
Chronos Version 2.0 User Manual

Xianfeng Li1 Yun Liang2 Tulika Mitra2 Abhik Roychoudhury2

1Department of Computer Science and Technology, Peking University
lixianfeng@mprc.pku.edu.cn

2Department of Computer Science, National University of Singapore
{liangyun,tulika,abhik}@comp.nus.edu.sg

Abstract

This user manual describes the second release of Chronos, a prototype tool that performs
Worst Case Execution Time (WCET) analysis of embedded software. Compared to most other
WCET tools, Chronos models the timing effects of more contemporary micro-architectures on
the execution time of a program. Hence it produces tighter WCET estimates. This manual
contains an overview of WCET analysis, a brief introduction of the techniques employed, a
detailed guide for installation and usage, and a description of the internals of the tool including
its structure and major components.

1 Overview

Estimating the Worst Case Execution Time (WCET) of a program is an important problem.
WCET analysis computes an upper bound on the program’s execution time on a particular
processor for all possible inputs. The immediate motivation of this problem lies in the design
of real-time embedded systems. Typically an embedded system contains processor(s) running
specific application programs and communicating with the external environment in a timely fash-
ion. Many embedded systems are safety critical, e.g., automobiles and power plant applications.
The designers of such embedded systems must ensure that all the real-time constraints are satis-
fied. Real-time constraints impose hard deadlines on the execution time of embedded software.
WCET analysis of the program can guarantee that these deadlines are met. Due to its inherent
importance in embedded system design, timing analysis of embedded software has been exten-
sively studied. Accurate timing analysis critically depends on modeling the effects of the under-
lying micro-architecture. Ignoring the micro-architecture can produce extremely pessimistic time
bounds. This is particularly so because modern processors employ advanced micro-architectural
features such as pipelining, caching, and speculative execution to speed up program execution.
Therefore, to obtain safe but tight WCET estimate of a program, we need to model the complex
timing effects of pipelining, caching and branch prediction.

Chronos1 is a WCET analysis tool that incorporates modeling of micro-architectural features
present in modern processors. It models both in-order and out-of-order pipelines, instruction
caches and local/global branch prediction. Data caches are not modeled. For each of the modeled
features, the modeling is parameterizable, e.g., we can set the pipeline re-order buffer size, size
and organization of the instruction cache, and the branch prediction scheme (as well as size of
associated data structures such as branch history register).

Chronos is built on top of the SimpleScalar simulator. SimpleScalar is a popular cycle-accurate
architectural simulator that allows the user to model different processors in software [2]. We
target our analyzer to processor models supported by SimpleScalar. Thus the user can compare

1The name is taken from ancient Greek mythology where Chronos was the personification of time

the estimated WCET produced by Chronos against an observed result (lower than the actual
WCET) produced by running the program on the same processor model with SimpleScalar’s
cycle-accurate simulator. The comparison will indicate the tightness of the estimated WCET.

The rest of this manual is organized as follows. Section 2 provides a download and installation
guide for the tool. Section 3 briefly describes the techniques behind the tool to give the user
a better idea about the functionality of the tool. Section 4 gives a detailed guide on using the
tool. Section 5 describes the major components of the tool and their mapping to the internals of
the analysis engine. Thus, if the user wants to inspect and modify the source code of the tool,
this section will help him/her understand its structure and locate the main components of the
tool. Finally, Section 6 presents a summary and pointers to possible improvements in the future
releases of Chronos.

2 Download and Installation

2.1 Download

Chronos is targeted to Unix-like platforms and currently it has been tested on GNU/Linux. It
can be downloaded from

http://www.comp.nus.edu.sg/~rpembed/chronos/download.html

where the following packages are provided:

• chronos-2.0.tgz: It contains the source code of the WCET analysis engine, a graphical
frontend, and a set of benchmark programs. Given a benchmark program and a processor
model, the analysis engine generates an Integer Linear Programming (ILP) problem that
can be solved to obtain the WCET estimate.

• lp solve 5.5.tgz: It is a free linear programming (LP) solver [1]. We use to obtain the
estimated WCET by solving the ILP problem generated by the analysis engine.

• simplesim-3.0.tgz: This is a modified source code of SimpleScalar simulator. We provide
it here because currently Chronos models a somewhat simplified version of the SimpleScalar
architecture. Unfortunately, some of these simplifications cannot be specified through the
processor parameters. In addition, the execution time statistics dumped out by SimpleScalar
does not meet our requirements as it includes the execution time of library functions, while
our estimation considers only the user program. Thus, we made some modifications to
SimpleScalar source code and provide the modified package here.

• gcc-2.7.2.3.tgz: This is a modified version of the SimpleScalar distribution of GCC com-
piler, which is used to compile the benchmark programs into binaries of SimpleScalar ISA
(as mentioned earlier, our tool is based on SimpleScalar and it takes the same binaries recog-
nized by SimpleScalar simulators). We made minimal changes to the original SimpleScalar
GCC distribution to disable the insertion of an unnecessary library function “ main()” into
the compiled code because our analyzer does not consider library functions.

In addition, you need to download two utilities for SimpleScalar compiled binaries from

http://www.simplescalar.com

• simpleutils-990811.tar.gz: It contains GNU binutils source retargeted to SimpleScalar
architecture. These utilities help GCC compile benchmark sources into SimpleScalar bina-
ries.

• simpletools-2v0.tgz: It contains GCC compiler and library sources needed to build Sim-
pleScalar binaries. However, as we have provided a modified version of the GCC compiler
from our website, the compiler contained in this package is not used. Thus after this package
is untared, the directory gcc-2.6.3 can be removed.

2.2 Installation

Assuming all downloaded packages are put in a directory $IDIR (the recommended directory is
$HOME/chronos; you can set an environment variable $IDIR by typing
export IDIR=$HOME/chronos on the command line), enter $IDIR and proceed to the installation
as described below.

The analyzer First untar the package chronos-2.0.tgz by invoking

tar -xvzf chronos-2.0.tgz

This yields the following sub-directories: est – the analysis engine; gui – the frontend; benchmarks
– the benchmark programs coming with this release (a subset of the benchmarks from the WCET
research group at Mälardelaen University [6]). Next you need to compile the analysis engine. The
analysis engine is written in ANSI C. To compile it type:

cd est && make

This will produce an executable est in the directory est, which is the WCET analyzer.
The frontend is written in Java. You need to install JRE (Java Runtime Environment) to

invoke the command java. Please download JRE 5.0 from

http://java.sun.com/j2se/1.5.0/download.jsp

After downloading jre-1 5 0 <version>-linux-586.bin, run the commands:

chmod +x jre-1 5 0 <version>-linux-586.bin
./jre-1 5 0 <version>-linux-586.bin

After you install JRE, add the bin directory of JRE to the system path. Make sure you can invoke
java from the command line and the java you invoke is the one that you just installed. You can
check the java version by running the command java -version.

The frontend also contains some C code to disassemble binary executables for data flow analysis
and relate source code with the assemble code. To compile it type:

cd gui && make

This will produce an executable dis in the directory gui.

The LP solver Extracting lp solve 5.5.tgz by invoking

tar -xvzf lp solve 5.5.tgz

This will produce three packages.

• lp solve 5.5 exe.tar.gz: The pre-compiled binaries for Linux platform. Extracting this
package will produce a directory lp solve which contains the executable lp solve and a
library libxli CPLEX.so. You will need to tell Chronos via its user interface where the
lp solve directory is. As the pre-compiled binaries work on our machine (Intel Pentium
4 platform running Redhat Fedora Core 3/4), it is unlikely that you will need to compile
lp solve yourself with the following two packages.

• lp solve 5.5 source.tar.gz: lp solve program source. Compiling it will produce the
executable lp solve.

• lp solve 5.5 xli CPLEX source.tar.gz: CPLEX XLI reader/writer source. Compiling
it will produce the library libxli CPLEX.so, which is needed for lp solve to read and solve
files in CPLEX format.

The three packages above are obtained from lp solve website

http://groups.yahoo.com/group/lp solve/files/Version5.5/

For the user’s convenience (you need Yahoo! id and have to join the lp solve group), we distribute
them as a single package, lp solve 5.5.tgz, on our website. For more information about lp solve,
please visit its official website.

SimpleScalar simulators To install the SimpleScalar simulators, first untar
simplesim-3.0.tgz, which yields a sub-directory simplesim-3.0. Then invoke the following
commands to compile it:

cd simplesim-3.0 && make

SimpleScalar GCC and related binary utilities. First we need to install the binary utilities
which will be used for compiling SimpleScalar cross GCC. After that we can install SimpleScalar
GCC. The steps are described as follows2

1. Build SimpleScalar binary utilities:

tar -xvzf simpleutils-990811.tar.gz
tar -xvzf simpletools-2v0.tar.gz

then go to the sub-directory simpleutils-990811

./configure --host=i386-*-linux --target=sslittle-na-sstrix
--with-gnu-as --with-gnu-ld --prefix=$IDIR

Note that the above commands are only applicable to Intel/x86 platform running Linux.
You may need to change some of the parameters on a differnt platform. Please refer to
SimpleScalar user guide [2] for more details.

make all install

This will produce utilities installed under $IDIR/sslittle-na-sstrix/bin

2. Build SimpleScalar GCC:

export PATH=$PATH:$IDIR/sslittle-na-sstrix/bin

This is very important! It ensures the following cross compilation will search the right
locations for the utility binaries targeted to SimpleScalar, instead of using the native GNU
utilities.

tar -xvzf gcc-2.7.2.3.tgz
cd $IDIR/gcc-2.7.2.3

./configure --host=i386-*-linux --target=sslittle-na-sstrix
--with-gnu-as --with-gnu-ld --prefix=$IDIR --enable-languages=c

make
make install

Again, parameters in above commands need to be changed if the platform is not Intel
X86/Linux.

2This part is based on the official SimpleScalar user guide and Pan Yu’s enhanced SimpleScalar installation
guide at http://www.comp.nus.edu.sg/~panyu/simplesim.htm

SimpleScalar Hacker’s Guide
Todd Austin

SimpleScalarSimpleScalar
LLCLLC

Out-of-Order Issue SimulatorOut-of-Order Issue Simulator

• implemented in sim-outorder.c and modules

Fetch Dispatch Scheduler

Memory
Scheduler

Writeback CommitExec

Mem

D-Cache
(DL1)

I-Cache
(IL1)

Virtual Memory

D-TLBI-TLB

I-Cache
(IL2)

D-Cache
(DL2)

Figure 1: SimpleScalar Out-of-Order Simulator (taken from SimpleScalar hacker’s guide)

3 WCET Analysis Technique

3.1 SimpleScalar Processor Model

We first describe the SimpleScalar processor model and point out what features are modeled,
what are not modeled and what are modeled with restrictions.

Figure 1 shows the block diagram of SimpleScalar out-of-order simulator containing the major
components of the processor model. Note the branch predictor, which enables speculative execu-
tion across most of the pipeline stages is not shown in this diagram. The pipeline consists of five
stages.

1. Instruction Fetch (IF). In this stage, a sequence of instructions are fetched from the
instruction cache or memory into an multi-entry buffer called dispatch queue. The number
of instructions that are fetched is determined by the following factors: (1) the fetch width
of the processor; (2) the available entries in the dispatch queue; (3) cache line size, whether
a cache miss arises, and the location. These parameters, as well as most of the parameters
mentioned in the description of subsequent stages, can be configured at runtime. Note that
the location to fetch the instructions is determined by the program counter and the branch
predictor.

2. Instruction Decode & Dispatch (ID). In this stage, instructions in the dispatch queue
are decoded and placed into another buffer called the RUU (Register Update Unit), which
functions as both a register renaming unit and a re-order buffer. The number of instructions
that are decoded is determined by the following factors: (1) the decode width; (2) the
available entries in both the dispatch queue and the RUU. In this stage, the scheduler also
tracks data dependencies and decides which instructions can be issued for execution and
puts the issuable ones into a ready queue.

3. Instruction Execute (EX). In this stage, the ready queue is walked through and instruc-
tions in the queue are issued for execution if the corresponding function units are available.
In addition to the number of instructions in the ready queue and the availability of functional
units, the number of instructions that can be issued is also limited by the issue width. For

load and store instructions, this stage is used to compute their memory access addresses.
The actual read and write operations take place in the write-back and commit stage re-
spectively. Note that instructions can proceed through this stage out-of-order, e.g., a later
instruction whose data operands are ready and functional unit is available can bypass an
earlier instruction which is waiting for its operands.

4. Write Back (WB). In this stage, load instructions dispatch the addresses computed in the
EX stage to the memory hierarchy, which may involve accesses to the level-one data cache,
TLB, level-two data cache and the main memory (as indicated in Figure 1), depending
on how the memory hierarchy is configured. The loaded data is forwarded to dependent
instructions, if any, in the RUU. If all the operands of a waiting instructions become ready,
the instruction will be put into the ready queue by the scheduler. In this stage, the results
of ALU operations are written back into the register file. Branch outcome is resolved in this
stage and the pipeline is flushed if the prediction turns out to be a misprediction.

5. Commit (CM). This is the last stage where instructions having completed execution are
committed in program order. This means no instructions can be committed if the oldest has
not completed execution yet. The number of committed instructions, similar to the earlier
stages, is also constrained by a parameter called the commit width.

For more details about SimpleScalar architecture, please refer to its user guide [2] and hack guide3.
In this release, our processor model has the following simplifications to SimpleScalar architecture.

• Processor core: We do not model write-back width, i.e., in the write-back stage, every
instruction coming out of the EX stage in the previous cycle can write back into the register
file.

• Memory hierarchy: Data cache is not modeled and each load operation is assumed to
complete in a single clock cycle; TLBs are not modeled and we assume the virtual address
is identical to the physical memory address; only level-one instruction cache is modeled.

• Branch prediction: Not all branch prediction schemes supported by SimpleScalar are
modeled in this release. Primarily the following schemes are supported: perfect prediction,
where each branch is assumed to be predicted correctly; two-level prediction schemes includ-
ing gshare, GAg, and local prediction. These two-level prediction schemes can be uniformly
specified by a group of parameters described subsequently. A simplification is that only a
single bit, rather than the popular two-bit saturation counter, is used and updated for each
prediction table entry. In addition, we assume a perfect Branch Target Buffer (BTB) such
that the branch target address is available at the end of the IF stage.

Table 1 gives the default configuration of our processor model (parameters that are supported
by SimpleScalar processor model but do not appear here are not modeled in Chronos). Note
that the lines starting with ’#’ are comment lines explaining what these parameters are about.
The format is completely compatible with SimpleScalar’s parameter format. Thus for further
understanding of these parameters, please refer to the SimpleScalar user guide.

3.2 Analysis Technique

Now we give a brief description of the static analysis technique employed in Chronos. Worst-case
Execution Time (WCET) analysis of a program usually involves two major steps — program
path analysis and micro-architecture modeling. Micro-architecture modeling captures the
timing effects of performance enhancing micro-architectural features. This step is usually used to
return the WCET estimate of each basic block in the program’s control flow graph. Note that
the estimate for a basic block B 4 should be an upper bound on the execution time of B for

3http://www.simplescalar.com/docs/hack guide v2.pdf
4a sequence of instructions such that control flow can only arrive at its head and exit from its tail.

Parameter Default Configuration
instruction dispatch queue size
-fetch:ifqsize 4

register update unit (RUU) size
-ruu:size 8

decode width
-decode:width 1

commit width
-commit:width 1

branch predictor type
-bpred 2lev

2-level predictor config <l1size> <l2size> <hist size> <xor>
-bpred:2lev 1 128 2 1

l1 inst cache config <config>—none
-cache:il1 il1:16:32:2:l

memory access latency <first chunk> <inter chunk>
-mem:lat 30 2

Table 1: Default Processor Configuration

all possible execution contexts. How do we combine the WCET estimates of basic blocks to get
the WCET estimate of the program? This is achieved by program path analysis. Usually most
state-of-the-art WCET tools use Integer Linear Programming (ILP) formulation for this step.
Formally, let B be the set of basic blocks of a program. Then, the program’s WCET is given by
the following objective function

maximize
∑
B∈B

NB ∗ cB

where NB is an ILP variable denoting the execution count of basic block B and cB is a constant
denoting the WCET estimate of basic block B. The linear constraints on NB are developed from
the flow equations based on the control flow graph (CFG). Thus for basic block B∑

B′→B

EB′→B = NB =
∑

B→B′′

EB→B′′

where EB′→B (EB→B′′) is an ILP variable denoting the number of times control flows through
the control flow graph edge B′ → B (B → B′′).

Additional linear constraints are also provided to capture loop-bounds and any known infeasi-
ble path information. Such constraints can either be derived automatically via data flow analysis
of the program or be provided by the user. In most cases, the user cannot completely rely on data
flow analysis. Therefore we specify the format of the ILP constraints the user has to conform
with. We first use a concrete example for illustration.

Figure 2(a) gives the C source code of a simple program – insertsort, which sorts an array
a[] of ten elements (a[0] = 0 is a dummy one not being sorted). The control flow graph extracted
from the binary executable of insertsort is shown in Figure 2(b) (this file can be generated by
the analyzer est with an option “-run CFG”). Note that the first column corresponds to the
basic block numbers and the second column gives the starting address (in hexadecimal) of the
corresponding basic block. The numbers within brackets indicate the successor basic blocks.

The program has two nested loops. To get an estimation, the loop bounds must be provided
to the analyzer. It is obvious that the outer loop iterates nine times (i = 2 to i = 10). In fact,
Chronos is able to derive such simple loop bounds with a light-weight data flow analysis. The
inner loop iterates variable number of times for each invocation. But we know that for insertion
sort of an array of ten elements, the overall number of iterations of the inner loop should not
exceed 45. This loop bound is provide by the user via Chronos interface. These constraints are
stored in a file named “insertsort.cons” (note that the analyzer always tries to locate the user
constraint file with the same name of the benchmark and a suffix “.cons”), which is shown in
Figure 2(c).

The linear constraints in above example are in the ILOG/CPLEX format, which can be
described more formally as follows.

constraint := 〈terms〉 〈rel op〉 〈digits〉
terms := 〈coeff〉 c〈digits〉.〈digits〉 | 〈terms〉 〈arith op〉 〈terms〉
rel op := = | < | <=
digits := [0− 9] | [1− 9]〈digits〉
coeff := 〈digits〉

arith op := + | −

The symbol ” ” denotes a white space. Note that the constraints will be fed into the linear
programming solver. So you cannot expect it to precisely point out the error source if you give
incorrect constraints. Here we remind the user of a few points that are likely to cause problems:

• Each term denoting a basic block’s execution count always starts with the character ‘c’ fol-
lowed by the procedure number (the order in which the procedure appears in the program),

1 unsigned int a[11];
2 int main()
3 {
4 int i,j, temp;
5 a[0]=0; a[1]=11; a[2]=10;a[3]=9; a[4]=8;
6 a[5]=7; a[6]=6; a[7]=5; a[8]=4; a[9]=3; a[10]=2;
7 i = 2;
8 while(i <= 10) {
9 j = i;
10 while (a[j] < a[j-1]) {
11 temp = a[j];
12 a[j] = a[j-1];
13 a[j-1] = temp;
14 j--;
15 }
16 i++;
17 }
18 return 1;
19 }

(a) insertsort.c

proc[0] cfg:
0 : 4001f0 : [1 ,]
1 : 400320 : [2 , 4]
2 : 400348 : [3 ,]
3 : 400358 : [4 , 3]
4 : 4003a8 : [5 , 1]
5 : 4003d0 : [,]

(b) insertsort.cfg

c0.0 = 1
c0.1 = 9
c0.3 <= 45

(c) insertsort.cons

Figure 2: An Example Program, its Control Flow Graph, and User Constraints

a dot symbol, and a basic block number (the order in which the basic block appears in the
procedure). Even if there is only a single procedure in the program, the procedure number
should not be omitted.

• Terms denoting basic blocks can only appear on the left-hand side of the relation operator
(=, <, <=) whereas a constant (a string of digits) can only appear on the right-hand side
of the relation operator. For example, “c0.2 − c0.3 < 10” is a valid constraint, but
“c0.2 < c0.3 + 10” is not, neither is “c0.2 − c0.3 − 10 < 0”.

• A space must be placed between the coefficient and the basic block id in a term. But
the coefficient can be omitted if it is “1”. Similarly, there should be spaces preceding and
succeeding each arithmetic operator (+, −) and each relation operator (=, <, <=). For
example, “c1.5 − 10 c1.6 = 0” is a valid constraint, but “c1.5 − 10c1.6 = 0” is invalid,
as there is no space between 10 and c1.6.

• All numbers should be integers.

A good news is that the analyzer comes with a frontend that allows the user to specify
constraints on the source code through a dialog box (illustrated in Section 4). Thus in most cases
the user does not need to look into the control flow graph and specify constraints in terms of
basic blocks. Take “c0.3 <= 45” in Figure 2 for example. The user can specify an equivalent
constraint “line10 <= 45” at the source code level, where line10 denotes the execution count of
line 10 of the source code. The analyzer is responsible for converting the source-level constraints
into basic block level constraints.

4 Using the Analyzer

This section provides the detailed guidance on using the analyzer. As described earlier, the WCET
analysis engine interacts with the user through a graphical frontend.

Launch Chronos

Go to the directory $IDIR/chronos/gui containing the file gui.jar and launch the tool by
executing runnable gui.sh in the terminal.

Figure 3: Launching Chronos

The main window of Chronos will appear as in Figure 3. Next, we will use an example
benchmark program insertsort for discussion.

Perform Analysis

There are a few steps in analyzing the WCET of insertsort:

• Set SimpleScalar GCC bin, lp solve, simplesim-3.0 directory.

• Open a benchmark directory.

• Set loop bounds(if necessary).

• Set other constraints (if necessary).

• Set indirect jump targets (if necessary).

• Set recursion bound (if necessary).

• Set processor configuration (optional).

• Perform Estimation.

• Perform Simulation (optional).

Set directories for SimpleScalar GCC bin, lp solve, and simplesim-3.0

As mentioned before, Chronos needs SimpleScalar GCC (sslittle-na-sstrix-gcc). The installation
of these tools were described in Section 2. After installation, we should tell Chronos where these
tools are located. This is done as follows: Click “Simplescalar GCC bin directory” from the
“Option” menu, then locate GCC bin directory from the dialog box, as shown in 4. For lp solve
and simplesim-3.0, click “ILP-solver directory” and “Simplesim-3.0 directory” respectively from
the “Option” menu.

Figure 4: Set SimpleScalar Gcc bin tools directory

Open a benchmark directory

Choose the command “Open File...” from the “File” menu. A standard file dialog box will appear
on the screen. After selecting the benchmark directory from the list box, Chronos will load the
source code, and it will take the following actions. First it invokes SimpleScalar GCC to compile
the benchmark. Next it disassembles the binary executable and reconstructs the control flow
graph (CFG), which is shown in the third pane. In the CFG, each rectangle represents a basic
block. For example P:x B:y represents the basic block y of procedure x. The outgoing edges of
a basic block represent the possible outgoing control flows from this basic block. Chronos also
dumps out the assembly code on the fourth pane with basic block annotations. The result is
shown in Figure 5. Chronos can not model any library calls directly. If there are some library
calls such as“sqrt” in the benchmark, the user has to put the source code of these library functions
inside the benchmark directory.

Set user constraints

Chronos provides an user interface for giving additional flow constraints. Some of the user con-
straints are compulsory, like loop bounds that cannot be automatically derived by Chronos; or
constraints that can further limit the possible program paths, like bounds on if-then-else
branches. Loop bounds can be given in two forms. If an inner loop executes fixed number of
times when entered from its parent loop or procedure, the user can select “Loop bound con-
straints” from the option menu and simply give the loop bound per invocation. Otherwise, a
bound on the overall iterations of the inner loop should be given for better accuracy. In this case,
select “Other constraints” from the “Option” menu and give a constraint like what is shown in
Figure 6. Constraints for “if-then-else” statements can be given in a similar way. These source-
level constraints will be converted to an internal constraint format in terms of basic blocks, as
described in Section 3.

The user can also provide other annotations such as possible targets of indirect jumps and
bounds for self-recursive functions. In order to do this, the user can select “Indirect jump targets”
and “Recursion bound” from the “Option” menu and simply provide the possible target addresses
and recursion depth. The target addresses can be found from the disassembly pane shown in
Figure 5.

Figure 5: Source, CFG and Assembly Code of insertsort

Figure 6: Other Constraints Dialog

Figure 7: Processor Configuration Dialog

Change processor configuration

To change the processor configuration, click the command “Processor configuration” from the
“Run” menu. and a dialog pops up for the user to set the processor parameters, as shown in
Figure 7. The dialog only shows the features of SimpleScalar architecture modeled in Chronos.

Perform estimation

After giving user constraints or changing some processor parameters, click the command “Esti-
mate” from the “Run” menu for WCET estimation. Chronos then invokes the analysis engine,
formulates the program’s WCET estimation as an ILP problem, and invokes lp solve to solve the
ILP problem. The estimated WCET, together with the number of branch mispredictions and the
number of cache misses are returned by lp solve, as shown in the pane “Estimation Result” in
Figure 8.

Perform simulation

To see how accurate the estimated result is, you may want to perform a simulation of the bench-
mark program with the same processor configuration. Note that the simulation often does not
capture the actual worst case; rather it yields a value that is lower bound of the unknown actual
WCET. Our frontend provides an interface to SimpleScalar simulator. But the user can also
choose to run the simulator independently. In the frontend, click the command “Simulate” from
the “Run” menu. Chronos then invokes the sim-outorder simulator to run the program using
the same processor configuration as estimation. The simulation cycles, number of branch mispre-
dictions, as well as number of cache misses are dumped out to the pane “Simulation Result”, as
shown in Figure 9. Now the user can compare the simulated result to the estimated one.

5 Workflow and Analyzer Internals

This section provides a guidance for the user to understand the implementation of Chronos and
to inspect its source code. The workflow of the analysis engine (plus some actions taken by the

Figure 8: Estimation Result

Figure 9: Simulation Result

C Source

GCC
(SimpleScalar)

Binary Code

Path
Analysis

Processor
Configuration

CFG

Microarchitecture
Modeling

Functional
Cons

ILP Problem

CPLEX /
lp_solve

Est. WCET

SimpleScalar
Simulator

Obs. WCET

Microarch ConsFlow Cons.

Figure 10: Workflow of Chronos

frontend) is illustrated in Figure 10. Now we describe the workflow of the analyzer in more detail
and reveal the internals of the analyzer along with the description of the workflow.

Pre-analysis workflow

1. First, the frontend loads benchmark chosen by the user and invokes SimpleScalar GCC to
compile it into binary executable. The compiled binary cannot run on the host machine,
but can be simulated by SimpleScalar.

2. Next, the user may interact with the frontend further to determine the actions and proces-
sor configuration. After that, the frontend assembles arguments including (1) benchmark
path, (2) action to be taken by the analyzer, and (3) processor configuration if non-default
parameters are used, and invokes the analyzer est. We give a few examples of the equivalent
command lines.

• est ../benchmarks/insertsort/insertsort
which takes the insertsort program and uses default processor configuration for
WCET estimation.

• est ../benchmarks/insertsort/insertsort -run CFG
which takes the insertsort program but does not perform WCET estimation. In-
stead, it dumps out the CFG of insertsort to a file insersort.cfg (the option -run
determines what action to be taken, and by default, it is -run EST, which can be
omitted).

• est ../benchmarks/insertsort/insertsort -config processor.opt
which takes the insertsort program and uses a processor configuration stored in a
disk file “processor.opt” for WCET analysis.

Analysis workflow

From now on, the analysis engines takes over and we will point out the corresponding places in
the source code responsible for the functionalities described below.

1. Path analysis: The analyzer reads in the binary code, reconstructs the control flow graphs
(CFG) for the procedures in benchmark. The CFGs can be dumped into a file named
benchmark.cfg in the same directory of the benchmark. After the individual CFGs are
constructed, The tool performs inter-procedural analysis and constructs a global flow graph
called transformed CFG (refer to struct tcfg t in tcfg.h) from the CFGs of the individual
procedures and their calling relations. All subsequent analysis will be conducted on this
transformed CFG instead of the CFGs of the individual procedures. This step corresponds
to path analysis in the workflow in Figure 10, and its implementation is like this.

path_analysis() {
read_code();
build_cfgs();
prog_tran();
loop_process();

}

These major functions are explained below:

• read code() in readfile.c reads in the program text from the object code.

• build cfgs() in cfg.c identifies procedures in the benchmark (data structures prog t
and proc t in cfg.h) and builds a control flow graph for each of the procedure (data
structure cfg node t in cfg.h).

• prog tran() in tcfg.c performs inter-procedural analysis and transforms the individ-
ual control flow graphs into a global control flow graph following the procedure call
graph (data structure tcfg node t in tcfg.h) for each procedure. Subsequent analysis
will use this transformed graph instead of working on the individual graphs.

• loop process() in loops.c identifies loop levels and associate each basic block with
the inner-most loop level containing it (data structure loop t in loops.h).

Note that path analysis also performs data flow analysis to discover flow facts such as
loop bounds, infeasible paths etc. The analysis results are remembered as a set of functional
constraints (the block “functional cons” in the workflow diagram). This work is conducted
by the frontend of Chronos when benchmark is loaded.

2. Branch prediction analysis: It performs branch prediction analysis to capture branch
mispredictions. This is part of the component “Microarchitecture Modeling” in the workflow
(refer to [5, 3] for technical details). Its implementation is as follows.

bpred_analysis() {
collect_mp_insts();
build_bfg();
build_btg();

}

• collect mp insts() in bpred.c collects instructions along the wrong path for a branch
instruction when it is mispredicted. These wrong path instructions will be used for
evaluating the effect of misprediction on cache.

• build bfg() in bpred.c captures the control flow transfer between adjacent branches
under specific branch histories, i.e., the outcomes of recent branch instructions. The
resulting data structure is a graph of nodes of bfg node t (in bpred.h).

• build btg() in bpred.c further captures branch transfer information by building con-
nections among (possibly) non-adjacent branches under the same branch history. This
transition reflects how they interact via the branch predictor, and such information will
directly lead to the bounding of branch mispredictions. The resulting data structure
is a set of graphs of nodes btg node t (in bpred.h).

3. Instruction cache analysis: It performs instruction cache analysis to capture the occur-
rences of instruction cache misses. It is part of the component “Microarchitecture Modeling”
in the workflow. Its implementation is as follows.

cache_analysis() {
get_mblks();
find_hitloop();
categorize();

}

• get mblks() in cache.c identifies memory blocks (a subsequence of instructions in a
basic block that map to the same cache line). They correspond to the data structure
mem blk t in cache.h.

• find hitloop() in cache.c finds for each memory block a loop level where the memory
block is guaranteed to hit in the cache as long as the execution is repeated within the
loop level. But beyond that loop level, cache hit cannot be guaranteed.

• categorize() in cache.c creates a set of loop contexts for each basic block according
to the hit loop levels found in the previous step. For example, if a basic block B has
N memory blocks, whose hit loops are a set of L(L ≤ N) loops, then L + 1 loop
contexts will be assigned to the execution of B, with the remaining memory blocks
being categorized as not-hit in context of outer loop levels. See [4] for more technical
details.

4. Pipeline analysis: It performs pipeline analysis to obtain the upper bound of execution
times for each analysis unit (basic block) under the contexts of instruction cache information
and branch prediction information. This means a basic block may have multiple upper
bounds, each of which is applicable to a specific context (refer to [4] for technical details).
Its implementations is like this.

pipe_analysis() {
...;
est_units();

}

The function est units() (in pipeline.c) invokes the function ctx unit time() (in pipeline.c)
with (1) identifier of the unit under estimation; (2) a loop context where memory block
hit/miss category can be decided; (3) prediction information for the branch at the entry
to the estimated unit. The function ctx unit time() in turn invokes a set of functions
iteratively over different path contexts (instructions preceding the estimated unit, which we
call prologue; and instructions succeeding it, which we call epilogue). After all path contexts
have been considered, the maximum estimation will be taken as the unit’s worst case (under
the given cache and branch context). Therefore, the implementation of ctx unit time() is
like this.

ctx_unit_time(unit u, cache_context c, bpred_context b) {
...
worst_case[u, c, b] = 0;
for each prologue p {

for each epilogue e {
create_egraph();
t = est_egraph();
worst_case[u, c, b] = max(t, worst_case[u, c, b])

}
}

}

The two functions create egraph() and est egraph() implement the core algorithms for
pipeline analysis.

• create egraph() in exegraph.c constructs an execution graph given the estimation
unit, its prologue/epilogue, as well as cache and branch prediction contexts. This exe-
cution graph is a static representation for all possible dynamic executions. Specifically,
it captures dependences and contentions among instructions in the pipeline.

• est egraph() in estimate.c works on the constructed execution graph, and yields an
estimate. For details of the algorithm, please refer to [4].

5. ILP problem formulation: It formulates an ILP problem for the WCET analysis of the
benchmark program based on: (1) path analysis (step 1); (2) microarchitecture modeling
(steps 2, 3, 4); and (3) user provided functional constraints. The resulting ILP problem is
in ILOG/CPLEX format and is written into a file named benchmark.lp within the same
directory as the source and binary of benchmark. The major functions performing this task
are:

• cost func() in ilp.c, which generates the objective function of the ILP problem.

• tcfg cons() in ilp.c, which generates the flow constraints from the transformed CFG
created earlier.

• bfg cons(), tcfg bfg cons(), and btg cons() in ilp.c, which generate branch pre-
diction related constraints and additional constraints connecting the branch history
transfer with pure control flow transfer.

• cache cons() and mp cache cons() in ilp.c, which generates cache miss constraints
under normal execution and extra misses due to wrong path execution under branch
mispredictions, respectively.

• tcfg estunit cons() in ilp.c, which generates constraints connecting estimation
units to transformed cfg nodes.

• user cons() in ilp.c, which reads in the user provided constraints from the file
benchmark.cons in the directory of the benchmark program, and incorporates them
into the ILP file.

Post-analysis workflow

The major functionality of the analysis engine is to perform path analysis and microarchitecture
modeling, and transform the WCET analysis into an ILP problem. The solving of the ILP problem
relies on third party LP/ILP solvers. Since the format of the ILP files is in ILOG/CPLEX format,
both the commercial CPLEX ILP solver and the free lp solve LP solver can be used for this
purpose. For the user’s convenience, we provide lp solve along with the distribution, and briefly
describe its usage.

By default, we assume the user works with the frontend of Chronos. Thus there is a command
“estimate” in the graphical user interface, and the user does not need to be concerned with the
usage of lp solve. In case the user wants to invoke lp solve to solve the ILP file, here is an example
showing how to do that:

lp solve -rxli ./xli CPLEX ../benchmarks/matsum/matsum.lp

Note that the option “-rxli ./xli CPLEX” is used to inform lp solve that the input LP file
is in ILOG/CPLEX format.

Another optional task is to perform simulation of the benchmark with SimpleScalar (should use
the modified one provided with Chronos release) to get an idea of the accuracy of the estimation.
Note that it is very important that the same processor configuration is used for estimation and
simulation.

6 Summary

This is the second release of Chronos. This release focuses on modeling several advanced mi-
croarchitectural features commonly found in modern processors for Worst Case Execution Time
(WCET) analysis. The modeled features include superscalar, out-of-order pipelines, instruction
caches, and dynamic branch predictions. The framework developed in Chronos captures the in-
teraction of these three features. We believe it can be easily extended to incorporate additional

microarchitectural features. The major improvements of Chronos-2.0 over Chronos-1.0 are the
following.

• Chronos-1.0 processor model had very limited support for superscalarity. But Chronos-2.0
extends the processor model to the full SimpleScalar processor architecture with complete
support for superscalarity.

• Chronos-2.0 extends instruction cache modeling to set-associative caches. Chronos-1.0 em-
ployed ILP-based cache modeling that can be applied to set-associative caches, but at the
cost of long ILP solving time. Chronos-2.0 employs a fast categorization based instruction
cache analysis.

• Considerable effort has been spent in the second release for a better implementation. Im-
provements over the first release include better and modular structure of the source code,
a more efficient and scalable analysis engine, and a front-end supporting navigation among
multiple source files.

The wish list for future releases of Chronos include the following.

• Model data cache. The distinct feature of a data cache is that its behavior is not only
affected by the control flow, but the data values as well.

• Model real processors, especially the popular embedded processors such as ARM, PowerPC,
MIPS, etc.

• Perform more aggressive path analysis to discover useful feasible paths/infeasible paths.
The path information can substantially improve the analysis accuracy.

References

[1] Michel Berkelaar, Kjell Eikland, and Peter Notebaert. lp solve version 5.5, 2005. free software,
http://groups.yahoo.com/group/lp solve.

[2] D. Burger and T. Austin. The SimpleScalar Tool Set, Version 2.0. Technical Report CS-TR-
1997-1342, University of Wisconsin, Madison, June 1997.

[3] Xianfeng Li, Tulika Mitra, and Abhik Roychoudhury. Modeling control speculation for timing
analysis. Real-Time Systems Journal, 29(1), January 2005.

[4] Xianfeng Li, Abhik Roychoudhury, and Tulika Mitra. Modeling out-of-order processors for
wcet analysis. Real-Time Systems Journal, 34(3), November 2006.

[5] T. Mitra, A. Roychoudhury, and X. Li. Timing analysis of embedded software for speculative
processors. In ACM SIGDA International Symposium on System Synthesis (ISSS), 2002.

[6] Mälardelaen WCET research group. WCET benchmark programs. http://www.mrtc.mdh.
se/projects/wcet/benchmarks.html.

