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Abstract

Computational modeling and analysis of biological networks are a good way to

gain understanding of cellular functions at the molecular level. Common techniques

include differential equations to model molecular kinetics. More recently, models

arising from engineering have been finding their way in biology, such as Finite

State Machines, Boolean Networks, Petri Nets and their many variants. However,

quantitative modeling faces some basic problems, one of them being lack of infor-

mation concerning parameters. Here, we use a variant of Petri Net to model the

AKT pathway and its interaction with the ERK cascade. We then look on issues

relating to the parameter estimation problem and present our current methods to

deal with them.

1 Introduction

Computational modeling has been gaining acceptance in the study and understanding

of biological networks. The methods and tools of modeling vary but the process and

problems faced by the researchers remain largely the same, such as the desired levels of

abstraction, the underlying kinetic models and the lack of knowledge on the parameters.

One of the more common methods is to represent the chemical reactions as a network

and use ordinary differential equations to drive their dynamics. Several such pathways

have been modeled and studied, each concentrating on a particular aspect of cellular

activity, such as the canonical Wnt signaling pathway, the mitogen-activated protein

kinase (MAPK ) cascade, and Caspase action in apoptosis [14, 27, 46]. In the recent

years, models of computation that were originally restricted to engineering domains are

finding themselves being employed to model biological entities [12, 15, 30, 32]. One of the

first such model is by McAdams and Shapiro, who represented regulatory networks as
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electrical circuits [31]. Since then, other models such as Finite State Machines and Petri

Nets have been used, all with the aim of finding out how a cell works from a systems

point of view.

In this work, we employ a variant of the Petri Net methodology to model two pathways

that are involved in programmed cell death, or apoptosis - the AKT and ERK pathways.

We are interested not only in the pathways themselves, but also in understanding how

they interact with each other via cross-interaction, as well as their influence on common

downstream targets. We present a systematic way to translate information obtained

from laboratory experiments and various literature sources into our model. In addition,

we use an algorithm that is based on Evolutionary Strategies [3] to fill up the gaps in the

model - namely parameter estimation. Thereafter, we look into some issues concerning

the validation of our model.

2 Models of Computation

A model is a representation of a physical entity. In this case, it would be the molecular

functions of a cell. It can range from being purely visual (symbols, diagrams etc.) to

having formal semantics such that it is executable. The use of ordinary differential

equations has long been the popular choice for modeling the molecular dynamics of the

cell. In this work, we use a variant of the Petri Net methodology - the Hybrid Functional

Petri Net [30], to model our pathway. The reason why we use the Hybrid Functional

Petri Net is that it has a sound mathematical basis for all its components [37]. Also,

there is already a simulator, the Cell Illustrator1, that uses this methodology for modeling

and simulation, allowing us to concentrate only on the pathways and not the execution

semantics.

2.1 Hybrid Functional Petri Nets

The Hybrid Functional Petri Net (HFPN) is a modified version of the Petri Net model

conceived by Carl Adam Petri in the 1960s, which has been used extensively to model

concurrent processes. The original Petri Net consists of just two components - Places and

Transitions. Places, usually denoted by a circular symbol, denotes passive entities such as

buffers, or states of a system. Transitions, depicted by a rectangle, would then represent

1Gene Networks Inc, http://www.gene-networks.com
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active entities, such as reactions or operations. The places are then connected to the

transitions (and vice versa) via directed arcs to form a network. The state of the system

is then denoted by the number of tokens, or markings, within the places. Executing this

involves discrete time steps, where in each step, tokens will be consumed or produced

by the transitions that are connected to the places containing them. Note that arcs can

only connect components of different types together (i.e. places to transitions and vice

versa).

The HFPN adds more semantics and functionality to the Petri Net by allowing not

only discrete components, but also continuous versions of them (hence explaining the

term ‘Hybrid’). It also introduces two additional kinds of arcs - the Inhibitory arc and

the Test arc. The graphical representation of the components are shown in Figure 1

Figure 1: Components of the Hybrid Functional Petri Net.

As the name implies, discrete places can only hold non-negative integers (equivalent

to the number of tokens in the Petri Net model) while continuous places can contain

non-negative real numbers. A discrete transition can only activate, or fire, when its

firing conditions (the number of tokens in its incoming places) are satisfied for a certain

duration of time, specified by a delay function. A continuous transition, on the other

hand, has a firing function which denotes the rate of consumption from its input places

when its firing conditions are satisfied. Unlike the discrete transition which will only fire

after a specified delay, the continuous transition fires instantaneously and continuously.

In addition to the normal arc, the HFPN introduces two additional arc types. The

inhibitory arc performs the opposite role of a normal arc, preventing the connected

transition from firing when the value of the input place satisfy a specified condition. In

the biological context, this form of arc can be used to model molecular inhibition. Test
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arc, on the other hand, behaves like a normal arc, except that no tokens or values are

being consumed from the incoming place. Due to the additional components, there is

a need for restrictions with regards to the possible ways places and transitions can be

connected together. A normal arc can connect a place to a transition and vice versa

(With the exception of connecting a discrete place to a continuous transition). Test and

inhibitory arcs are restricted to only connect incoming places to transitions as they both

involve satisfying a precondition.

By performing such connections, an entire network representing the reactions in a cell

can be constructed.

2.2 Modeling Methodology

In this section, we look at the modeling of biological pathways using HFPN and present

a systematic way to represent the various reactions.

One of the main assumptions for biochemical modeling is that the molecules are evenly

distributed throughout the entire system, such that their concentration can be repre-

sented by a single variable. In the HFPN model, this would be represented by a con-

tinuous place whose value denotes the concentration of a particular protein type. The

presence or the absence of certain conditions, such as serum, can be modeled using dis-

crete places instead. Next we will consider the different types of reactions that can occur

and the ways of representing them.

2.2.1 Association, Dissociation and Translocation

Association involves the binding of proteins to form complexes (dissociation being the

opposite) while translocation involves the molecules moving from one region of the cell

to another, such as from the cytoplasm to the nucleus. These three types of reactions do

not chemically modify the proteins. Other than protein-mediated translocation, all of

them follow the mass action law, which states that the rate of a reaction is dependent on

the current concentration of its participating reactants. The equation denoting a binding

reaction of two reactants and its HFPN equivalent is shown in Figure 2.
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A + B
k→ A.B

Figure 2: HFPN equivalent of a association reaction between two protein types A and

B, and the equation v denoting the rate of reaction

2.2.2 Protein Modification

Protein modification often involves a catalyst, or enzyme, which essentially is not

modified or consumed in the process. There are several considerations and variations for

mathematically representing such reactions but for our model, we have decided to adopt

the Michaelis-Menten model for enzyme kinetics, which is based on the quasi steady state

approximation for chemical reactions. Under this scheme, most of the enzyme-catalyzed

chemical reactions can be expressed as the form shown in Figure 3.

S + E
k1⇀↽

k−1

S.E
k−→ S + P

Figure 3: Panel A shows the HFPN representation of an enzyme-catalyzed chemical

reaction. The arc from the place representing the enzyme E is a test arc as no enzyme

molecules are consumed in a catalytic reaction. Panel B shows the similar reaction, but

for the case where the identity of the enzyme is not known
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In this scheme, S is the substrate, P is the product and E denotes the enzyme that

catalyzes the reaction. The parameters k is the catalytic constant of the reaction and

KM is the Michaelis constant, which indicates the affinity of the substrate to the enzyme,

with low values indicating that the ES complex is held together very tightly. In cases

where we know that the reaction is an enzyme catalyzed reaction, but not the enzyme

involved, the equation can be written in form depicted by Panel B of Figure 3. In this

form, Vmax is the maximal velocity of the reaction, and is an experimentally derived

value.

There are other types of chemical reactions but for the pathway that follows, these

types will be sufficient and we will see how to use them to systematically convert the

pathway into its HFPN equivalent.

3 The Pathway

The AKT pathway has been studied extensively due to its role in apoptosis and cancer.

In the prostate cancer cell line LNCaP, genetic defects cause such cells to be lacking in the

active lipid phosphatase - PTEN, which is an inhibitor of the AKT pathway [17]. Hence

this cell line has unusually high amounts of activated AKT, promoting cell survival. In

experiments to knockdown PDK1, it was noticed that activity of other pathways are

also affected, specifically the MAPK pathway, which also plays a part in cell growth and

proliferation.

Hence, the model describing our pathway will consist of two main parts - the AKT/

PKB pathway and the MAPK pathway. These two pathways are stimulated by external

growth factors, which in this case will be modeled as a discrete element - serum. Several

models representing these two pathways have already been created separately [16, 38, 36].

In our model, we are interested not only in the individual pathways but also in their

cross interaction and effects on common downstream targets. The following sections will

describe the main portions that make up the entire pathway and show how their HFPN

model is derived.
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3.1 AKT/PKB Pathway

The mechanism behind the activation of the AKT pathway is the membrane recruit-

ment and activation of the signaling proteins. Binding of growth factors to the cell surface

receptors will cause them (the receptors) to act as scaffolds for specific binding interac-

tions with cytosolic proteins. This leads to the activation of phosphoinositide 3-kinase

(PI3K ), which will catalyze the phosphorylation of phosphotidylinositol di-phosphate

(PIP2) at the inositol ring, forming PIP3. This reaction can be reversed by the lipid

phosphatase PTEN. However, the cell line we are working with is the LNCaP cell line,

which is lacking in PTEN. Hence during modeling, this concentration level will be kept

to a minimal. Also, activation of PI3K can be eliminated by treating the cell with

LY294002, a selective PI3K inhibitor [49].

Activated PIP3 will then recruit proteins containing the pleckstrin homology (PH)

domains, which includes the protein AKT. At the cell membrane, AKT will then be

able to interact with 3-Phosphoinositide-dependent protein kinase 1 (PDK1 ). Through

this interaction, AKT is activated by a sequential phosphorylation of Thr308 and Ser473

[13, 35], the former being catalyzed by PDK1 and the latter by a yet-to-be-identified

kinase, and is presently dubbed PDK2 [21]. Activated AKT will then be released into the

cytoplasm where it will further activate downstream targets such as the Bcl-2 Antagonist

of Cell Death (Bad) and the forkhead transcription factor (FKHR). Activated AKT

is regulated by protein phosphatase 2A (PP2A), which deactivates it by removing the

phosphate groups. In our experiments involving the absence of serum, there is still slight

AKT activity (Figure 13), implying that there might be basal activation of PI3K, which

we will model as a separate reaction. The HFPN model of this scheme is shown in Figure

4.

3.2 MAPK Pathway

The MAPK pathway is highly conserved across several species. It involves several

levels of kinases, each activating the subsequent level (hence the name cascade). Such

an arrangement has an effect of ultra-sensitivity, where the cascade would behave like

a discrete switch, turning from off to on over a very narrow range of stimuli, while

responding less to other amounts of stimulation [19].
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Figure 4: The HFPN model of the AKT pathway. Phosphorylated proteins are appended

with ‘p’, with AKT having two of them to indicate double phosphorylation. Proteins

that are activated but not via phosphorylation are appended with ‘a’. For PI3K, there

are two activating transitions to denote serum and basal activation. For AKTpp, there

are two ways to remove its phosphate group. It can be dephosphorylated either at the

cell membrane, becoming singly phosphorylated, or after it has been released into the

cytoplasm.

Similar to the AKT pathway, it is stimulated by the binding of external growth factors

to the cell membrane. This causes the proto-oncogene Ras to be converted to its active

conformation, having GTP bounded to it instead of GDP. In this conformation, its bind-

ing affinity to the Raf kinase is increased, causing Raf to be recruited to the membrane

and become activated. This, in turn, causes it to activate the dual specific protein MEK

by phosphorylating it at its serine/threonine residues. This is shown by the double phos-

phorylation of MEK in Figure 5. The activated MEK then carries on to phosphorylate

ERK [26]. Finally, activated ERK will induce cell growth and proliferation by activating

a variety of downstream transcription factors.

Several mathematical models describing this pathway have been created, such as the

Kholodenko model and the Schoeberl model [1, 8, 16, 43, 50]. However it is not very

clear which one is more accurate as they differ in the way certain reactions are being

modeled as well as the proteins that are involved. For this portion of our pathway, it
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follows largely the one presented in [16].

Apart from the regular components that make up the pathway, it has also been re-

ported that phosphorylated AKT is a negative regulator of the MAPK pathway. It does

this by phosphorylating Raf at Ser259, thereby inhibiting its activity along the MAPK

pathway [40]. This shows that biological pathways do not always work in isolation, i.e.

their dynamics are not shielded from one another. For our model, we represent it as

a de-activation of Raf, following the model in [16]. In addition, the knockdown experi-

ments that are being performed on PDK1 also seemed to indicate that PDK1 does play

a positive role in the activation of ERK in a MEK dependent manner (Figure 11).

Figure 5: The HFPN model of the MAPK pathway. Presence of serum will lead to the

activation of Ras, resulting in the phosphorylation of Raf and downstream targets MEK

and ERK. Activated MEK is regulated by PP2A while ERK is de-activated by MKP3

[22, 24]
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3.3 Downstream Targets - Bcl-2 Family

One of the ways AKT and ERK affect apoptosis is via their regulation of Bad. Bad is

a protein that is involved in regulating apoptosis by the competitive heterodimerization

of Bcl-2 and Bcl-XL with itself and Bax. Bcl-2 and Bcl-XL are anti-apoptotic proteins

which inhibit the release of cytochrome c from the mitochondria [14]. By releasing

mitochondrial cytochrome c into the cytosol, procaspase 9, a protein directly involved

in cell death, will be activated, leading to apoptosis. This release of cytochrome c is

induced by Bax. Bcl-2 and Bcl-XL prevents this by binding to Bax, preventing its

localization at the mitochondria. However, when Bad is sequestered to either Bcl-2 or

Bcl-XL, it displaces Bax from them, allowing Bax to promote cell death. Therefore,

phosphorylating Bad will abrogate the apoptotic function of Bax, since phosphorylated

Bad is unable to dimerize with either Bcl-2 or Bcl-XL, allowing them to associate with

Bax [39, 51].

AKT and ERK regulate the apoptotic function of the Bcl-2 family by phosphory-

lating Bad at two sites - Ser136 and Ser112 respectively. ERK does not phosphorylate

Bad directly. Instead, it does so via another kinase - the P90RSK, which is found to

phosphorylate Bad at Ser112 both in vitro and in vivo [47]. At the same time, activated

PI3K can also regulate apoptosis by preventing Bax localization to the mitochondria,

although the actual mechanism is not known. Hence the influence of PI3K on Bax is

considered an indirect interaction [48] although we have modeled it as an enzyme that

displaces Bax from the mitochondria.

3.4 Reactive Oxygen Species and PAK1

Several endogenous and exogenous activities in the cell as well as the action of cer-

tain protein scavengers influence and control the levels of reactive oxygen species (ROS )

in the cell. Members of this species include the superoxide O−
2 and hydrogen peroxide

H2O2. Experiments have shown that prostate cancer cells produce substantial amounts

of ROS and one of the sources could be NOX5 NAD(P)H oxidase [7]. This generation

of ROS may be inhibited by the flavoprotein-dependent NAD(P)H oxidase inhibitor -

diphenylene iodonium (DPI ) [7]. ROS is needed in the activation of P90RSK to stimu-

late the expression of genes involved in cell growth and survival as well as activation of

Na+/H+ Exchangers (NHE ) [42]. ROS also mediates MEK and ERK activity, possible

via activation of the p21-activated kinase 1 (PAK1 ) [11]. Activated PAK1 can then
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Figure 6: The interaction of the various proteins with the Bcl-2 family members - Bax,

Bad and Bcl-2. There is competitive binding of Bad and Bax with Bcl-2. Phosphoryla-

tion of Bad at Ser112 or Ser136 causes more Bcl-2 to be able to bind to Bax, preventing

it from causing apoptosis

regulate the MAPK pathway by regulating the phosphorylation of Raf [9]. However it

is to be noted that the levels of ROS in the cell must be carefully regulated. Although

known to promote cell survival, too high a concentration of ROS in the cell will also lead

to cell death due to oxidative stress. Related to the PAK1 mediated ERK activation

is the role of PI3K, adding on another possible cross-interaction between the AKT and

the MAPK pathways. Experiments have shown that PI3K can regulate the activity of

PAK1 by phosphorylation [9]. PAK1 is also shown to be able to phosphorylate Bad at

Ser112 and Ser136 both in vitro and in vivo [44].

The entire model, including the above-mentioned pathways and their cross-interactions

is shown in Figure 8. However, even with the structure of the model being worked out,

the model is still not complete as we do not know the rates of the various reactions that

drive the model. This brings us to the next section to alleviate this issue - Parameter

Estimation.

4 Parameter Estimation

Like any modeling endeavour, the greatest bottleneck for such quantitative modeling

is the estimation of the parameters for the various rate reactions. Technical difficulties

and huge resource requirements make the experimental determination of all the param-
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Figure 7: Role of ROS in the regulation of P90RSK and MAPK pathways. In our model,

only ROS has reactions denoting the generation and degradation of ROS

eters impossible. Other than obtaining some of them through an extensive literature

search, the rest would have been estimated. This amounts to a nonlinear global opti-

mization problem and an in-depth review of the various approaches has been reported in

[33]. Several parameter estimation algorithms have been considered and one of the best

performing algorithm is a variant of the Evolutionary Strategies approach [41].

Every algorithm to estimate the parameters require searching through the solution

space to find suitable parameter values. One of the main issues, especially when esti-

mating the parameters for a huge network, is that the search space is too large. Our

proposed method to alleviate this problem is to exploit the structure of the network,

such that instead of searching the entire set of parameters, we concentrate only on a few

parameters at any given time. This form of optimization is also known as Alternating

Optimization [4].

4.1 Pathway Topology

Looking at the structure of the network in Figure 8, we can see that most of the

reactions are catalytic reactions. Since we are adopting the Michaelis-Menten kinetics

for enzymatic reactions, such reactions do not consume the enzyme. The concentration

of the enzymes do not change with respect to the reactions that they catalyze. As such,

the concentration flow of the molecules in Figure 8 can be viewed as being contained
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Figure 8: Scheme of the entire pathway, with the cross-interactions between the AKT

and MAPK pathway and their influence on downstream targets

within separate modules, e.g. PI3K activity is contained within its own loop consisting

of the places PI3K and PI3Ka and molecules do not flow into other places.

We let X be the set of variables (or places) representing protein concentration and V

be the set of chemical reactions. Each variable is denoted by xi and its rate of change is

dxi

dt
=

∑
j∈J

cijvj

where vj is the reaction for which xi is either a reactant or product of, and cij is its

stoichiometric coefficient.

Definition 1 (Module) A module is a smallest subset M ′ = (X ′, V ′) such that it satisfies

the following properties. For all variables xi where xi ∈ X ′ and dxi/dt =
∑

j∈J cijvj, it
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must be the case that vj ∈ V ′. Also for any two modules M ′ = (X ′, V ′),M ′′ = (X ′′, V ′′),

X ′ ∩X ′′ = Ø and V ′ ∩ V ′′ = Ø

Hence we can simplify the entire network into a Directed Acyclic Graph G = (V , E)

where the nodes Vi ∈ V are the individual modules and the edges Ei ∈ E are the catalytic

activation/inhibition between the modules. An example of how the scheme in Figure 8

can be simplified into a graph is shown in Figure 9. Note that not all pathways are

amenable to such simplification. Here we assume that there are no major feedback loops

in the model. Enzymes that do not change in concentration, such as PDK1 are left out

for brevity.

Figure 9: Directed acyclic graph of the individual modules that make up the pathway.

For brevity, enzymes that do not change in concentration such as the PP2A and PDK1

are not shown in the diagram

4.2 Topological Ordering

Estimating the parameters of the pathway involves fitting the model with available

experimental data, usually steady state protein concentration levels, or less frequently,

time-series profiles. Most parameter estimation algorithms regard the system in its

entirety. For reasons already mentioned, we shall focus only on optimization via Evo-

lutionary Strategies. Such algorithms require several model evaluations to assess the

fitness of the parameters or solutions.
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In Evolutionary Strategies, current solutions are being ‘recombined’ and ‘mutated’ in

every iteration. Hence for each iteration, or generation, the algorithm has to work with a

solution space with exponential dimensionality. Whilst this is inevitable, we can reduce

it by fitting the separate modules individually.

Taking the pathway in Figure 9 as an example, one can see that the choice of param-

eters in the Pak1 module does not affect the choice of parameters in the PI3K module.

However, the same cannot be said for the reverse, where simulating the system with

differing parameters in the PI3K module will lead to changes in enzyme profiles that will

ultimately affect how the Pak1 module is to be fitted. Hence to work with the modules

individually, the PI3K module must be fitted prior to Pak1, leading to the notion of

precedence constraints. The nodes in the DAG can therefore be topologically ordered

and their parameters will then be estimated in that order. There are already several ef-

ficient algorithms to perform topological sort on a DAG and hence it will not be further

elaborated [45].

4.3 Rank

Despite being arranged in topological order, it is sometimes not possible to estimate

the parameters due to unavailable data for fitting them with. As such, there is a need to

group multiple modules together and assign them a rank to denote which modules are to

be fitted together. Usually for fitting, there will not be one, but a series of experiments,

each providing information on certain variables. For a variable xi, we denote (if available)

its profile for experiment j as x
(e)
ij .

Definition 2 (Rank) The rank is a grouping of the modules in their linear extension

such that for each group {M ′} of the same rank, there exists exactly one M ′
k that has at

least a variable xi with an experimental profile x
(e)
ij .

Additional requirements are that other than the last rank, the module with the ex-

perimental profile must be the last module within its group when arranged in topological

order. When representing the network as a graph G = (V , E), where each vertex Vk rep-

resents the module Mk, vertices with no experimental profiles take on the rank of the

closest vertex Vl where there is a path Vk...Vl. This will impose a slight restriction on

the partial order of the modules that do not have experimental profiles to fit them to.

The requirement for each rank to have only one module with a profile is to minimize the
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number of modules in a rank, so that the solution space to search from is also kept to a

minimal.

For the graph in Figure 9, we have the experimental profiles for the following protein

types - AKT, Raf, MEK, ERK, P90RSK and Bad. Hence the modules and their group-

ing will be in this order - {PI3K, AKT}, {ROS, Pak1, Ras, Raf }, {MEK}, {ERK},
{P90RSK}, {Bad}, with the highest rank of 1 being the group {PI3K, AKT} and the

lowest rank of 6 for the group {Bad}.

4.4 Evolutionary Strategy

The choice of estimation algorithm being used is independent on the ranking, i.e. one

can choose to perform deterministic optimization algorithms such as the Levenberg -

Marquardt method, or stochastic methods such as Genetic Algorithms, or even a mix

of them for different ranks, depending on the characteristics of the modules within that

rank. However, for reasons already mentioned, we have chosen Evolutionary Strategies

for our work, specifically the (µ + λ)− ES algorithm [3]. The following steps show the

basic implementation of the algorithm.

1. Generate µ parent vectors, each being a set of parameters Pi = (pi1, . . . , pin).

2. Create λ new offsprings, with each child being formed from the recombination of

two randomly selected parent parameters.

3. Mutate the offsprings.

4. For each child parameter set, evaluate the model to assess its fitness score.

5. Select the µ most fit parameters from the (µ + λ) parameters to form the next

generation.

6. Repeat steps 2 to 5 for a predetermined number of generations, or when no better

parameters could be obtained.

This process is repeated in rank order. In addition, we need to maintain a set of

fixed parameters obtained after estimating parameters of the previous ranks or those

that have already been determined beforehand. We denote this set as Pf and for each

generated parent parameters Pi in step (1), Pf ⊆ Pi. Recombination and mutation
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are then performed on the parameters pi where pi /∈ Pf . To assess the fitness of the

parameters, the cost function must also take the current rank k into consideration.

J =
∑
i,j,t

wij

√
(xij(t)− x

(e)
ij (t))2

where xij(t) is the predicted value of xi in experiment j at time t. x
(e)
ij (t) is its corre-

sponding experimental value. wij is the weight used to normalize the contributions of

each term to the cost function and it is usually taken to be wij = 1/max(xij). Also,

for all xij used in the cost function, Rank(xij) ≤ k. After estimating the parameters

for a particular rank k, we append the best parameters with rank k to the set of fixed

parameters Pf .

Based on this algorithm, we estimate the parameters for the rate reactions that govern

the network in Figure 8. The possible values for the parameters are bounded within

physiological range, with association constants ki ∈ [10−6, 10−2] nM−1.s−1, dissociation

constants k−i ∈ [10−6, 10−1] s−1 and catalytic constants kd ∈ [10−6, 1000] s−1. For

Michaelis Menton parameters, KM ∈ (0, 109] nM and Vmax ∈ (0, 105] nM.s−1. Production

and degradation rate constants are kept between 0 and 1. The estimated parameters are

shown in Table 1.

4.5 Experimental Data

It is never the case where we will have one set of complete data on all the molecule

types obtained from a single experiment. Rather, it will more often come from different

experiments with different set-up and the data profiles can either be steady state or time

series. In addition to that, we can measure the profiles of only a few types of molecules,

hence requiring grouping as described previously. For our pathway, we estimated the

parameters based on three sets of experimental data, two of them being steady state

values and the third, time-series data.

4.5.1 Experiment Set 1 - Knock-down Experiments

The first set of data is obtained from knockdown experiments. LNCaP cells are

being transfected with small interfering RNA (siRNA) to knockdown the genes via RNA

interference. In this set of experiments, cells are treated with 20 nM , 50 nM and

100 nM of siRNAs for the proteins AKT and PDK1 to reduce their expression levels.
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The siRNAs are transfected using the calcium phosphate method and the cells are then

incubated for either 48 or 72 hours. The expression levels of selected proteins are then

assayed and visualized via Western blotting.

Panels A, B and C of Figure 10 show the expression levels of AKT and its activa-

tion levels under various knock-down conditions. The three experiments are carried out

independently.

Figure 10: AKT and PDK1 knockdown on AKT expression and activation levels.

The effects of both treatments on the expression levels of AKT is already known, and

such effects are seen from the experiments. Needless to say, AKT siRNA is suppose to

reduce the total amount of AKT concentration, as can be seen in the figure. 20 nM of

AKT siRNA is enough to reduce the total concentration of AKT to an almost negligible

level. PDK1 is an activator of AKT, phosphorylating it at its Thr308 residue. Reducing

PDK1 expression levels via siRNA will down-regulate AKT activation levels, as can be

seen in Figure 10. However, it is noted that the total AKT concentration is also being

reduced with PDK1 siRNA treatment. This observation is consistent with Panels A and

B of Figure 10. However, this interaction has not been observed anywhere in the model
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and could be attributed to experimental inaccuracies.

The next set of data shows the expression levels of the various proteins involved in the

MAPK pathway, namely Raf, MEK and ERK.

Figure 11: Effects of the knockdown experiments on the various parts of the MAPK

pathway. Panel A shows Raf expression and activation levels upon knocking down AKT

and PDK1 while Panel B shows that of MEK. Panels C and D are two independent

experiments for the activation levels of ERK.

From Figure 11, it is observed that variations of PDK1 levels has not much effects

on the activation of Raf. However, it has been reported in [52] that AKT can regulate

the MAPK pathway by phosphorylating Raf at Ser259. Although this is not readily

observed in Panel A of Figure 11, its downstream effects on MEK and ERK can be seen,

with increasing levels of MEK and ERK activation when the expression levels of AKT

decreases (Panels B to D). On the other hand, decreasing the levels of PDK1 does have

an effect of attenuating MEK and ERK activity. This leads to a somewhat interesting

manner in the way various components of the AKT pathway play a part in regulating

the MAPK pathway, possibly as a mechanism to restrict the influence of PDK1 on the

MAPK pathway where prolonged PDK1 activation will lead to increased AKT activity,

which in turns down-regulate the activation of ERK in the MAPK pathway.

P90RSK plays an essential role in cell growth by activating several transcription fac-

tors, including the Na+/H+ exchangers. This protein is also being implicated by the
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activation of the MAPK pathway, and hence is one of the proteins that are being as-

sayed in the experiments. One of the downstream targets of P90RSK is Bad. P90RSK

blocks Bad -mediated cell death by phosphorylating Bad at Ser112 [47]. At the same

time, Bad is also one of the downstream targets of AKT, being phosphorylated at Ser136

in a PI3K -dependent manner [47, 52].

Figure 12: AKT and PDK1 knockdown effects on P90RSK(Panel A) and Bad (Panels

B, C, D) activation

Results from Panel A in Figure 12 is rather inconclusive, with no apparent change

in P90RSK activation under any conditions. Bad activity, however, is reduced with

both knockdowns (Panel C). It is not clear how AKT siRNA transfection will lead to

decreased Bad activation at Ser112. Perhaps more experiments are needed to shed more

light on this. On the other hand, PDK1 siRNA would most probably have regulated

Bad phosphorylation via the MAPK pathway.

4.5.2 Experiment Set 2 - PP2A Knockdown and Post Transfection Treat-

ment

The second set of experiments involves not only RNA interference (for this set, PP2A

siRNAs are being used instead), but also the treatment of cells with reagents LY294002

and DPI. The cells are exposed to the various conditions for 1 hour before being assayed

for protein expression.

PP2A is a family of phosphatase that reverses the activation of the various proteins

by removing the phosphate groups. Some of these proteins include AKT and MEK. It
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is also reported that PP2A deactivates ERK. However, this regulation is dominated by

the highly selective activity of MKP3 [22]. Nevertheless, PP2A is still crucial in the

regulation of the MAPK pathway via MEK dephosphorylation.

Figure 13: Effects of the various treatment on the activity of AKT

The LNCaP cell line lacks the active lipid phosphatase PTEN, a negative regulator

of PIP3 and hence will display high levels of AKT activity [34]. With that, we can see

that even in the absence of serum, there will be some activation of the AKT pathway,

with its level probably being kept moderate by PP2A. The importance of PI3K in the

AKT pathway can be seen in the treatment of the cells by LY294002, a selective PI3K

inhibitor. In Figure 13, adding of LY294002 appears to abrogate AKT phosphorylation,

hence inhibiting this pathway. DPI on the other hand, does not affect AKT activity

much, showing that ROS does not have any profound impact on the activity of the AKT

pathway.

The role of PP2A in deactivating the AKT pathway is shown in Figure 13. For almost

every experiment, its corresponding counterpart with PP2A siRNA appears to have a

higher level of AKT phosphorylation, which would show that PP2A indeed plays a role

in negating the effects of AKT activation.

Next are the effects of PP2A knockdown and the various treatments on the components

of the MAPK pathway.

The effects of serum on MEK activation is very obvious, with its activity increasing

as much as 3-fold in the presence of serum. The knocking down of PP2A also has the

effect of increasing MEK phosphorylation. The addition of DPI will affect the activation

for both MEK and ERK, inhibiting their activity. This re-affirms the role of ROS as

second messengers in signaling pathways, although we only show them in the context of
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Figure 14: Effects of the various treatments on MEK and ERK activity. Greyed out

regions means that the protein types were not assayed for that particular experiment

the MAPK pathway. One important thing to note about ROS is that its concentration

and ratio must be kept within a certain level. Upsetting that proportion will lead to

cell death either via oxidative stress, or by reductive stress. Further implications of the

effects of ROS (as well as the ratio of its corresponding family members will be looked

into in future studies).

4.5.3 Experiment Set 3 - Time Series Experiment

The third and final set of experiments is aimed primarily at finding out how protein

activity changes with time under various conditions. (Different combinations of serum,

LY294002 and DPI ). For the cells, they are initially kept in a serum starved state. They

are then exposed to the different treatments and the readings of the various protein

activation levels are taken at times 0 min, 10 min, 20 min, 30 min, 45 min, 60 min

and 120 min after the start of the treatment. The proteins of interest in this set of

experiments are MEK, ERK, P90RSK and Bad phosphorylation at Ser112. The relative

activation levels of the proteins are shown in Figure 16 as triangles and squares. The

relative endpoints are already expected from the model, but having time profiles will

enable us to have a tighter fit of the parameters.
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Using all these three sets of experiments, we then estimate the parameters of the model

such that it can reproduce most, if not all, of the observations made.

5 Simulation and Validation

The model is constructed using Cell Illustrator on a Pentium IV personal computer.

To estimate the parameters, we broke the pathway down into modules separately and

assigned them ranks according to the scheme presented in the previous sections. We then

run the estimation algorithm, written in C++, on a PC cluster system. The algorithm

was run a few times, and the most representative results (i.e. whose simulation profile

matches the experimental ones the best) are used.

5.1 Effects of PDK1 siRNA on MEK and ERK Activation

The observation that prompted this investigation is the treatment of LNCaP cells

with PDK1 siRNA. Usually not thought to interfere directly with the ERK pathway,

decreased concentration of PDK1 shows a significant drop in both MEK and ERK

activity, suggesting that PDK1 might have been affecting the ERK pathway via an

MEK dependent manner. This effect has been captured in our model. Figure 15 shows

the western blot of MEK and ERK activation with various levels of PDK1 siRNA

treatment, as well as their corresponding simulation profiles. We simulate the effect of

PDK1 siRNA treatment by reducing its total concentration from 1000 nM (Control)

down to 0 nM (100 nM siRNA treatment). In the control experiment, the level of ERK

phosphorylation is moderate but once siRNA treatment is being administered, it shows

an acute inhibition, dropping to nearly 0 nM , as can be seen in our simulations.

5.2 Effects of LY294002 and DPI

The experimental time series profiles are obtained mainly from cells that have been

treated with the PI3K inhibitor LY294002 and the ROS inhibitor DPI, both in the

presence and absence of serum. Experiments show that both DPI and LY294002 affects

the ERK pathway in similar ways, suggesting that other than the PDK1 and AKT

interaction, there might still be some other forms of interaction. In our model, we realise

this effect via an indirect action of activated PI3K. It has been reported in [9] that PI3K is

one of the regulators of Pak1 activation, which in turns regulates Raf activation. Hence,
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Figure 15: Profiles of the model simulation compared to the validation set

inhibition of Pak1 activation could result in lower levels of MEK and ERK activity, and

this can be achieved by adding either LY294002 or DPI. The profiles of the simulation,

compared to experimental data are shown in Figure 16.
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Figure 16: Profiles of the various activity levels under different treatment. Each graph

shows the activity of the particular protein type in the presence (solid lines) or absence

(dashed lines) of serum. In addition, some of the profiles include those obtained from

experiments, with serum (triangles) and no serum (squares).
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5.3 Validation

To validate the model and parameters, we simulate the system again, this time com-

paring it with another separate set of experimental data, or the validation data set. This

experiment is a re-creation of the cell treatment with LY294002. However, due to exper-

imental variations, the initial conditions of the various protein types are different and

this is reflected in the simulation. This form of validation is a simplified form of model

validation - the holdout technique [25]. Although it is not the best validation method, we

use it due to the little and sparse nature of data sets that are obtained from laboratory

experiments. The profiles of the following activated proteins Raf, MEK, ERK, AKT and

P90RSK are shown in Figure 17.

Figure 17: Profiles of the model simulation compared to the validation set
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From the validation profiles, it is hard to conclude that the parameters are an exact fit.

The AKT profile shows an almost exact fit while there are deviations in the activation

levels of MEK and ERK. However, similarities in qualitative effects can still be seen,

lending some level of confidence to the structure of the model. However, more work

needs to be done to explain some of the dynamic profiles that can be seen from the

experiments.

5.4 Parameters and Rate Reactions

The derived equations describing all the chemical reactions, and their estimated param-

eters, are shown in the Table 1. Cellular protein concentration were, whenever possible,

taken from various literature sources. The remaining were then estimated over the range

of 1 − 50000 nM . However, note that since all the experiments were performed on the

LNCaP cell line, the concentration of the protein PTEN is kept at a very low value of

0.1 nM .

6 Discussion

Computational modeling is indeed a useful tool to the biologists in understanding and

re-creating network kinetics, as well as testing of hypotheses, as we have done so in this

paper. Although being able to capture most of the effects, more tests are needed to

be carried out to ascertain the validity of the hypotheses, especially the link between

PDK1 and MEK, as well as PI3K on ERK activation. The current ways in which we

derive the model structure and its parameters are based on experimental data sets that

we have and prior knowledge. Such data sets are sparse and diverse, differing not only in

experimental conditions, but also in the cell type. For this model, we ensure consistency

by only using data obtained from experiments that are being performed on LNCaP cells.

In addition, when using the data for estimation, we ensure that the initial conditions

mimic, as close as possible, the experimental set-up, i.e. the amount of already activated

AKT, MEK and ERK at the start of the experiment. Even so, to reuse those data in

validation will result in a form of a circular argument - i.e. using the data to estimate

the parameters (or structure) and using their level of correlation as proof of correctness.

We try to alleviate this problem by using data sets from other experiments which are

not used in estimating the parameters as the basis for comparison. This is also known as
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No Rate Equation Parameter Ref

1 V1[PI3K]/(K1 + [PI3K]) V1 = 130, K1 = 57800 Estimate

2 k2[PI3K] k2 = 1.5× 10−4 Estimate

3 V3[PI3K∗]/K3 + [PI3K∗]) V3 = 7, K3 = 8000 Estimate

4 k4[PI3K∗][PIP2]/K4 + [PIP2]) k4 = 2.52, K4 = 85200 Estimate

5 k5[PTEN][PIP3]/K5 + [PIP3]) k5 = 15, K5 = 306 Estimate

6 k6[PIP3][AKTcyto]− k−6[AKT] k6 = 1.25× 10−5, k−6 = 4.22× 10−3 Estimate

7 k7[PDK1][AKT]/(K7 + [AKT]) k7 = 20, K7 = 80000 [6]

8 k8[PP2A][AKT∗]/(K8 + [AKT∗]) k8 = 35, K8 = 34000 Estimate

9 k9[PDK2][AKT∗]/(K9 + [AKT∗]) k9 = 20, K9 = 80000 [6]

10 k10[PP2A][AKT∗∗]/(K10 + [AKT∗∗]) k10 = 30, K10 = 64000 Estimate

11 k11[PP2A][AKT∗∗]/(K11 + [AKT∗∗]) k11 = 8.5, K11 = 45100 Estimate

12 V12[Ras]/(K12 + [Ras]) V12 = 0.825, K12 = 74500 Estimate

13 V13[Ras∗]/(K13 + [Ras∗]) V13 = 0.198, K13 = 5.52 Estimate

14 k14[Pak1∗][Raf]/(K14 + [Raf]) k14 = 0.18, K14 = 185 Estimate

15 k15[Ras∗][Raf]/(K15 + [Raf]) k15 = 0.47, K15 = 150 Estimate

16 k16[AKT∗∗][Raf∗]/(K16 + [Raf∗]) k16 = 3.3, K16 = 77.5 Estimate

17 V17[Raf∗]/(K17 + [Raf∗]) V17 = 66, K17 = 16.7 [43]

18 k18[PDK1][MEK]/(K18 + [MEK]) k18 = 5.53× 10−2, K18 = 14700 Estimate

19 k19[Raf∗][MEK]/(K19 + [MEK]) k19 = 3.5, K19 = 317 [43]

20 k20[Raf∗][MEK∗]/(K20 + [MEK∗]) k20 = 2.9, K20 = 263 [43]

21 k21[PDK1][MEK∗]/(K21 + [MEK∗]) k21 = 0.055, K21 = 14470 Estimate

22 k22[PP2A][MEK∗]/(K22 + [MEK∗]) k22 = 0.058, K22 = 2232 [43]

23 k23[PP2A][MEK∗∗]/(K23 + [MEK∗∗]) k23 = 0.058, K23 = 60 [43]

24 k24[MEK∗∗][ERK]/(K24 + [ERK]) k24 = 16, K24 = 1.46× 105 [43]

25 k25[MEK∗∗][ERK∗]/(K25 + [ERK∗]) k25 = 5.7, K25 = 5.21× 104 [43]

26 k26[MKP3][ERK∗]/(K26 + [ERK∗]) k26 = 0.3, K26 = 160 [43]

27 k27[MKP3][ERK∗∗]/(K27 + [ERK∗∗]) k27 = 0.27, K27 = 60 [43]

28 k28[ERK∗∗][p90RSK]/(K28 + [p90RSK]) k28 = 2.5× 10−5, K28 = 97.6 Estimate

29 k29[ROS][p90RSK]/(K29 + [p90RSK]) k29 = 1.6× 10−5, K29 = 81.4 Estimate

30 V30[p90RSK∗]/(K30 + [p90RSK∗]) V30 = 0.058, K30 = 5.8 Estimate

31 k31[p90RSK∗][Bad]/(K31 + [Bad]) k31 = 0.002, K31 = 346 Estimate

32 k32[Pak1∗][Bad]/(K32 + [Bad]) k32 = 0.46, K32 = 710 Estimate

33 k33[Pak1∗][Bad]/(K33 + [Bad]) k33 = 0.125, K33 = 1310 Estimate

34 k34[AKT∗∗][Bad]/(K34 + [Bad]) k34 = 3.46, K34 = 307 Estimate

35 V35[Bads112]/(K35 + [Bads112]) V35 = 5.8, K35 = 3450 Estimate

36 V36[Bads136]/(K36 + [Bads136]) V36 = 180, K36 = 797 Estimate

37 k37[Bad][Bcl− 2]− k−37[Bcl− 2.Bad] k37 = 4.78× 10−2, k−37 = 1.35× 10−2 Estimate

38 k38[Bax][Bcl− 2]− k−38[Bcl− 2.Bax] k38 = 2× 10−3, k−38 = 0.02 [18]

39 k39[PI3K∗][Bax]/(K39 + [Bax]) k39 = 640, K39 = 38900 Estimate

40 V40[Baxcyto]/(K40 + [Baxcyto]) V40 = 79800, K40 = 29200 Estimate

41 k41[NOX5] k41 = 1.26× 10−3 Estimate

42 k42[ROS] k42 = 1.7× 10−3 Estimate

43 k43[ROS][PI3K∗][Pak1]/(K43 + [Pak1]) k43 = 0.33, K43 = 22600 Estimate

44 V44[Pak1∗]/(K44 + [Pak1∗]) V44 = 270, K44 = 895 Estimate

Table 1: Rate Reactions and the parameters being used. The first order and second order

rate constants are given in s−1 and nM−1.s−1 respectively while Michaelis Constants V

and K are given in nM.s−1 and nM respectively.
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Reactant Concentration (nM) Ref

PI3K 30 [10]

PTEN 0.1 Estimate

PIP2 7000 [10]

AKT 200 [2]

PDK1 1000 Estimate

PDK2 1000 Estimate

PP2A 150 [23]

NOX5 2000 Estimate

PAK1 500 [28]

ROS 2000 Estimate

Ras 18900 [43]

Raf 66.4 [43]

MEK 36500 [43]

ERK 34900 [43]

MKP3 44000 Estimate

P90RSK 5 [5]

Bad 100 Estimate

Bax 100 [20]

Bcl2 100 Estimate

Table 2: Total concentration of the cellular components

the holdout technique [25] in model validation. However there still remains the problem

of too few data sets to confidently assert the correctness of our model and its parameters.

Tackling this problem of model validation with the least number of experimental data

sets will be one of our directions in future research.

The role of the Bcl-2 family needs to be further developed for the model to be more

informative. In general there is a correlation between increase AKT and ERK activation

and cell survival, but the actual mechanism that affects cell death is partly due to the in-

teractions between members of the Bcl-2 protein family, especially Bad, Bax, Bcl-2 and

Bcl-XL. These interactions depend not only on their physiological states (phosphorylated

or unphosphorylated) but also in their physical locations in the cell. For example, sig-

naling events that increase the likelihood of Bax being translocated from the cytoplasm

to the mitochondria will have the higher chance of triggering apoptosis due to the release

of cytochrome c from the mitochondria. In our model, there is still no clear indication

of the rate of cell survival from the simulation results, other than the ratio of Bcl-2 and

Bax to serve as our guide. Experiments have shown that the Bax to Bcl-2 ratio is a

good indication of whether or not a cell will undergo apoptosis [29]. A Bax/Bcl-2 ratio

of more than 1 will imply that the cells are more susceptible to apoptosis while a ratio

of less than 1 will imply that the cells are more resistant.
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One of the main assumptions in the modeling process is that in an enzyme catalyzed

chemical reaction, the concentration of the enzyme does not change with respect to that

reaction. Although this does not necessarily happen in real life, it is only by applying

such an assumption that we are able to use the Michaelis-Menten model to represent

the chemical kinetics. As it turns out, such an assumption has a huge impact on the

estimation of the missing parameters. For this model, much of the work is concentrated

on parameter estimation. As this is a huge model to work with, to estimate the entire

model in its entirety would be difficult, given the few data set to fit the model with.

Hence, it would be desirable to break down the model into smaller modules. One of our

guidelines in the determination of modules is that there should be no concentration flow

in, or out of the modules. The enzymatic assumption stated above plays an important

role in deciding where the boundaries of the modules are. Also, exploiting the fact that

our model does not have any huge feedback loops, we are able to arrange the modules

into a Directed Acyclic Graph, and estimate the parameters of the individual modules

in topological order. By finding some form of dependency relationship, we can then say

that the solution for a module depends only on the solution of its immediate parent

modules.

Though not yet implemented in code, we do not have to execute the entire model in

order to find out the fitness of the current parameters that are being estimated. Suppose

the algorithm is currently handling rank 3 parameters, it only has to execute the modules

that are ranked 3 and higher during model evaluation. Although not reported, test of this

method on a smaller model - the MAPK model, results in consistently faster convergence

of the solution, as compared to estimating the entire network. Although this has not

being analyzed in depth, there have been instances of such algorithms out-performing

the best optimization techniques for those instances [4].

We have seen how to use mathematical models to model a signaling network, and

some of the issues underlying it, namely model derivation, parameter estimation and a

bit on model validation. In future works, we plan to look at ways to model not just a

network, but a class of networks that can sufficiently explain the results obtained from

experiments. At minimum we should be able to assign confidence levels on the model

based on the raw data provided.
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