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Abstract

We determine market segments by clustering households on the basis of their average choice elasticities across

purchases and brands w.r.t. price, sales promotion and brand loyalty. The cluster analysis technique used is a maximum

likelihood method which allows varying size and orientation and assumes constant volume. Elasticities originate from

choice models with alternatively linear and nonlinear utility functions. Choice models are estimated on the basis of

household scanner data. Segments are interpreted by means of multiple discriminant analysis and multinomial logit

models whose predictors are elasticities of predictors and external variables (i.e. number of purchases, number of

brands bought, income and household size), respectively.

� 2002 Published by Elsevier B.V.
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1. Introduction

The main focus of this paper is the determi-

nation of market segments based on household-
specific choice elasticities by means of a maximum

likelihood clustering technique. Households are

heterogeneous w.r.t. choice elasticities, i.e. relative

changes in choice probabilities for brands of a

product group divided by relative changes in

marketing instruments and other predictors which
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influence brand choice. Homogeneous choice

models (i.e. models with constant parameters

across households) are able to reflect this kind of

heterogeneity if some of the predictors vary across
households. 1

Section 2 introduces household-specific elasti-

cities and describes the maximum likelihood clus-

tering technique which uses these elasticities as

segmentation criteria. Section 3 presents choice

models with linear and nonlinear utility functions

together with the computation of average choice
1 This research is supported by a grant of the Deutsche
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elasticities w.r.t. price, sales promotion and brand

loyalty on the basis of estimated parameters. Sec-

tion 4 contains results of an empirical study. It

gives estimation results of choice models and

concentrates on interpreting market segments dis-
covered by the cluster analysis method. Discrimi-

nant analysis serves to assess the importance of

elasticities for the formation of segments. More-

over, we estimate multinomial logit models to

explain segment membership by means of exter-

nal household descriptors (number of purchases,

number of brands bought, income and household

size).
2. Household heterogeneity and maximum likeli-

hood clustering based on choice elasticities

We use average household-specific choice elas-

ticities as clustering variables. Choice elasticities

are defined by the ratio of the relative change in

choice probability and the relative change in the

value of a certain predictor. Predictors considered

are reference price, loss, gain, display, feature and

loyalty (for more details see Section 3). More ex-
actly, the point elasticity of the ith predictor cxi ;h;m;t
(with i ¼ 1; . . . ; 6) for household h, brand m at

purchase occasion t w.r.t. choice of brand m can be

written as:

opðyh;m;tjB; f~ccx;h;tgÞ
ocxi;h;m;t

cxi;h;m;t
pðyh;m;tjB; f~ccx;h;tgÞ

ð1Þ

yh;m;t denotes a binary purchase indicator (equal to

one if household h purchases brand m at occasion

t, else zero),~ccx;h;m;t the vector of predictors of brand
m at occasion t of household h, ~ccx;h;t the set of

predictors of all brands at occasion t of household
h. Vector B consists of the parameters of one of the

choice models described in Section 3.
For each household we compute the arithmetic

mean of the elasticities of each predictor across all

brands and all purchases of this household. Elas-

ticity Eih symbolizes the average elasticity of

household h for predictor i. Elasticities referring to

a household are collected in a household-specific

elasticity vector Eh ¼ ðE1h; . . . ;E6hÞ.
Heterogeneity of households w.r.t. elasticities

can be measured by the total sum of squares TSS
of elasticities Eih (Ei is the average elasticity of

predictor i over the total number of households

denoted by H ):

TSS ¼
X6
i¼1

XH
h¼1

ðEih � EiÞ2 with Ei ¼
1

H

XH
h¼1

Eih

ð2Þ

Households belonging to the same market segment
should respond to changes in predictors in a simi-

lar way, i.e. possess similar average elasticities for

the predictors considered. On the other hand, it

should be feasible to discriminate between different

market segments (i.e. they should have different

elasticity vectors). We search for a fixed partition

of households.

Assuming multivariate normal parameters of
subpopulations (mean vector �k, covariance matrixP

k) cluster memberships are determined by maxi-

mizing the likelihood (Banfield and Raftery, 1993):

const: P
G

k¼1
P
h2Ik

X
k

�����
�����
�1=2

� exp

 
� 1=2ðEh � �kÞ0

X�1

k

ðEh � �kÞ
!

ð3Þ

G denotes the number of clusters, Ik the index set

of households belonging to cluster k and Hk the

number of households in cluster k.
We replace �k by its maximum likelihood esti-

mate, the average elasticity vector ECk across

households belonging to cluster k which is defined
as follows:

ECk ¼
1

Hk

X
h2Ik

Eh ð4Þ

This leads to the concentrated log likelihood which

is equivalent to expression 3:

const:� 1=2
XG
k¼1

tr Wk

X�1

k

 ! 
þ Hk log

X
k

�����
�����
!

ð5Þ

Wk is the cross-product matrix for cluster k:

Wk ¼
X
h2Ik

ðEh � ECkÞðEh � ECkÞ0 ð6Þ
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Moreover, maximizing log likelihood is equivalent

to minimizing the following expression:

XG
k¼1

Hk log jWk=Hkj ð7Þ

The eigenvalue decomposition of the covariance

matrix is:X
k

¼ DkKkD0
k ¼ kkAkD0

k ð8Þ

Dk denotes the matrix of eigenvectors, Kk the dia-

gonal matrix of eigenvalues, kk the maximum eigen-

value. Dk determines the orientation, kk the size

(volume) and Ak the shape of cluster k.
The eigenvalue decomposition of the cross-

product matrix is:

Wk ¼ LkXkL0
k ð9Þ

Applications of the most general model with dif-

ferent cluster-specific size, orientation and shape

matrix suffer from its lack of parsimony (Symons,

1981). Therefore we use an intermediate model
with different size and orientation, but constant

shape matrix A. For this model criterion 7 can be

simplified to objective S�:

S� ¼
XG
k¼1

Hk logðSk=HkÞ with Sk ¼ trðA�1XkÞ

ð10Þ

We apply an agglomerative hierarchical clustering
algorithm to find local minima of S� and decide on

the number of clusters r for which the approximate

weight of evidence Fr is maximum. This measure is

based on the Bayes factor (the ratio of posterior to

prior odds) for G ¼ r against G ¼ s. It is defined as

follows:

Fr ¼
0 for r ¼ 1Pr�1

t¼1 ft for rP 2

�
ð11Þ

with

fr ¼ 2ðlk0 þ lk00 � lk � 3=2þ logðpHr;rþ1Þ2dr

lk0 , lk00 , lk denote the maximized log likelihoods for

the clusters k0, k00 that are merged and the cluster k
resulting from merger during each step of the hi-

erarchical algorithm, respectively. p is the number
of elements in the elasticity vector, Hr;rþ1 the
number of observations in the merged cluster and

dr the decrease in the number of parameters by

merging clusters.

For the number of clusters chosen this way the
classification obtained by the hierarchical algo-

rithms is changed by iterative relocation, i.e.

moving households from one segment to another if

this improves criterion S�.
3. Choice models and computation of elasticities

Brand choice models are based on the as-

sumption that consumers purchase that brand out

of a choice set which they perceive to have maxi-

mum utility. Utility is conceived to be additively

made up of a deterministic component and a

random term. Assuming each household chooses

the brand perceived to have the largest utility

which is formed by adding an iid type I extreme
value distributed error term to a deterministic

component leads to the multinomial logit model

(McFadden, 1973; McFadden, 1980; Corstjens

and Gautschi, 1983). According to this model the

conditional choice (purchase) probability of brand

m at occasion t by household h is:

pðyh;m;tjB; f~ccx;h;tgÞ ¼
expðVh;m;tÞP

m�2Mh;t
expðVh;m�;tÞ

ð12Þ

Vh;m;t denotes the deterministic utility of brand m at
occasion t for household h, Mh;t the set of brands

available at the outlet visited by household h at

occasion t.
For the predominant linear specification (to be

brief we refer to it as MNL model in the following)

deterministic utility is written as:

Vh;m;t ¼~bb1 �~ccx;h;m;t þ ~DDm �~bb3 ð13Þ
~DDm is a M � 1 dimensional vector of zero-one

dummy variables (M is the number of brands ana-

lyzed) which only for brand m > 1 attains the

value one, i.e. ~DDm ¼ ð0; . . . ; 0; 1; 0; . . . ; 0Þ.
To obtain a flexible nonlinear alternative of this

specification we approximate deterministic utility

by means of a feedforward multilayer perceptron

with Q hidden units which is known to approxi-
mate any continuous multivariate function and its

derivatives with the desired level of precision given



782 H. Hruschka et al. / European Journal of Operational Research 154 (2004) 779–786
a sufficient number of hidden units each following

the binary logistic function g (Hornik et al., 1989;

Ripley, 1993). We specify deterministic utility as

linear combination of the values of Q hidden units

which themselves are formed by nonlinear trans-
formations of linearly combined predictors� values:

Vh;m;t ¼
XQ
j¼1

b2;j � g ~bb1;j �~ccx;h;m;t
� �� �

þ ~DDm �~bb3 ð14Þ

Putting deterministic utilities formed according to

Eq. (14) into the basic multinomial logit equation

(12) finally gives the combined model which we

call neural net–multinomial logit (NN–MNL)
model.

Predictors of both the MNL and the NN–MNL

model are:

• brand dummy variables ~DDm

• reference price cr;h;m;t
• price loss maxðcp;h;m;t � cr;h;m;t; 0Þ
• price gain maxðcr;h;m;t � cp;h;m;t; 0Þ
• display cd;h;m;t (binary)
• feature cf ;h;m;t (binary)
• loyalty cl;h;m;t

The first suffix of the symbols indicates the

predictor (r reference price, p observed price, d
display, f feature, l loyalty). cp;h;m;t is the price

observed at the point of sale.
Aside from brand dummy variables all the

predictors vary over households, brands and pur-

chase occasions. Prices as well as display and fea-

ture variables can be obtained directly from the

purchase data, whereas reference prices and loy-

alties have to be estimated.

Following the seminal paper of Guadagni and

Little (1983) we measure loyalty values by expo-
nentially smoothing past purchases for each

household. Reference prices constitute internal

prices to which households compare observed

prices (Winer, 1988). Reference prices reflect the

expected price level of a brand which we set equal

to a one-period forecast obtained by a reference

price model. We study two alternative models of

the reference price mechanism, a linear and a
nonlinear reference price model. The latter is

specified as neural net (NN) of the feedforward
perceptron type with one layer of three hidden

units and logistic functions for hidden units. Pre-

dictors of both models consist of brand-specific

dummy variables, prices lagged maximally three

periods and a time index.
High reference prices are associated with lower

choice probabilities. Observed prices below the

reference price (which households perceive as gains)

stimulate purchases, i.e. increase choice probability.

Observed prices above the reference price (which

households perceive as losses) may deter from pur-

chasing and therefore decrease choice probability.

Prospect theory predicts asymmetric effects, i.e. that
consumers respond more to losses than to gains

(Kahneman and Tversky, 1979; Winer, 1988).

Estimation of NN–MNL choice models and

NN reference price models consists of two steps,

stochastic gradient descent followed by BFGS, a

quasi-Newton optimization method (a detailed

description of the NN–MNL model and its esti-

mation procedure can be found in Hruschka et al.,
1999). Estimation of MNL models only requires

the BFGS step. Linear reference price models are

estimated by OLS.

We derive the following closed form expression

for elasticities on the basis of the NN–MNL

model:

ð1� pðyh;m;tjB; f~ccx;h;tgÞÞcxi ;h;m;t

�
XQ
j¼1

b2;j � g ~bb1;j �~ccx;h;m;t
� ��

� 1
�

� g ~bb1;j �~ccx;h;m;t
� ��

b1;j;i

�
ð15Þ

It is fairly obvious that the following well-known

expression for elasticities of the MNL model is a
special case of formula 15:

ð1� pðyh;m;tjB; f~ccx;h;tgÞÞcxi ;h;m;tb1;j;i ð16Þ

For binary predictors (i.e. feature, display) we

consider the change in choice probabilities

achieved by using the respective sales promotion

instrument:

pðyh;m;tjB; f~ccx;h;tg; cxi;h;m;t ¼ 1Þ
� pðyh;m;tjB; f~ccx;h;tg; cxi ;h;m;t ¼ 0Þ ð17Þ

Choice elasticities are postulated to be positive for

sales promotion variables (display, feature), brand
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loyalties and gains. On the other hand, effects of

reference prices, observed prices as well as losses

are expected to be negative. The effect of losses on

choice probability should be greater than that of
gains.

Parameters of the choice models introduced

here do not vary across the population and do not

follow a mixing distribution. Nonetheless these

models are able to reflect heterogeneity w.r.t.

elasticity, because they have household-specific

independent variables like brand loyalties and

reference prices (Wedel et al., 1999).
4. Empirical study

We analyze purchase data of the six largest

brands in terms of market share for one product

group (ketchup) acquired in a scanner panel. For a

time span of 123 weeks the data refer to house-

holds making at least ten purchases. This way 811

households remain for analysis.

Estimation and evaluation of choice models is

based on ten random assignments of households to
estimation and test data sets. NN–MNL models

with 10 hidden units achieve the best average log

likelihood values across these 10 test data sets. In

view of their performance on the test data sets we

only consider the linear reference price model for

the MNL model, the nonlinear reference price

model for the NN–MNL model with 10 hidden

units in the following (see Table 1).
The total sums of squares TSS of elasticity

vectors for the MNL model and the NN–MNL

model with 10 hidden units amount to 0.360 and

0.702, respectively. These results indicate that the

NN–MNL model implies more heterogeneity of

households w.r.t. elasticities than the MNL model.
Table 1

Log likelihood of choice models on test data

Choice model Reference price model

Linear

MNL )954.22

NN–MNL

Q ¼ 3 )925.11
Q ¼ 10 )889.61
For household-specific elasticity vectors com-

puted on the basis of the MNL model we obtain

the maximum value of the approximate weight of

evidence Fr for r ¼ 4 segments. The same approach

recommends r ¼ 7 segments for elasticity vectors
derived from the NN–MNL model with 10 hidden

units, which seems natural given the higher hetero-

geneity implied by this choice model. Final parti-

tions with four or seven segments are found by

iterative relocation.

Multiple linear discriminant analysis with seg-

ment membership as dependent variable serves to

assess the importance of the individual choice
elasticities for reference price, gain, loss, feature,

display and loyalty. Both for elasticities derived

from the MNL and the NN–MNL model two

discriminant functions suffice to recover more than

96% of the variance (i.e. of the among group sum

of squares). Table 2 also contains product moment

correlations of individual elasticities with the first

two discriminant functions.
These correlations show that elasticities for loss,

reference price and gain are the most important

predictors for segments obtained on the basis of

the MNL model. The same conclusion can be

drawn for elasticities for reference price and loss in

the case of segments derived from the NN–MNL

model. Therefore we restrict interpretation of the

segments to these individual elasticities.
Absolute average elasticities for the four seg-

ments obtained on the basis of the MNL model are

given in Table 3. In segment 4 high reference price

elasticity goes together with the lowest loss elas-

ticity, but the highest gain elasticity. The largest

segment 1 is characterized by medium reference

price elasticity, low loss elasticity and medium gain

elasticity. Households of segment 2 have medium
reference price elasticity, very high loss elasticity
Nonlinear

)954.54

)933.30
)885.43



Table 2

Correlation of elasticities with discriminant functions

MNL NN–MNL

Function 1 Function 2 Function 1 Function 2

Reference price 0.301 0.885 0.868 0.467

Loss 0.796 0.509 )0.375 0.889

Gain )0.322 0.811 )0.283 )0.102
Display 0.187 0.208 )0.092 0.487

Feature 0.199 0.236 )0.203 0.314

Loyalty 0.025 0.253 )0.054 0.190

Variance explained 77.4% 97.2% 77.8% 96.7%

Table 3

Average absolute elasticities (MNL)

Segment number Reference price Loss Gain Relative segment size

4 2.09 0.34 0.093 6.2

1 1.68 0.41 0.034 78.9

2 1.62 1.37 0.023 8.0

3 1.45 0.53 0.017 6.9
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and low gain elasticity. Segment 3 comprises

households with the lowest reference price elastic-
ity, rather low loss elasticity and low gain elasticity.

Table 4 contains absolute average elasticities for

the four segments obtained on the basis of the

NN–MNL model. These results show two seg-

ments with high reference price elasticities (seg-

ment 7 with small loss elasticity, segment 5 with

somewhat higher loss elasticity). Two segments

have medium reference price elasticities (segment
1, the largest segment, with low loss elasticity and

segment 3 with high loss elasticity). Three seg-

ments consist of households with small reference

price elasticities (segment 6 with the highest loss

elasticity, segment 2 with small loss elasticity,

segment 4 with high loss elasticity).
Table 4

Average absolute elasticities (NN–MNL)

Segment

number

Reference

price

Loss Relative

segment size

7 2.88 0.20 6.8

5 2.80 0.29 6.9

3 2.23 0.59 8.3

1 2.16 0.20 55.0

4 1.66 0.57 6.2

2 1.46 0.22 10.5

6 1.24 0.73 6.4
We analyze the seven segments derived for the

elasticities of the NN–MNL choice model by
means of multinomial logit models (Maddala,

1983). They specify the probability of household h
to belong to segment k conditional on a vector xh
of external variables not used for clustering as:

P ðkjxhÞ ¼

1

1þ
PG

j¼2
expðbj�xhÞ

for k ¼ 1

expðbk �xhÞ
1þ
PG

j¼2
expðbj�xhÞ

for k ¼ 2; . . . ;G

8><
>:

ð18Þ
These models differ from their discrete choice re-

lative, the MNL model of Section 3, by not in-

cluding a latent variable like utility. They possess

the following household-specific predictors:

• number of purchases (purchases)

• number of brands bought (brands)

• low or high income (income)
• college education (education)

• household size (size)

• number of children (children)

We study three different versions of the logit model

of equation (18), called A, B and C. Model A ig-

nores interaction effects. Model B comprises pair-

wise interaction effects of income and education
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with number of purchases and number of brands

bought as well as of household size and children

with income and education. Model C omits the

main effects of income, education and number of
children. It includes pairwise interactions of the

number of brands bought with number of pur-

chases, income, household size as well as of

household size with income. Maximum likelihood

estimation provides log likelihood values for mod-

els A, B, C of �1121.56, �1094.73 and �1090.02,

respectively. The numbers of parameters of these

models amount to 42, 90 and 54. In accordance with
likelihood ratio tests of models B vs. A and models

C vs. A we present results of model C only.

Looking at coefficients of model C with abso-

lute t-values greater than 2.0 we arrive at the fol-

lowing descriptions of the segments (Table 5).

Segment 2 households make many purchases or

buy many brands (but note that membership

probability becomes lower if they both make many
purchases and buy many brands), have either

lower income or higher income and buy many

brands. Households in segment 3 make either few

purchases or buy many brands frequently. Seg-

ment 4 consists of households who buy many

brands and have higher income. Households of

segment 5 cannot by characterized by the predic-

tors studied. Segment 6 households make few
purchases, buy few brands and have small house-

hold size. Segment 7 households purchase very

infrequently.
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