
2

λ Id

)

satisfies LS(λ) inequality. Since loss

ℓ(θ;x) is (σ2 log(B)/4)-bounded, the density ratio π(D)(θ)
ρ(θ) ∈

[
1√
B
,
√
B
]

. The claim

therefore follows from Lemma G.3. Using this inequality, from Lemma G.4 we have

KL (µtψt‖π(D)) ≤
σ2B

2λ

∫

µtψt

∥
∥
∥
∥
∇ log

(
µtψt
π(D)

)∥
∥
∥
∥

2

2

dθt

=
σ2B

2λ

∫
ρ
q
t

Eq (µt‖π(D))
‖∇ log(ρqt )‖

2
2 π(D)dθt

=
2σ2B

λ

1

Eq (µt‖π(D))

∫ ∥
∥
∥∇(ρq/2t )

∥
∥
∥

2

2
π(D)dθt

=
q2σ2B

2λ

Iq (µt‖π(D))
Eq (µt‖π(D))

On combining all the two bounds on F1 and F2 and rearranging, we have

E

[

ψt(Θt) ‖∇LD(Θηk)−∇LD(Θt)‖22
]

≤ 8ηq2σ4(β + λ)2
Iq (µt‖π(D))
Eq (µt‖π(D))

(

η +
2B

λ

)

+ 16ηdσ2(β + λ)2 (η(β + λ) + log 2)
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Let step size be η ≤ min
{

2B
λ ,

λ
64Bq2(β+λ)2

}

. Then, the first term above is bounded as

8ηq2σ4(β + λ)2
Iq (µt‖π(D))
Eq (µt‖π(D))

(

η +
2B

λ

)

≤ σ4

2

Iq (µt‖π(D))
Eq (µt‖π(D))

. (141)

Let η ≤ 1
4(β+λ) . Then, in the third term, (η(β + λ) + log 2) ≤ 1. Plugging the bound on

discretization error back in the PDI (135), we get

∂tRq (µt‖π(D)) ≤ −
qσ2

4

Iq (µt‖π(D))
Eq (µt‖π(D))

+ 16ηdq(β + λ)2. (142)

Since π(D) satisfies LS(λ/B) inequality, from Lemma G.6 this PDI reduces to

∂tRq (µt‖π(D)) +
λ

2B

(
Rq (µt‖π(D))

q
+ (q − 1)∂qRq (µt‖π(D))

)

≤ 16dηq(β + λ)2. (143)

Let c1 =
λ
2B and c2 = 16dη(β + λ)2. Additionally, let u(q, t) =

Rq(µt‖π(D))
q . Then,

∂tRq (µt‖π(D)) + c1

(
Rq (µt‖π(D))

q
+ (q − 1)∂qRq (µt‖π(D))

)

≤ c2q

=⇒ ∂tRq (µt‖π(D))
q

+ c1
Rq (µt‖π(D))

q
+ c1(q − 1)

(
∂qRq (µt‖π(D))

q
− Rq (µt‖π(D))

q2

)

≤ c2

=⇒ ∂tu(q, t) + c1u(q, t) + c1(q − 1)∂qu(q, t) ≤ c2.

For some constant q̄ ≥ 1, let q(s) = (q̄ − 1) exp(c1(s− ηK)) + 1, and t(s) = s. Note that
dq(s)
ds = c1(q(s)− 1) and dt(s)

ds = 1. Therefore, for any 0 ≤ t ≤ ηK, the PDI above implies the
following differential inequality is followed along the path u(s) = u(q(s), t(s)).

du(s)

ds
+ c1u(s) ≤ c2 =⇒ d

ds
{ec1su(s)} ≤ c2ec1s

=⇒ [ec1su(s)]ηK0 ≤
∫ ηK

0
c2e

c1sds

=⇒ ec1ηKu(ηK)− u(0) ≤ c2(e
c1ηK − 1)

c1

=⇒ u(ηK) ≤ e−c1ηKu(0) + c2
c1
(1− e−c1ηK).

On reversing the parameterization of q and t, we get

Rq(ηK) (µηK‖π(D)) ≤
q(ηK)

q(0)
e−c1ηKRq(0) (µ0‖π(D)) +

c2
c1
q(ηK)

≤ q(ηK)

q(0)
exp

(

−ληK
2B

)

Rq(0) (µ0‖π(D)) +
32dηB(β + λ)2

λ
q(ηK).

Since q(0) > 1 and q̄ = q(ηK) > q(0), from monotonicity of Rényi divergence in q, we get

Rq̄ (µηK‖π(D)) ≤ q̄ exp
(

−ληK
2B

)

Rq̄ (µ0‖π(D)) +
32dηq̄B(β + λ)2

λ
. (144)
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Finally, noting that for constants B, q > 1 and β, λ > 0,

η ≤ min{ 1

2
√
2(β + λ)

,
1

4(β + λ)
,
2B

λ
,

λ

64Bq2(β + λ)2
} = λ

64Bq2(β + λ)2
, (145)

completes the proof.

We will use Theorem G.22 for proving the data-deletion and utility guarantee on the
pair (ANoisy-GD, ĀNoisy-GD). We need the following result that shows that Gibbs distributions
enjoy strong indistinguishability on bounded perturbations to its potential function (which is
basically why the exponential mechanism satisfies (ε, 0)-DP [36, 12]).

Lemma G.23 (Indistinguishability under bounded perturbations). For two potential func-
tions L,L′ : Rd → R and some constant σ2, let ν ∝ e−L/σ2 and ν

′ ∝ e−L′/σ2 be the respective
Gibbs distributions. If |L(θ)− L′(θ)| ≤ c for all θ ∈ R

d, then Rq (ν‖ν′) ≤ 2c
σ2

for all q > 1.

Proof. The Gibbs distributions ν,ν′ have a density

ν(θ) =
1

Λ
e−L(θ)/σ2 , and ν

′(θ) =
1

Λ′ e
−L′(θ)/σ2 ,

where Λ,Λ′ are the respective normalization constants. If for all θ ∈ R
d, the potential

difference |L(θ)− L′(θ)| ≤ c, then

Rq
(
ν
∥
∥ν

′) =
1

q − 1
log

∫
ν
q

ν′q−1
dθ

=
1

q − 1
log

∫ (
Λ′

Λ

)q−1

exp

(
q − 1

σ2
(L′(θ)− L(θ))

)

× ν(θ)dθ

≤ 1

q − 1

{

(q − 1) log
Λ′

Λ
+ log exp

(
c(q − 1)

σ2

∫

νdθ

)}

=
1

q − 1






(q − 1) log

∫
exp

(

−L(θ)
σ2 + L(θ)−L′(θ)

σ2

)

dθ

∫
exp

(

−L(θ)
σ2

)

dθ
+
c(q − 1)

σ2







≤ 2c

σ2
.

In Theorem 5.2, we show that (ANoisy-GD, ĀNoisy-GD) solves the data-deletion problem
described in Section 4 even for non-convex losses. Our proof uses the convergence Theo-
rem G.22 and indistinguishability for bounded perturbation Lemma G.23 to show that the
data-deletion algorithm ĀNoisy-GD can consistently produce models indistinguishable to the
corresponding Gibbs distribution (131) in the online setting at a fraction of computation cost
of ANoisy-GD. As discussed in Remark 4.2, such an indistinguishability is sufficient for ensuring
data-deletion for non-adaptive requests. As for adaptive requests, the well-known Rényi DP
guarantee of Abadi et al. [1] combined with our reduction Theorem 4.3 offers a data-deletion
guarantee for (ANoisy-GD, ĀNoisy-GD) under adaptivity.

Our proof of accuracy for the data-deleted models leverages the fact that Gibbs distribu-
tion (131) is an almost excess risk minimizer as shown in the following Theorem G.24. Since
our data-deletion guarantee is based on near-indistinguishability to (131), this property also
ensures near-optimal excess risk of data-deleted models.
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Theorem G.24 (Near optimality of Gibbs sampling). If the loss function ℓ(θ;x) is σ2 log(B)/4-
bounded and β-smooth, the regularizer is r(θ) = λ

2 ‖θ‖
2
2, then the excess empirical risk for a

model Θ̄ sampled from the Gibbs distribution π(D) ∝ e−LD/σ
2

is

err(Θ̄;D) = E
[
LD(Θ̄)− LD(θ∗D)

]
≤ dσ2

2

(

log
β + λ

λ
+
√
B

)

. (146)

Proof. We simplify expected loss as

E
[
LD(Θ̄)

]
=

∫

LDπ(D)dθ = σ2(H(π(D))− log(ΛD)), (147)

where

H(π(D)) = −
∫

π(D) log π(D)dθ = −
∫
e−LD/σ

2

ΛD
log

e−LD/σ
2

ΛD
dθ (148)

is the differential entropy of π(D), and ΛD =
∫
e−LD/σ

2
dθ is the normalization constant.

Since the potential function LD is (λ+ β)-smooth, we have

−σ2 log(ΛD) = −σ2 log
∫

e−LD/σ
2
dθ

= LD(θ∗D)− σ2 log
∫

e(LD(θ∗D)−LD(θ))/σ2dθ

≤ LD(θ∗D)− σ2 log
∫

e−(β+λ)‖θ−θ∗D‖22/2σ2dθ

= LD(θ∗D)−
dσ2

2
log

(
2πσ2

λ+ β

)

.

Since ℓ(θ;x) is σ2 log(B)/4-bounded, note that for the Gaussian distribution ρ ∼ N
(

0, σ
2

λ Id

)

,

the density ratio lies in π(D)(θ)
ρ(θ) ∈

[
1√
B
,
√
B
]

for all θ ∈ R
d. We decompose entropy H(π(D))

into cross-entropy and KL divergence to get

H(π(D)) = −
∫

π(D) log ρdθ −KL (π(D)‖ρ)

≤ −
∫

π(D) log
[(

λ

2πσ2

)d/2

e−
λ‖θ‖22
2σ2

]

dθ (Since KL(π(D)‖ρ) ≥ 0)

=
d

2
log

2πσ2

λ
+

λ

2σ2

∫

‖θ‖22 π(D)(θ)dθ

≤ d

2
log

2πσ2

λ
+
λ
√
B

2σ2

∫

‖θ‖22 ρ(θ)dθ (Since π(D)(θ)
ρ(θ) ∈

[
1√
B
,
√
B
]

)

=
d

2
log

2πσ2

λ
+
d
√
B

2
.

On combining the bounds, we get

err(Θ̄;D) = E
[
LD(Θ̄)− LD(θ∗D)

]
≤ dσ2

2

(

log
β + λ

λ
+
√
B

)

. (149)
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Theorem 5.2 (Accuracy, privacy, deletion, and computation tradeoffs). Let constants λ, β, L, σ2, η >
0, q,B > 1, and 0 < εdd ≤ εdp < d. Let the loss function ℓ(θ;x) be σ2 log(B)

4 -bounded, L-
Lipschitz and β-smooth, the regularizer be r(θ) = λ

2 ‖θ‖
2
2, and the weight initialization distri-

bution be ρ = N
(

0, σ
2

λ Id

)

. Then,

(1.) both ANoisy-GD and ĀNoisy-GD are (q, εdp)-Rényi DP for any η ≥ 0 and any KA,KĀ ≥ 0
if

σ2 ≥ qL2

εdpn2
· ηmax{KA,KĀ}, (150)

(2.) pair (ANoisy-GD, ĀNoisy-GD) satisfy (q, εdd)-data-deletion under all non-adaptive r-requesters
for any σ2 > 0, if learning rate is η ≤ λεdd

64dqB(β+λ)2
and number of iterations satisfy

KA ≥
2B

λη
log

(
q log(B)

εdd

)

, KĀ ≥ KA −
2B

λη
log

(

log(B)

2
(
εdd +

r
n log(B)

)

)

, (151)

(3.) and all models in sequence (Θ̂i)i≥0 output by (ANoisy-GD, ĀNoisy-GD,Q) on any D0 ∈ X n,
where Q is an r-requester, satisfy err(Θ̂i;Di) = Õ

(

dq
εdpn2 + 1

n

√
qεdd
εdp

)

when inequalities

in (151) and (150) are equalities.

Proof. (1.) Privacy. By Theorem G.7, Noisy-GD with K iterations on an L-Lipschitz loss
function satisfies (q, εdp)-Rényi DP for any initial weight distribution ρ and learning rate

η ≥ 0 if σ2 = qL2

εdpn2 · ηK. Since, both ANoisy-GD and ĀNoisy-GD run Noisy-GD for KA and

KĀ iterations respectively, setting the noise variance given in the Theorem statement ensures
(q, εdp)-Rényi DP for both.

(2.) Deletion. For showing data-deletion under non-adaptive requests, recall that it is
sufficient to show that there exists a map π : X n → O such that for all i ≥ 1,

Rq

(

Ā(Di−1, ui, Θ̂i−1)
∥
∥
∥π(Di)

)

≤ εdd, (152)

for all edit sequences (ui)i≥1 from Ur, where (Θ̂i)i≥0 is the sequence of models generated by
the interaction of (ANoisy-GD, ĀNoisy-GD,Q) on any database D0 ∈ X n. For all i ≥ 0, let µ̂i

denote the distribution of Θ̂i. We prove (152) via induction.

Base step: Note that the initial weight distribution ρ = N
(

0, σ
2

λ Id

)

has a density pro-

portional to e−r(θ)/σ2 and the distribution π(D0) has a density proportional to e−LD0
(θ)/σ2 .

Since both of these are Gibbs distributions with their potential difference |LD0(θ) − r(θ)| ≤
σ2 log(B)/4 for all θ ∈ R

d due to boundedness assumption on ℓ(θ;x), we have from Lemma G.23
that

Rq (ρ‖π(D0)) ≤
2

σ2
× σ2 log(B)

4
=

log(B)

2
. (153)

Under the stated assumptions on loss ℓ(θ;x) and learning rate η, note that the convergence
Theorem G.22 holds. Since Θ̂0 = ANoisy-GD(D0) = Noisy-GD(D0,Θ0,KA), where Θ0 ∼ ρ, we
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have

Rq (µ̂0‖π(D0)) ≤ q exp
(

−ληKA

2B

)

Rq (ρ‖π(D0)) +
32dηqB(β + λ)2

λ

≤ q exp
(

−ληKA

2B

)(
log(B)

2

)

+
εdd
2

(Since η ≤ λεdd
64dqB(β+λ)2 )

≤ εdd (Since KA ≥ 2B
λη log

(
q log(B)
εdd

)

)

Induction step: Suppose Rq (µ̂i−1‖π(Di−1)) ≤ εdd. Again, from boundedness of ℓ(θ;x),

we have |LDi−1(θ)− LDi(θ)| ≤ rσ2 logB
2n for all θ ∈ R

d. Therefore, from Lemma G.23 we have
for all q > 1 that

Rq (π(Di−1)‖π(Di)) ≤
r log(B)

n
. (154)

So from the weak triangle inequality Theorem B.4 of Rényi divergence,

Rq (µ̂i−1‖π(Di)) ≤ Rq (µ̂i−1‖π(Di−1)) + R∞ (π(Di−1)‖π(Di)) ≤ εdd +
r log(B)

n
. (155)

Note that KĀ ≥ KA − 2B
λη log

(

log(B)

2(εdd+ r
n
log(B))

)

≥ 2B
λη log

(
2q(εdd+ r

n
log(B))

εdd

)

. Since Θ̂i =

ĀNoisy-GD(Di−1, ui, Θ̂i−1) = Noisy-GD(Di, Θ̂i−1,KĀ), convergence Theorem G.22 gives

Rq (µ̂i‖π(Di)) ≤ q exp
(

−ληKĀ

2B

)

Rq (µ̂i−1‖π(Di)) +
32dηqB(β + λ)2

λ

≤ q exp
(

−ληKĀ

2B

)(

εdd +
r log(B)

n

)

+
εdd
2

(From (155) and constraint η ≤ λεdd
64dqB(β+λ)2

)

≤ εdd. (Since KĀ ≥ 2B
λη log

(
2q(εdd+ r

n
log(B))

εdd

)

)

Hence, by induction, Rq (µ̂i‖π(Di)) ≤ εdd holds for all i ≥ 0.
(3.) Accuracy. Let θ∗Di

= argmin
θ∈Rd

LDi(θ), and Θ̄i ∼ π(Di). We decompose the excess

empirical risk of Noisy-GD as follows:

err(Θ̂i;Di) = E

[

LDi(Θ̂i)− LDi(Θ̄i)
]

+ E
[
LDi(Θ̄i)− LDi(θ

∗
Di
)
]
. (156)

The second term is the suboptimality of Gibbs distribution and by Theorem G.24, it is
bounded as

E
[
LDi(Θ̄i)− LDi(θ

∗
Di
)
]
≤ dσ2

2

(

log
β + λ

λ
+
√
B

)

. (157)
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From (λ+ β)-smoothness of LDi, for any coupling Π of Θ̂i and Θ̄i, the first term satisfies

E

[

LDi(Θ̂i)− LDi(Θ̄i)
]

≤ E
Π

[〈

∇LDi(Θ̄i), Θ̂i − Θ̄i

〉

+
λ+ β

2

∥
∥
∥Θ̂i −Θi

∥
∥
∥

2

2

]

= E
Π





〈
∑

x∈Di

∇ℓ(Θ̄i;x) + λΘ̄i, Θ̂i − Θ̄i

〉

+
λ+ β

2

∥
∥
∥Θ̂i −Θi

∥
∥
∥

2

2



 .

(From L-Lipschitzness of ℓ(θ;x) and Jensen’s inequality)

≤ L
√

E
Π

[∥
∥
∥Θ̂i − Θ̄i

∥
∥
∥

2

2

]

+ λE
Π

[〈

Θ̄i, Θ̄i − Θ̂i

〉]

+
λ+ β

2
E
Π

[∥
∥
∥Θ̂i − Θ̄i

∥
∥
∥

2

2

]

(From Young’s inequality (64))

≤ L
√

E
Π

[∥
∥
∥Θ̂i − Θ̄i

∥
∥
∥

2

2

]

+
λ

2
E

Θ̄i∼π(Di)

[∥
∥Θ̄i

∥
∥2

2

]

+
2λ+ β

2
E
Π

[∥
∥
∥Θ̂i − Θ̄i

∥
∥
∥

2

2

]

.

Recall that the distribution π(D) satisfies LS(λ/B) inequality. On choosing the coupling Π
to be the infimum, we get the following bound on Wasserstein’s distance from Lemma G.5.

inf
Π

√

E
Θ̂i,Θ̄i∼Π

[∥
∥
∥Θ̂i − Θ̄i

∥
∥
∥

2

2

]

= W2

(

Θ̂i, Θ̄i

)

≤
√

2Bσ2

λ
KL(µi‖π(Di)) ≤

√

2εddBσ2

λ
. (158)

The last inequality above follows from monotonicity of Rényi divergence in q and the fact
that limq→1Rq (ν‖ν′) = KL (ν‖ν′).

Since π(Di) is the Gibbs distribution with density proportional to e−LDi
/σ2 , we have that

E
Θ̄i∼π(Di)

[∥
∥Θ̄i

∥
∥2

2

]

=
1

ΛDi

∫

‖θ‖22 e−LDi
(θ)/σ2dθ where ΛDi =

∫

e−LDi
(θ)/σ2dθ. (159)

From σ2 logB
4 -boundedness of ℓ(θ;x), note that we have for every θ ∈ R

d that

|LDi(θ)− r(θ)| ≤ σ2 logB

4
. (160)

Therefore,

ΛDi =

∫

e−LDi
(θ)/σ2dθ ≥ 1

4
√
B

∫

e−r(θ)/σ2dθ, (161)

and hence,

E
Θ̄i∼π(Di)

[∥
∥Θ̄i

∥
∥2

2

]

≤
4
√
B

∫
e−r(θ)/σ2dθ

×
∫

‖θ‖22 e−LDi
(θ)/σ2dθ

≤
√
B ×

∫
‖θ‖22 e−r(θ)/σ2

∫
e−r(θ)/σ2

=
√
B E

Z∼N
(

0,σ
2

λ
Id

)

[

‖Z‖22
]

=

√
Bσ2d

λ
.
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Therefore, on combining all the bounds we get

err(Θ̂;D) ≤ Lσ
√

2εddB

λ
+
εddBσ

2(2λ+ β)

λ
+
dσ2

2

(

log
β + λ

λ
+ 2
√
B

)

= O
(
σ
√
εdd + dσ2

)
.

(162)
Note that if the constraints on KA and KĀ in (151) and on σ2 in (150) are equalities instead,
we have

σ2 =
2qBL2

λεdpn2
log

(
q log(B)

εdd

)

= Õ

(
q

εdpn2

)

, (163)

where Õ(·) hides logarithmic factors. Therefore, the excess empirical risk has an order

err(Θ̂;D) = Õ

(
1

n

√
qεdd
εdp

+
dq

εdpn2

)

. (164)
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