Satisfying Real-Time Constraints with Custom Instructions

Pan Yu
School of Computing, National University of Singapore

Custom Instructions
- Extend ISA with application-specific custom instructions
- Hardware implementation with custom functional units

Motivation: ACET versus WCET
- Traditional custom instructions selection
 - Improves average-case execution time (ACET) thru profiling
- Custom instruction selection for real-time tasks
 - Should improve Worst-Case Execution Time (WCET)
- ACET savings depend on execution frequency of paths
- WCET savings depend on which path is more critical (longer)

Challenges in improving WCET
- Naive approach: Greedily optimize current WCET path till it shifts to another path
 - Ignoring non-WCET paths may result in local optima
- Example of two patterns on different sides of a branch
 - A and B saves 2 and 3 cycles, respectively
 - We can select only one
 - Greedy: WCET = 9
 - Optimal: WCET = 8

Optimal WCET Reduction: ILP Formulation
- Objective function: min : \(\text{wcet}_{\text{main}} \)
- Structural Constraints:
 - Sequence \((V_1, …, V_k) \):
 - Path 1:
 - Branch if \(V_1 \) then \(V_2 \) else \(V_3 \):
 - Sequence \((V_1, …, V_n) = \text{wcet}(V_1) + \text{wcet}(V_2) + \text{wcet}(V_3) \)
 - Loop:
 - \(\text{wcet}_{V_1} + \text{wcet}_{V_2} + \text{wcet}_{V_3} \)
 - Basic block:
 - \(\text{wcet}_i = T_{\text{opt}} - (P_i \times x_{i, A} + … + P_i \times x_{i, B}) \)
- Topological & Design Constraints:
 - At most one pattern covers an operation
 - Variables:
 - \(x_{i, A} + … + x_{i, B} \) \(\leq 1 \)
 - \(R \) — area requirement of \(P_i \) pattern
 - \(M \) — number of custom instructions constraint

Experimental Results

<table>
<thead>
<tr>
<th>Program</th>
<th>Test</th>
<th>Custom Instructions</th>
<th>WCET Reduction</th>
<th>Time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adpcm</td>
<td>51</td>
<td>12</td>
<td>9%</td>
<td>0.012</td>
</tr>
<tr>
<td>Bioeth1</td>
<td>218</td>
<td>12</td>
<td>9%</td>
<td>0.012</td>
</tr>
<tr>
<td>Compress</td>
<td>1356</td>
<td>16%</td>
<td>14%</td>
<td>0.31</td>
</tr>
<tr>
<td>Crc</td>
<td>150</td>
<td>15%</td>
<td>14%</td>
<td>0.012</td>
</tr>
<tr>
<td>Djpeg</td>
<td>64</td>
<td>6%</td>
<td>13%</td>
<td>0.012</td>
</tr>
<tr>
<td>Gsmdec</td>
<td>108</td>
<td>11%</td>
<td>13%</td>
<td>0.012</td>
</tr>
<tr>
<td>SHA1</td>
<td>123</td>
<td>12%</td>
<td>14%</td>
<td>0.012</td>
</tr>
<tr>
<td>RSA</td>
<td>49</td>
<td>12%</td>
<td>13%</td>
<td>0.012</td>
</tr>
</tbody>
</table>

Significant WCET improvement by utilizing custom instructions
- Heuristic is much faster than optimal solution
- Heuristic achieves optimal WCET reduction in most cases
- Heuristic is scalable with larger problem sizes