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Abstract

With the rapid growth of databases in many modern enterprises data mining has become an increasingly important
approach for data analysis. The operations research community has contributed significantly to this field, especially
through the formulation and solution of numerous data mining problems as optimization problems, and several operations
research applications can also be addressed using data mining methods. This paper provides a survey of the intersection of
operations research and data mining. The primary goals of the paper are to illustrate the range of interactions between the
two fields, present some detailed examples of important research work, and provide comprehensive references to other
important work in the area. The paper thus looks at both the different optimization methods that can be used for data
mining, as well as the data mining process itself and how operations research methods can be used in almost every step
of this process. Promising directions for future research are also identified throughout the paper. Finally, the paper looks
at some applications related to the area of management of electronic services, namely customer relationship management
and personalization.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

In recent years, the field of data mining has seen
an explosion of interest from both academia and
industry. Driving this interest is the fact that data
collection and storage has become easier and less
expensive, so databases in modern enterprises are
now often massive. This is particularly true in
web-based systems and it is therefore not surprising
that data mining has been found particularly useful
in areas related to electronic services. These massive
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databases often contain a wealth of important data
that traditional methods of analysis fail to trans-
form into relevant knowledge. Specifically, mean-
ingful knowledge is often hidden and unexpected,
and hypothesis driven methods, such as on-line ana-
lytical processing (OLAP) and most statistical meth-
ods, will generally fail to uncover such knowledge.
Inductive methods, which learn directly from the
data without an a priori hypothesis, must therefore
be used to uncover hidden patterns and knowledge.

We use the term data mining to refer to all
aspects of an automated or semi-automated process
for extracting previously unknown and potentially
useful knowledge and patterns from large dat-
abases. This process consists of numerous steps such
as integration of data from numerous databases,
.
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preprocessing of the data, and induction of a model
with a learning algorithm. The model is then used to
identify and implement actions to take within the
enterprise. Data mining traditionally draws heavily
on both statistics and machine learning but numer-
ous problems in data mining can also be formulated
as optimization problems (Freed and Glover, 1986;
Mangasarian, 1997; Bradley et al., 1999; Padma-
nabhan and Tuzhilin, 2003).

All data mining starts with a set of data called the
training set that consists of instances describing the
observed values of certain variables or attributes.
These instances are then used to learn a given target
concept or pattern and, depending upon the nature
of this concept, different inductive learning algo-
rithms are applied. The most common concepts
learned in data mining are classification, data clus-
tering, and association rule discovery, and of those
will be discussed in detail in Section 3. In classifica-
tion the training data is labeled, that is, each
instance is identified as belonging to one of two or
more classes, and an inductive learning algorithm
is used to create a model that discriminates between
those class values. The model can then be used to
classify any new instances according to this class
attribute. The primary objective is usually for the
classification to be as accurate as possible, but accu-
rate models are not necessarily useful or interesting
and other measures such as simplicity and novelty
are also important. In both data clustering and
association rule discovery there is no class attribute
and the data is thus unlabelled. For those two
approaches patterns are learned along one of the
two dimensions of the database, that is, the attribute
dimension and the instance dimension. Specifically,
data clustering involves identifying which data
instances belong together in natural groups or clus-
ters, whereas association rule discovery learns rela-
tionships among the attributes.

The operations research community has made
significant contributions to the field of data mining
and in particular to the design and analysis of data
mining algorithms. Early contributions include the
use of mathematical programming for both classifi-
cation (Mangasarian, 1965), and clustering (Vinod,
1969; Rao, 1971), and the growing popularity of
data mining has motivated a relatively recent
increase of interest in this area (Bradley et al.,
1999; Padmanabhan and Tuzhilin, 2003). Mathe-
matical programming formulations now exist for a
range of data mining problems, including attribute
selection, classification, and data clustering. Meta-
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heuristics have also been introduced to solve data
mining problems. For example, attribute selection
has been done using simulated annealing (Debuse
and Rayward-Smith, 1997), genetic algorithms
(Yang and Honavar, 1998) and the nested partitions
method (Olafsson and Yang, 2004). However, the
intersection of OR and data mining is not limited
to algorithm design and data mining can play an
important role in many OR applications. Vast
amount of data is generated in both traditional
application areas such as production scheduling
(Li and Olafsson, 2005), as well as newer areas such
as customer relationship management (Padmanab-
han and Tuzhilin, 2003) and personalization (Mur-
thi and Sarkar, 2003), and both data mining and
traditional OR tools can be used to better address
such problems.

In this paper, we present a survey of operations
research and data mining, focusing on both of the
abovementioned intersections. The discussion of
the use of operations research techniques in data
mining focuses on how numerous data mining prob-
lems can be formulated and solved as optimization
problems. We do this using a range of optimization
methodology, including both metaheuristics and
mathematical programming. The application part
of this survey focuses on a particular type of appli-
cations, namely two areas related to electronic ser-
vices: customer relationship management and
personalization. The intention of the paper is not
to be a comprehensive survey, since the breadth of
the topics would dictate a far lengthier paper. Fur-
thermore, many excellent surveys already exist on
specific data mining topics such as attribute selec-
tion, clustering, and support vector machine. The
primary goals of this paper, on the other hand,
are to illustrate the range of intersections of the
two fields of OR and data mining, give some
detailed examples of research that we believe illus-
trates the synergy well, provide references to other
important work in the area, and finally suggest some
directions for future research in the field.

2. Optimization methods for data mining

A key intersection of data mining and operations
research is in the use of optimization algorithms,
either directly applied as data mining algorithms, or
used to tune parameters of other algorithms. The
literature in this area goes back to the seminal
work of Mangasarian (1965) where the problem of
separating two classes of points was formulated as
ns research and data mining, Eur. J. Oper. Res. (2006),
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a linear program. This has continued to be an active
research area ever since this time and the interest
has grown rapidly over the past few years with the
increased popularity of data mining (see e.g., Glo-
ver, 1990; Mangasarian, 1994; Bennett and Breden-
steiner, 1999; Boros et al., 2000; Felici and
Truemper, 2002; Street, 2005). In this section, we
will briefly review different types of optimization
methods that have been commonly used for data
mining, including the use of mathematical program-
ming for formulating support vector machines, and
metaheuristics such as genetic algorithms.
2.1. Mathematical programming and support vector

machines

One of the well-known intersections of optimiza-
tion and data mining is the formulation of support
vector machines (SVM) as optimization problems.
Support vector machines trace their origins to the
seminal work of Vapnik and Lerner (1963) but have
only recently received the attention of much of the
data mining and machine learning communities.

In what appears to be the earliest mathematical
programming work related to this area, Mangasar-
ian (1965) shows how to use linear programming
to obtain both linear and non-linear discrimination
models between separable data points or instances
and several authors have since built on this work.
The idea of obtaining a linear discrimination is illus-
trated in Fig. 1. The problem here is to determine a
best model for separating the two classes. If the data
Fig. 1. A separating hyperplane to discriminate two classes.
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can be separated by a hyperplane H as in Fig. 1, the
problem can be solved fairly easily. To formulate it
mathematically, we assume that the class attribute yi

takes two values �1 or +1. We assume that all attri-
butes other than the class attribute are real valued
and denote the training data, consisting of n

instances, as {(aj, yj)}, where j = 1, 2, . . . , n, yj 2
{�1, +1} and aj 2 Rm. If a separating hyperplane
exists then there are in general many such planes
and we define the optimal separating hyperplane
as the one that maximizes the sum of the distances
from the plane to the closest positive example and
the closest negative example. To learn this optimal
plane we first form the convex hulls of each of the
two data sets (the positive and the negative exam-
ples), find the closest points c and d in the convex
hulls, and then let the optimal hyperplane be the
plane that bisects the straight line between c and
d. This can be formulated as a quadratic assignment
problem (QAP):

min
1

2
tkc� dk2

s:t c ¼
X

i:yi¼þ1

aiai

d ¼
X

i:yi¼�1

aiai

X
i:yi¼þ1

aiai ¼ 1

X
i:yi¼�1

aiai ¼ 1

ai P 0:

ð1Þ

Note that the hyperplane H can also be defined in
terms of its unit normal w and its distance b from
the origin (see Fig. 1). In other words, H = {x 2
Rm : x Æ w + b = 0}, where x Æ w is the dot product
between those two vectors. For an intuitive idea of
support vectors and support vector machines we
can imagine that two hyperplanes, parallel to the
original plane H and thus having the same normal,
are pushed in either direction until the convex hull
of the sets of all instances with each classification
is encountered. This will occur at certain instances,
or vectors, that are hence called the support vectors
(see Fig. 2). This intuitive procedure is captured
mathematically by requiring the following con-
straints to be satisfied:

ai � wþ b P þ1; 8i : yi ¼ þ1;

ai � wþ b 6 �1; 8i : yi ¼ �1:
ð2Þ
ns research and data mining, Eur. J. Oper. Res. (2006),
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Fig. 2. Illustration of a support vector machine (SVM).
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With this formulation the distance between the two
planes, called the margin, is readily seen to be 2/kwk
and the optimal plane can thus be found by solving
the following mathematical optimization problem
that maximizes the margin:

maxw;bkwk2

subject to ai � wþ b P þ1; 8i : yi ¼ þ1

ai � wþ b 6 �1; 8i : yi ¼ �1:

ð3Þ

When the data is non-separable this problem will
have no feasible solution and the constraints for
the existence of the two hyperplanes must be re-
laxed. One way of accomplishing this is by introduc-
ing error variables ej for each instance aj, j =
1, 2, . . . ,n. Essentially these variables measure the
violation of each instance and using these variables
the following modified constraints are obtained for
problem (3):

ai � wþ b P þ1� ei; 8i : yi ¼ þ1

ai � wþ b 6 �1þ ei; 8i : yi ¼ �1

ei P 0; 8i:
ð4Þ

As the variables ej represent the training error,
the objective could be taken to minimize
kwk=2þ C �

P
jej, where C is constant that mea-

sures how much penalty is given. However, rather
than formulating this problem directly it turns out
to be convenient to formulate the following dual
program:
Please cite this article in press as: Olafsson, S. et al., Operatio
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a

X
i

ai �
1

2

X
i;j

aiajyiyjai � aj

subject to 0 6 ai 6 CX
i

aiyi ¼ 0:

ð5Þ

The solution to this problem are the dual variables a

and to obtain the primal solution, that is, the model
classifying instances defined by the normal of the
hyperplane, we calculate

w ¼
X

i:ai support vector

aiyiai: ð6Þ

The benefit of using the dual is that the constraints
are much simpler and easier to handle and that the
training data only enters in (5) through the dot
product ai Æ aj. This latter point is important for
extending the approach to non-linear model.

Requiring a hyperplane or a linear discrimination
of points is clearly too restrictive for most problems.
Fortunately, the SVM approach can be extended to
non-linear models in a very straightforward manner
using what is called kernel functions K(x, y) = /
(x) Æ /(y), where / : Rm! H is a mapping from
the m-dimensional Euclidean space to some Hilbert
space H. This approach was introduced to the SVM
literature by Cortes and Vapnik (1995) and it works
because the data aj only enters the dual via the dot
product ai Æ aj, which can thus be replaced with
K(ai, aj). The choice of kernel determines the model.
For example, to fit a p degree polynomial the kernel
can be chosen as K(x, y) = (x Æ y + 1)p. Many other
choices have been considered in the literature but
we will not explore this further here. Detailed expo-
sitions of SVM can be found in the book by Vapnik
(1995) and in the survey papers of Burges (1998)
and Bennett and Campbell (2000).
2.2. Metaheuristics for combinatorial optimization

Many optimization problems that arise in data
mining are discrete rather than continuous and
numerous combinatorial optimization formulations
have been suggested for such problems. This
includes for example attribute selection, that is,
the problem of determining the best set of attributes
to be used by the learning algorithm (see Section
3.1), determining the optimal structure of a Bayes-
ian network in classification (see Section 3.1.2),
and finding the optimal clustering of data instances
(see Section 3.2). In particular, many metaheuristic
ns research and data mining, Eur. J. Oper. Res. (2006),
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approaches have been proposed to address such
data mining problems.

Metaheuristics are the preferred method over
other optimization methods primarily when there
is a need to find good heuristic solutions to complex
optimization problems with many local optima and
little inherent structure to guide the search (Glover
and Kochenberger, 2003). Many such problems
arise in the data mining context. The metaheuristic
approach to solving such problem is to start by
obtaining an initial solution or an initial set of solu-
tions and then initiating an improving search guided
by certain principles. The structure of the search has
many common elements across various methods. In
each step of the search algorithm, there is always a
solution xk (or a set of solutions) that represents the
current state of the algorithm. Many metaheuristics
are solution-to-solution search methods, that is, xk

is a single solution or point xk 2 X in some solution
space X, corresponding to the feasible region. Oth-
ers are set-based, that is, in each step xk represents
a set of solutions xk � X. However, the basic struc-
ture of the search remains the same regardless of
whether the metaheuristics is solution-to-solution
or set-based.

The reason for the meta-prefix is that metaheuris-
tics do not specify all the details of the search, which
can thus be adapted by a local heuristic to a specific
data mining application. Instead, they specify gen-
eral strategies to guide specific aspects of the search.
For example, tabu search uses a list of solutions or
moves called the tabu list, which ensures the search
does not revisit recent solutions or becomes trapped
in local optima. The tabu list can thus be thought of
as a restriction of the neighborhood. On the other
hand, methods such as genetic algorithm specify
the neighborhood as all solutions that can be
obtained by combining the current solutions
through certain operators. Other methods, such as
simulated annealing, do not specify the neighbor-
hood in any way but rather specify an approach
to accepting or rejecting solutions that allows the
method to escape local optima. Finally, the nested
partitions method is an example of a set-based
method that selects candidate solutions from the
neighborhood with probability distribution that
adapts as the search progresses to make better solu-
tions be selected with higher probability.

All metaheuristics can be thought of to share the
elements of selecting candidate solution(s) from a
neighborhood of the current solution(s) and then
either accepting or rejecting the candidate(s). With
Please cite this article in press as: Olafsson, S. et al., Operatio
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this perspective, each metaheuristics is thus defined
by specifying one or more of these elements but
allowing others to be adapted to the particular
application. This may be viewed as both strength
and a liability. It implies that we can take advantage
of special structure for each application but it also
means that the user must specify those aspects,
which can be complicated. For the remainder of this
section we briefly discuss a few of the most common
metaheuristics and discuss how they fit within this
framework.

One of the earliest metaheuristics is simulated
annealing (Kirkpatrick et al., 1983), which is moti-
vated by the physical annealing process, but within
the framework here simply specifies a method for
determining if a solution should be accepted. As a
solution-to-solution search method, in each step it
selects a candidate xc from the neighborhood
N(xk) of the current solution xk 2 X. The definition
of the neighborhood is determined by the user. If
the candidate is better than the current solution it
is accepted. If it is worse it is not automatically
rejected but rather accepted with probability
P[Accept xc� ¼ ef ðxkÞ�f ðxcÞ=T k , where f : X! R is a
real valued objective function to be minimized and
Tk is a parameter called the temperature. Clearly,
the probability of acceptance is high if the perfor-
mance difference is small and Tk is large. The key
to simulated annealing is to specify a cooling sche-
dule fT kg1k¼1 by which the temperature is reduced
so that initially inferior solutions are selected with
a high enough probability so local optimal are
escaped but eventually it becomes small enough so
that the algorithm converges. Simulated annealing
has for example been used to solve the attribute
selection problem in data mining (Debuse and Ray-
ward-Smith, 1997, 1999).

Other popular solution-to-solution metaheuris-
tics include tabu search, the greedy randomized
adaptive search procedure (GRASP) and the vari-
able neighborhood search (VNS). The defining
characteristic of tabu search is in how solutions
are selected from the neighborhood. In each step
of the algorithm, there is a list Lk of solutions that
were recently visited and are therefore tabu. The
algorithm looks through all of the solutions of the
neighborhood that are not tabu and selects the best
one. The defining property of GRASP is its multi-
start approach that initializes several local search
procedures from different starting points. The
advantage of this is that the search becomes more
global, but on the other hand each search cannot
ns research and data mining, Eur. J. Oper. Res. (2006),
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use what the other searches have learned, which
introduces some inefficiency. The VNS is interesting
in that it uses an adaptive neighborhood structure
that changes based on the performance of the solu-
tions that are evaluated. More information on tabu
search can be found in Glover and Laguna (1997),
GRASP is discussed in Resende and Ribeiro
(2003), and for an introduction to the VNS
approach we refer the reader to Hansen and Mlade-
novic (1997).

Several metaheuristics are set-based or popula-
tion based rather than solution-to-solution. This
includes genetic algorithms and other evolutionary
approaches, as well as scatter search and the nested
partitions method. The most popular metaheuristic
used in data mining is in fact genetic algorithm
and its variants. As an approach to global optimiza-
tion genetic algorithms (GA) have been found to be
applicable to optimization problems that are intrac-
table for exact solutions by conventional methods
(Holland, 1975; Goldberg, 1989). It is a set-based
search algorithm where at each iteration it simulta-
neously generates a number of solutions. In each
step, a subset of the current set of solutions is
selected based on their performance and these solu-
tions are combined into new solutions. The opera-
tors used to create the new solutions are survival,
where a solution is carried to the next iteration with-
out change, crossover, where the properties of two
solutions are combined into one, and mutation,
where a solution is modified slightly. The same pro-
cess is then repeated with the new set of solutions.
The crossover and mutation operators depend on
the representation of the solution but not on the
evaluation of its performance. The selection of solu-
tions, however, does depend on the performance.
The general principle is that high performing solu-
tions (which in genetic algorithms are referred to
as fit individuals) should have a better chance of
both surviving and being allowed to create new
solutions through crossover. For genetic algorithms
and other evolutionary methods the defining
element is the innovative manner in which the cross-
over and mutation operators define a neighborhood
of the current solution. This allows the search to
quickly and intelligently traverse large parts of the
solution space. In data mining genetic and evolu-
tionary algorithms have been used to solve a host
of problems, including attribute selection (Yang
and Honavar, 1998; Kim et al., 2000) and classifi-
cation (Fu et al., 2003a,b; Larrañaga et al., 1996;
Sharpe and Glover, 1999).
Please cite this article in press as: Olafsson, S. et al., Operatio
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Scatter search is another metaheuristic related to
the concept of evolutionary search. In each step a
scatter search algorithm considers a set of solutions
called the reference set. Similar to the genetic algo-
rithm approach these solutions are then combined
into a new set. However, as opposed to the genetic
operators, in scatter search the solutions are com-
bined using linear combinations, which thus define
the neighborhood. For references on scatter search
we refer the reader to Glover et al. (2003).

Introduced by Shi and Olafsson (2000), the
nested partition method (NP) is another metaheu-
ristic for combinatorial optimization. The key idea
behind this method lies in systematically partition-
ing the feasible region into subregions, evaluating
the potential of each region, and then focusing the
computational effort to the most promising region.
This process is carried out iteratively with each par-
tition nested within the last. The computational
effectiveness of the NP method relies heavily on
the partitioning, which if carried out in a manner
such that good solutions are close together can
reach a near optimal solution very quickly. In data
mining, the NP algorithm has been used for attri-
bute selection (Olafsson and Yang, 2004; Yang
and Olafsson, 2006), and clustering (Kim and Olafs-
son, 2004).
3. The data mining process

As described in the introduction, data mining
involves using an inductive algorithm to learn previ-
ously unknown patterns from a large database. But
before the learning algorithm can be applied a great
deal of data preprocessing must usually be per-
formed. Some authors distinguish this from the
inductive learning by referring to the whole process
as knowledge discovery and reserve the term data
mining for only the inductive learning part of the
process. As stated earlier, however, we refer to the
whole process as data mining. Typical steps in the
process include the following:

• As for other data analyses projects data mining
starts by defining the business or scientific objec-
tives and formulating this as a data mining
problem.

• Given the problem to be addressed, the appropri-
ate data sources need to be identified and the
data integrated and preprocessed to make it
appropriate for data mining (see Section 3.1)
ns research and data mining, Eur. J. Oper. Res. (2006),
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• Once the data has been prepared the next step is
to generate previously unknown patterns from
the data using inductive learning. The most com-
mon types of patterns are classification models
(see Section 3.1.2), natural cluster of instances
(see Section 3.2), and association rules describing
relationships between attributions (see Section
3.3).

• The final steps are to validate and then imple-
ment the patterns obtained from the inductive
learning.

In the following sections, we describe several of
the most important parts of this process and focus
specifically on how optimization methods can be
used for the various parts of the process.

3.1. Data preprocessing and exploratory data mining

In any data mining application the database to be
mined may contain noisy or inconsistent data, some
data may be missing and in almost all cases the
database is large. Data preprocessing addresses each
of those issues and includes such preliminary tasks
as data cleaning, data integration, data transforma-
tion, and data reduction. Also applied in the early
stages of the process exploratory data mining
involves discovering patterns in the data using sum-
mary statistics and visualization. Optimization and
other OR tools are relevant to both data preprocess-
ing tasks and exploratory data mining and in this
section we illustrate this through one particular task
from each category, namely attribute selection and
data visualization.

3.1.1. Attribute selection
Attribute selection is an important problem in

data mining. This involves a process for determining
which attributes are relevant in that they predict or
explain the data, and conversely which attributes
are redundant or provide little information (Liu
and Motoda, 1998). Doing attribute selection before
a learning algorithm is applied has numerous bene-
fits. By eliminating many of the attributes it
becomes easier to train other learning methods, that
is, computational time of the induction is reduced.
Also, the resulting model may be simpler, which
often makes it easier to interpret and thus more use-
ful in practice. It is also often the case that simple
models are found to generalize better when applied
for prediction. Thus, a model employing fewer attri-
butes is likely to score higher on many interesting-
Please cite this article in press as: Olafsson, S. et al., Operatio
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ness measures and may even score higher in
accuracy. Finally, discovering which attributes
should be kept, that is identifying attributes that
are relevant to the decision making, often provides
valuable structural information and is therefore
important in its own right.

The literature on attribute selection is extensive
and many attribute selection methods are based
on applying an optimization approach. As a recent
example, Olafsson and Yang (2004) formulate the
attribute selection problem as a simple combinato-
rial optimization problem with the following deci-
sion variables:

xi ¼
1 if the ith feature is included

0 otherwise;

�
ð7Þ

for i = 1, 2, . . . , m. The optimization problem is
then

min f ðxÞ

s:t: Kmin 6
Pm
i¼1

xi 6 Kmax;

xi 2 f0; 1g

ð8Þ

where x = (x1, x2, . . . , xm) and Kmin and Kmin are
some minimum and maximum number of attributes
to be selected. A key issue is the selection of the
objective function and there is no single method
for evaluating the quality of attributes that works
best for all data mining problems. Some methods
evaluate the quality of each attribute individually,
that is,

f ðxÞ ¼
Xm

i¼1

fiðxiÞ; ð9Þ

whereas others evaluate the quality of the entire
subset together, that is, f(x) = f(X), where
X = {i : xi = 1} is the subset of selected attributes.
In Olafsson and Yang (2004) the authors use the
nested partitions method of Shi and Olafsson
(2000) to solve this problem using multiple objective
functions of both types described above and show
that such an optimization approach is very effective.
In Yang and Olafsson (2006) the authors improve
these results by developing an adaptive version of
the algorithm, which in each step uses a small ran-
dom subset of all the instances. This is important
because data mining usually deals with very large
number of instances and scalability with respect to
number of instances is therefore a critical issue.
Other optimization-based methods that have been
applied to this problem include genetic algorithms
ns research and data mining, Eur. J. Oper. Res. (2006),



8 S. Olafsson et al. / European Journal of Operational Research xxx (2006) xxx–xxx

ARTICLE IN PRESS
(Yang and Honavar, 1998), evolutionary search
(Kim et al., 2000), simulated annealing (Debuse
and Rayward-Smith, 1997), branch-and-bound
(Narendra and Fukunaga, 1977), logical analysis
of data (Boros et al., 2000), and mathematical pro-
gramming (Bradley et al., 1998).

3.1.2. Data visualization

As for most other data analysis, the visualization
of data plays an important role in data mining. This
is a difficult problem since the data is usually high
dimensional, that is, the number m of attributes is
large, whereas the data can only be visualized in
two or three dimensions. While it is possible to visu-
alize two or three attributes at a time a better alter-
native is often to map the data to two or three
dimensions in a way that preserves the structure of
the relationships (that is, distances) between
instances. This problem has traditionally been for-
mulated as a non-linear mathematical programming
problem (Borg and Groenen, 1997).

As an alternative to the traditional formulation,
Abbiw-Jackson et al. (2006) recently provide the fol-
lowing quadratic assignment problem (QAP) for-
mulation. Given n instances in Rm and a matrix
Dold 2 Rn · Rn measuring the distance between
those instances, find the optimal assignment of
those instances to a lattice N in Rq, q = 2, 3. The
decision variables are given by

xik ¼
1; if the ith instance is assigned

to lattice point k 2 N ;

0; otherwise:

8><
>: ð10Þ

With this assignment, there is a new distance
matrix Dnew 2 Rq · Rq in the q = 2 or 3 dimensional
space, and the mathematical program can be written
as follows:

min
Pn
i¼1

Pn
j¼1

P
k2N

P
l2N

F ðDold
i;j ;D

new
i;j Þxikxjl

subject to
P
k2N

xik ¼ 1; 8i

xik 2 f0; 1g;
ð11Þ

where F is a function of the deviation between the
differences between the instances in the original
space and the new q-dimensional space. Any solu-
tion method for the quadratic assignment method
can be used, but Abbiw-Jackson et al. (2006) pro-
pose a local search heuristic that take the specific
objective function into account and compare the
Please cite this article in press as: Olafsson, S. et al., Operatio
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results to the traditional non-linear mathematical
programming formulations. They conclude that
the QAP formulation provides similar results and
importantly tends to perform better for large
problems.

3.2. Classification

Once the data has been preprocessed a learning
algorithm is applied, and one of the most common
learning tasks in data mining is classification. Here
there is a specific attribute called the class attribute
that can take a given number of values and the goal
is to induce a model that can be used to discriminate
new data into classes according to those values. The
induction is based on a labeled training set where
each instance is labeled according to the value of
the class attribute. The objective of the classification
is to first analyze the training data and develop an
accurate description or a model for each class using
the attributes available in the data. Such class
descriptions are then used to classify future indepen-
dent test data or to develop a better description for
each class. Many methods have been studied for
classification, including decision tree induction, sup-
port vector machines, neural networks, and Bayes-
ian networks (Fayyad et al., 1996; Weiss and
Kulikowski, 1991).

Optimization is relevant to many classification
methods and support vector machines have already
been mentioned in Section 2.2 above. In this section,
we focus on three additional popular classification
approaches, namely decision tree induction, Bayes-
ian networks, and neural networks.

3.2.1. Decision trees
One of the most popular techniques for classifica-

tion is the top-down induction of decision trees. One
of the main reason behind their popularity appears
to be their transparency, and hence relative advan-
tage in terms of interpretability. Another advantage
is the ready availability of powerful implementa-
tions such as CART (Breiman et al., 1984) and
C4.5 (Quinlan, 1993). Most decision tree induction
algorithms construct a tree in a top-down manner
by selecting attributes one at a time and splitting
the data according to the values of those attributes.
The most important attribute is selected as the top
split node, and so forth. For example, in C4.5 attri-
butes are chosen to maximize the information gain
ratio in the split (Quinlan, 1993). This is an entropy
measure designed to increase the average class pur-
ns research and data mining, Eur. J. Oper. Res. (2006),
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ity of the resulting subsets. Algorithms such as C4.5
and CART are computationally efficient and have
proven very successful in practice. However, the fact
that they are limited to constructing axis-parallel
separating planes limits their effectiveness in appli-
cations where some combination of attributes is
highly predictive of the class (Lee and Olafsson,
2006).

Mathematical optimization techniques have been
applied directly in the optimal construction of
decision boundaries in decision tree induction. In
particular, Bennett (1992) introduced an extension
of linear programming techniques to decision tree
construction, although this formulation is limited
to two-class problems. In recent work, Street
(2005) presents a new algorithm for multi-category
decision tree induction based on non-linear pro-
gramming. The algorithm, termed Oblique Cate-
gory SEParation (OC-SEP), shows improved
generalization performance on several real-world
data sets.

One of the limitations of most decision tree algo-
rithms is that they are known to be unstable. This is
especially true dealing with a large data set where it
can be impractical to access all data at once and
construct a single decision tree (Fu et al., 2003a).
To increase interpretability, it is necessary to reduce
the tree sizes and this can make the process even less
stable. Finding the optimal decision tree can be trea-
ted as a combinatorial optimization problem but
this is known to be an NP-complete problem and
heuristics such as those discussed in Section 2.2
above must be applied. Kennedy et al. (1997) first
developed a genetic algorithm for optimizing deci-
sion trees. In their approach, a binary tree is repre-
sented by a number of unit subtrees, each having a
root node and two branches. In more recent work,
Fu et al. (2003a,b, 2006) also use genetic algorithms
for this task. Their method uses C4.5 to generate K

trees as the initial population, and then exchanges
the subtrees between trees (crossover) or within
the same tree (mutation). At the end of a genera-
tion, logic checks and pruning are carried out to
improve the decision tree. They show that the result-
ing tree performs better than C4.5 and the computa-
tion time only increases linearly as the size of the
training and scoring combination increases. Fur-
thermore, creating each tree only requires a small
percent of data to generate high-quality decision
trees. All of the above approaches use some func-
tion of the tree accuracy for the genetic algorithm
fitness function. In particular, Fu et al. (2003a) use
Please cite this article in press as: Olafsson, S. et al., Operatio
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the average classification accuracy directly, whereas
Fu et al. (2003b) use a distribution for the accuracy
that enables them to account for the user’s risk tol-
erance. This is further extended in Fu et al. (2006)
where the classification is modeled using a loss func-
tion that then becomes the fitness function of the
genetic algorithm. Finally, in other related work
Dhar et al. (2000) use an adaptive resampling
method where instead of using a complete decision
tree as the chromosomal unit, a chromosome is sim-
ply a rule, that is, any complete path from the root
node of the tree to a leaf node.

When using genetic algorithm to optimize the
three, there is ordinarily no method for adequately
controlling the growth of the tree, because the
genetic algorithm does not evaluate the size of the
tree. Therefore, during the search process the tree
may become overly deep and complex or may settle
to a too simple tree. To address this, Niimi and
Tazaki (2000) combine genetic programming with
association rule algorithm for decision tree con-
struction. In this approach rules generated by the
Apriori association rule discovery algorithm (Agra-
wal et al., 1993) are taken as the initial individual
decision trees for a subsequent genetic program-
ming algorithm.

Another approach to improve the optimization
of the decision tree is to improve the fitness function
used by the genetic algorithm. Traditional fitness
functions use the mean accuracy as the performance
measure. Fu et al. (2003b) investigate the use of var-
ious percentiles of the distribution of classification
accuracy in place of the mean and developed a
genetic algorithm that simultaneously considers
two fitness criteria. Tanigawa and Zhao (2000)
include the tree size in the fitness function in order
to control the tree’s growth. Also, the utilization
of a fitness function based on the J-Measure, which
determines the information content of a tree, can
give a preference criterion to find the decision tree
that classifies a set of instances in the best way
(Folino et al., 2001).

3.2.2. Bayesian networks
The popular naı̈ve Bayes method is another sim-

ple but yet effective classifier. This method learns the
conditional probability of each attribute given the
class label from the training data. Classification is
then done by applying Bayes rule to compute the
probability of a class value given the particular
instance and predicting the class value with the
highest probability. In general this would require
ns research and data mining, Eur. J. Oper. Res. (2006),
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estimating the marginal probabilities of every attri-
bute combination, which is not feasible, especially
when the number of attributes is large and there
may be few or no observations (instances) for some
of the attribute combinations. Thus, a strong inde-
pendence assumption is made, that is, all the attri-
butes are assumed conditionally independent given
the value of the class attribute. Given this assump-
tion, only the marginal probabilities of each attri-
bute given the class need to be calculated.
However, this assumption is clearly unrealistic and
Bayesian networks relax it by explicitly modeling
dependencies between attributes.

A Bayesian network is a directed acyclic graph G

that models probabilistic relationships among a set
of random variables U = {X1, . . . , Xm}, where each
variable in U has specific states or values (Jensen,
1996). As before, m denotes the number of attri-
butes. Each node in the graph represents a random
variable, while the edges capture the direct depen-
dencies between the variables. The network encodes
the conditional independence relationships that
each node is independent of its non-descendants
given its parents (Castillo et al., 1997; Pernkopf,
2005). There are two key optimization-related issues
when using Bayesian networks. First, when some of
the nodes in the network are not observable, that is,
there is no data for the values of the attributes cor-
responding to those nodes, finding the most likely
values of the conditional probabilities can be formu-
lated as a non-linear mathematical program. In
practice this is usually solved using a simple steepest
descent approach. The second optimization prob-
lem occurs when the structure of the network is
unknown, which can be formulated as a combinato-
rial optimization problem.

The problem of learning the structure of a Bayes-
ian network can be informally stated as follows.
Given a training set A = {u1, u2, . . . , un} of n

instances of U find a network that best matches A.
The common approach to this problem is to intro-
duce an objective function that evaluates each net-
work with respect to the training data and then to
search for the best network according to this func-
tion (Friedman et al., 1997). The key optimization
challenges are choosing the objective function and
determining how to search for the best network.
The two main objective functions commonly used
to learn Bayesian networks are the Bayesian scoring
function (Cooper and Herskovits, 1992; Heckerman
et al., 1995), and a function based on the minimal
description length (MDL) principle (Lam and Bac-
Please cite this article in press as: Olafsson, S. et al., Operatio
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chus, 1994; Suzuki, 1993). Any metaheuristic can
be applied to solve the problem. For example,
Larrañaga et al. (1996) have done work on using
genetic algorithms for learning Bayesian networks.

3.2.3. Neural networks

Another popular approach for classification is
neural networks. Neural networks have been exten-
sively studied in the literature and an excellent
review of the use of feed-forward neural networks
for classification is given by Zhang (2000). The
inductive learning of neural networks from data is
referred to as training this network, and the most
popular method of training is back-propagation
(Rumelhart and McClelland, 1986). It is well known
that back-propagation can be viewed as an optimi-
zation process and since this has been studied in
detailed elsewhere we only briefly review the pri-
mary connection with optimization here.

A neural network consists of at least three layers
of nodes. The input layer consists of one node for
each of the independent attributes. The output layer
consists of node(s) for the class attribute(s), and
connecting these layers is one or more intermediate
layers of nodes that transform the input into an out-
put. When connected, these layers of nodes make up
the network we refer to as a neural net. The training
of the neural network involves determining the
parameters for this network. Specifically, each arc
connecting the nodes in this network has certain
associated weight and the values of those weights
determine how the input is transformed into an
output. Most neural network training methods,
including back-propagation, are inherently an opti-
mization processes. As before, the training data
consists of values for some input attributes (input
layer) along with the class attribute (output layer),
which is usually referred to as the target value of
the network. The optimization process seeks to
determine the arc weights in order to reduce some
measure of error (normally, minimizing squared
error) between the actual and target outputs (Rip-
ley, 1996).

Since the weights in the network are continuous
variables and the relationship between the input
and the output is highly non-linear, this is a non-lin-
ear continuous optimization problem or a non-linear
programming problem (NLP). Any appropriate
NLP algorithm could therefore be applied to train
a neural network, but in practice a simple steepest-
descent approach is most often applied (Ripley,
1996). This does not assure that the global optimal
ns research and data mining, Eur. J. Oper. Res. (2006),
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solution has been found, but rather terminates at the
first local optimum that is encountered. However,
due to the size of the problems involved the speed
of the optimization algorithm is usually imperative.

This section illustrates how optimization plays
significant role in classification. As shown in Section
2.1, the classification problem itself can be formu-
lated as a mathematical programming problem,
and as demonstrated in this section it also plays
an important role in conjunction with other classifi-
cation methods. This can both be to optimize the
output of other classification algorithms, such as
the optimization of decision trees, and to optimize
parameters utilized by other classification algo-
rithms, such as finding the optimal structure of a
Bayesian network. Although considerable work
has been done already in this area there are still
many unsolved problems for the operations
research community to address.

3.3. Clustering

When the data is unlabelled and each instance
does not have a given class label the learning task
is called unsupervised. If we still want to identify
which instances belong together, that is, form natu-
ral clusters of instances, a clustering algorithm can
be applied (Jain et al., 1999; Kaufman and Rous-
seeuw, 1990). Such algorithms can be divided into
two categories: hierarchical clustering and part-
itional clustering. In hierarchical clustering all of
the instances are organized into a hierarchy that
describes the degree of similarity between those
instances. Such representation may provide a great
deal of information and many algorithms have been
proposed. Partitional clustering, on the other hand,
simply creates one partition of the data where each
instance falls into one cluster. Thus, less informa-
tion is obtained but the ability to deal with large
number of instances is improved.

As appears to have been first pointed out by
Vinod (1969), the partitional clustering problem
can be formulated as an optimization problem.
The key issues are how to define the decision vari-
ables and how to define the objective functions, nei-
ther of which has a universally applicable answer. In
clustering, the most common objectives are to min-
imize the difference of the instances in each cluster
(compactness), maximize the difference between
instances in different clusters (separation), or some
combination of the two measures. However, other
measures may also be of interest and adequately
Please cite this article in press as: Olafsson, S. et al., Operatio
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assessing cluster quality is a major unresolved issue
(Estevill-Castro, 2002; Grabmeier and Rudolph,
2002; Osei-Bryson, 2005). A detailed discussion of
this issue is outside the scope of the paper and most
of the work that applies optimization to clustering
focuses on some variant of the compactness
measure.

In addition to the issue of selecting an appropri-
ate measure of cluster quality as the objective func-
tion there is no generally agreed upon manner in
which a clustering should be defined. One popular
way to define a data clustering is to let each cluster
be defined by its center point cj 2 Rm and then
assign every instance to the closest center. Thus,
the clustering is defined by a m · k matrix
C = (c1, c2, . . . , ck). This is for example done by
the classic and still popular k-means algorithm
(MacQueen, 1967). K-means is a simple iterative
algorithm that proceeds as follows. Starting with
randomly selected instances as centers each instance
is first assigned to the closest center. Given those
assignments, the cluster centers are recalculated
and each instance again assigned to the closest cen-
ter. This is repeated until no instance changes clus-
ters after the centers are recalculated, that is, the
algorithm converges to a local optimum.

Much of the work on optimization formulations
uses the idea of defining a clustering by fixed num-
ber of centers. This is true of the early work of
Vinod (1969) where the author provides two integer
programming formulations of the clustering prob-
lem. For example, in the first formulation the deci-
sion variable is defined as an indicator of the
cluster to which each instance is assigned:

xij ¼
1 if the ith instance is assigned

to the jth cluster;

0 otherwise;

8><
>: ð12Þ

and the objective is to minimize the total cost of the
assignment, where wij is some cost of assigning the
ith instance to the jth cluster:

min
Pn
i¼1

Pk
j¼1

wijxij

s:t:
Pk
j¼1

xij ¼ 1; i ¼ 1; 2; . . . ; n

Pn
i¼1

xij P 1; j ¼ 1; 2; . . . ; k:

ð13Þ

Note that the constraints assure that each instance is
assigned to exactly one cluster and that each cluster
ns research and data mining, Eur. J. Oper. Res. (2006),
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has at least one instance (all the clusters are used).
Also note that if the assignments (12) are known
then the cluster centers can be calculated by averag-
ing the assigned instances. Using the same definition
of the decision variables, Rao (1971) provides addi-
tional insights into the clustering problem and sug-
gests improved integer programming formulations,
with the objective taken as both minimizing the
within cluster sum of squares and minimizing the
maximum distance within clusters. Both of those
objective functions can be viewed as measures of
cluster compactness.

More recently, Bradley et al. (1996) and Bradley
and Mangasarian (2000) also formulated the prob-
lem of identifying cluster centers as a mathematical
programming problem. As before, a set A of n train-
ing instances Ai 2 Rn is given, and we assume a fixed
number of k clusters. Given this scenario, Bradley
et al. (1996) use dummy vectors dij 2 Rn to formu-
late the following linear program to find the k clus-
ter centers cj that minimize the 1-norm from each
instance to the nearest center:

min
c;d

Pn
i¼1

minfeTdijg

s:t: �dij6AT
i � cj6 dij; i¼ 1;2; . . . ;n; j¼ 1;2; . . . ;k:

ð14Þ

By using the 1-norm instead of more usual 2-norm
this is a linear program, which can be solved effi-
ciently even for very large problem. As for the other
formulations discussed above a limitation to this
program is that it focuses exclusively on optimizing
the cluster compactness, which in this case means to
find the cluster centers such that each instance in the
cluster is as close as possible to the center. The solu-
tion may therefore be a cluster set where the clusters
are not well separated.

In Bradley and Mangasarian (2000), the authors
take a different definition of a clustering and instead
of finding the best centers identify the best cluster
planes:

P j ¼ fx 2 RmjxT � wj ¼ cjg; j ¼ 1; 2; . . . ; k: ð15Þ

They propose an iterative algorithm similar to the k-
means algorithm that iteratively assigns instances to
the closes cluster and then given the new assignment
finds the plane that minimizes the sum of squares of
distances of each instance to the cluster. In other
words, given the set of instances A(j) 2 Rn assigned
to cluster j, find w and c that solve:
Please cite this article in press as: Olafsson, S. et al., Operatio
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min
w;c

kAw� eck2
2

s:t: wT � w ¼ 1:
ð16Þ
Indeed it is not necessary to solve (16) using tradi-
tional methods. The authors show that a solution
ðw�j ; c�j Þ can be found by letting w�j be the eigenvector
corresponding to the smallest eigenvector of
(A(j))T(I � e Æ eT/nj)A

(j), where nj = |A(j)| is the num-
ber of instances assigned to the cluster, and then cal-
culating c�j ¼ eTAðjÞw�j=nj:

We note from the formulations above that the
clustering problem can be formulated as both an
integer program, as in (13), and a continuous pro-
gram, as in (14). This implies that a wide array of
optimization techniques is applicable to the prob-
lem. For example, Kroese et al. (2004) recently used
the cross-entropy method to solve both discrete and
continuous versions of the problem. They show that
although the cross-entropy method is more time
consuming than traditional heuristics such as k-
means the quality of the results is significantly
better.

As noted by both the early work in this area
(Vinod, 1969; Rao, 1971) and by more recent
authors (e.g., Shmoys, 1999), when a clustering is
defined by the cluster centers the clustering problem
is closely related to well-known optimization prob-
lems related to set covering. In particular, the prob-
lem of locating the best clusters mirrors problems in
facility location (Shmoys et al., 1997), and specifi-
cally the k-center and k-median problem. In many
cases, results obtained for these problems could be
directly applied to clustering in data mining. For
example, Hochbaum and Shmoys (1985) proposed
the following approximation algorithm for the k-
center problem. Starting with any point, find the
point furthest from it, then the point furthest from
the first two, and so forth, until k points have been
selected. The authors use duality theory to show
that the performance of this heuristic is no worse
than twice the performance of the optimal solution.
Interpreting the points as centers, Dasgupta (2002)
notes that this approach can be used directly for
partitional clustering. The author also develops an
extension to hierarchical clustering and derives a
similar performance bound for the clustering per-
formance of every level of the hierarchy.

It should be noted that this section has focused
on one particular type of clustering, namely part-
itional clustering. For many of the optimization for-
mulations it is further assumed that each cluster is
ns research and data mining, Eur. J. Oper. Res. (2006),
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defined by its center, although the (13) does not
make this assumption and other formulations from,
for example, Rao (1971) and Kroese et al. (2004) are
more flexible. Several other approaches exist for
clustering and much research on clustering for data
mining has focused on the scalability of clustering
algorithms (see e.g., Bradley et al., 1998; Ng and
Han, 1994; Zhang et al., 1996). As another example
of a partitional clustering method, the well-known
EM algorithm assumes instances are drawn from
one of k distributions and estimates the parameters
of these distributions as well as the cluster assign-
ments (Lauritzen, 1995). There have also been
numerous hierarchical clustering algorithms pro-
posed, which create a hierarchy, such as a dendro-
gram, that shows the relationship between all the
instances (Kaufman and Rousseeuw, 1990). Such
clustering may be either agglomerative, where
instances are initially assigned to singleton clusters
and are then merged based on some measure (such
as the well-known single-link and complete-link
algorithms), or divisive, where the instances are all
assigned to one cluster that is then split iteratively.
For hierarchical clustering there no single clustering
that is optimal, although one may ask the question
if it is possible to find a hierarchy that is optimal at
every level and extend known partitional clustering
results (Dasgupta, 2002).

Another clustering problem where optimization
methods have been successfully applied is sequential
clustering (Hwang, 1981). This problem is equiva-
lent to the partitional clustering problem described
above, except that the instances are ordered and this
order must be maintained in the clustering. Hwang
(1981) shows how to find optimal clusters for this
problem, and in recent work Joseph and Bryson
(1997) show how to find so-called w-efficient solu-
tions to sequential clustering using linear program-
ming. Such solutions have satisfactory rate of
improvement in cluster compactness as the number
of clusters increases.

Although it is well known that the clustering
problem can be formulated as an optimization
problem the increased popularity of data mining
does not appear to have resulted in comparable
resurgence of interest in use of optimization to clus-
ter data as for classification. For example, a great
deal of work has been done on closely related prob-
lems such as the set covering, k-center and k-median
problems, but relatively little has still been done to
investigate potential impact in the data mining task
of clustering. Since the clustering problem can be
Please cite this article in press as: Olafsson, S. et al., Operatio
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formulated as both a continuous mathematical pro-
gramming problem and a combinatorial optimiza-
tion problem, a host of OR tools is applicable to
this problem, including both mathematical pro-
gramming (see Section 2.1) and metaheuristics (see
Section 2.2), and most of this has not been
addressed. Other fundamental issues, such as how
to define a set of clusters and measure cluster quality
are also still unresolved in the larger clustering com-
munity, and it is our belief that the OR community
could continue to make very significant contribu-
tions by examining these issues.

3.4. Association rule mining

Clustering finds previously unknown patterns
along the instance dimension. Another unsupervised
learning approach is association rule discovery that
aims to discover interesting correlation or other
relationships among the attributes (Agrawal et al.,
1993). Association rule mining was originally used
for market basket analysis, where items are articles
in the customer’s shopping cart and the supermar-
ket manager is looking for associations among these
purchases. Basket data stores items purchased on
per-transaction basis. The questions addressed by
market basket analysis include how to boost the
sales of a given product, what other products do dis-
continuing a product impact, and which products
should be shelved together. Being derived from mar-
ket basket analysis, association rule discovery uses
the terminology of an item, which is simply an attri-
bute – value pair, and item set, which simply refers
to a set of such items.

With this terminology the process of association
rule mining can be described as follows. Let
I = {1, 2, . . . , q} be the set of all items and let
T = {1, 2, . . . , n} be the set of transactions or
instances in a database. An association rule R is
an expression A) B, where the antecedent (A)
and consequent (B) are both item sets, that is
A, B � I. Each rule has an associated support and
confidence. The support sup(R) of the rule is the
number or percentage of instances in I containing
both A and B, and this is also referred to as the cov-
erage of the rule. The confidence of the rule R is
given by

confðRÞ ¼ supðA [ BÞ
supðAÞ ; ð17Þ

which is the conditional probability that an instance
contains item set B given that it contains item set A.
ns research and data mining, Eur. J. Oper. Res. (2006),
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Confidence is also called accuracy of the rule. Sup-
port and confidence are typically modeled as con-
straints for association rule mining, where users
specify the minimum support supmin and minimum
confidence confmin according to their preferences.
An item set is called a frequent item set if its support
is greater than this minimum support threshold.

Apriori is the best-known and original algorithm
for association rule discovery (Agrawal and Srikant,
1994). The idea behind the apriori algorithm is that
if an item set is not frequent in the database then
any superset of this item set is not frequent in the
same database. There are two phases to the induc-
tive learning: (a) first find all frequent item sets,
and (b) then generate high confidence rules from
those sets. The apriori algorithm generates all fre-
quent item sets by making multiple passes over the
data. In the first pass it determines whether 1-item
sets are frequent or not according to their support.
In each subsequent pass it starts with those item sets
found to be frequent in the previous pass. It uses
these frequent items sets as seed sets to generate
super item sets, called candidate item sets, by only
adding one more item. If the super item set meets
the minimum support then it is actually frequent.
After frequent item sets’ generation, for each final
frequent item set it checks all single-consequent
rules. Only those single consequent rules that meet
minimum confidence level will go further to build
up two-consequent rules as candidate rules. If those
two-consequent rules meet the minimum confidence
level will continue to build up three-consequent
rules, and so on.

Even after limiting the possible rules to those that
meet minimum support and confidence there is usu-
ally a very large number of rules generated, most of
which are not valuable. Determining how to select
the most important set of association rules is there-
fore an important issue in association rule discovery
and here optimization can be applied. This issue has
received moderate consideration in the recent years.
Most of this research focuses on using the two met-
rics of support and confidence of association rules.
The idea of optimized association rules was first
introduced by Fukuda et al. (1996). In this work,
an association rule R is of the form (A 2 [v1, v2]) ^
C1) C2, where, A is a numeric attribute, v1 and v2

are a range of attribute A, and C1 and C2 are two
normal attributes. Then the optimized association
rules problem can be divided into two sub-problems.

On the other hand, the support of the antecedent
can be maximized subject to the confidence of the
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rule R meeting the minimum confidence. Thus, the
optimized support rule can be formulated as
follows:

max
R

supfðA1 2 ½v1; v2�Þ ^ C1g

s:t: confðRÞP confmin:
ð18Þ

Alternatively, the confidence of the rule R can be
maximized subject to the support of the antecedent
being greater than the minimum support. Thus, the
optimized confidence rule can be formulated as
follows:

max
R

conffðA1 2 ½v1; v2�Þ ^ C1g

s:t: supðRÞP supmin:
ð19Þ

Rastogi and Shim (1998) presented optimized asso-
ciation rules problem to allow an arbitrary number
of uninstantiated categorical and numeric attri-
butes. Moreover, the authors proposed to use
branch and bound and graph search pruning tech-
niques to reduce the search space. In later work
Rastogi and Shim (1999) extended this work to opti-
mized support association rule problem for numeric
attributes by allowing rules to contain disjunctions
of uninstantiated numeric attributes. Dynamic pro-
gramming is used to generate the optimized support
rules and a bucketing technique and divide and con-
quer strategy are employed to improve the algo-
rithm’s efficiency.

By combining concerns with both support and
confidence, Brin et al. (2000) proposed optimizing
the gain of the rule, where gain is defined as

gainðRÞ ¼ supfðA1

2 ½v1; v2�Þ ^ C1g � Confmin � supðC1Þ
¼ supðRÞ � ðConfðRÞ � ConfminÞ: ð20Þ

The optimization problem maximizes the gain sub-
ject to minimum support and confidence.

max gainðRÞ
s:t: supðRÞP supmin

ConfðRÞP confmin:

ð21Þ

Although there exists considerable research on the
issue of generating good association rules, support
and confidence are not always sufficient measures
for identifying insightful and interesting rules. Max-
imizing support may lead to finding many trivial
rules that not valuable for decision making. On
the other hand, maximizing confidence may lead
to finding too specific rules that are also not useful
for decision making. Thus, relevant good measures
ns research and data mining, Eur. J. Oper. Res. (2006),
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and factors for identifying good association rules
need more exploration. In addition, how to opti-
mize the rules that have been obtained is an interest-
ing and challenging issue that has not received much
attention. Both of these areas are issue where the
OR community can contribute in a significant way
to the field of association rule discovery.

4. Applications in the management of electronic

services

Many of the most important applications of data
mining come in areas related to management of
electronic services. In such applications, automatic
data collection and storage is often cheap and
straightforward, which generates large databases
to which data mining can be applied. In this section
we consider two such applications areas, namely
customer relationship management and personaliza-
tion. We choose these applications because of their
importance and the usefulness of data mining for
their solution, as well as for the relatively unex-
plored potential there is for incorporating optimiza-
tion technology to enable and explain the data
mining results.

4.1. Customer relationship management

Relationship marketing and customer relation-
ship management (CRM) in general have become
central business issues. With more intense competi-
tion in many mature markets companies have real-
ized that development of relationship with more
Fig. 3. Illustration of a customer life-cycle. This fig
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profitable customer is a critical factor to staying in
the market. Thus, CRM techniques have been
developed that afford new opportunities for busi-
nesses to act well in a relationship market. The focus
of CRM is on the customer and the potential for
increasing revenue, and in doing so it enhances the
ability of a firm to compete and to retain key
customers.

The relationship between a business and custom-
ers can be described as follows. A customer pur-
chases products and services, while business is to
market, sell, provide and service customers. Gener-
ally, there are three ways for business to increase the
value of customers:

• increase their usage (or purchases) on the prod-
ucts or service that customers already have;

• sell customers more or higher-profitable
products;

• keep customers for a longer time.

A valuable customer is usually not static and the
relationship evolves and changes over time. Thus,
understanding this relationship is a crucial part of
CRM. This can be achieved by analyzing the cus-
tomer life-cycle, or customer lifetime, which refers
to various stages of the relationship between cus-
tomer and business. A typical customer life-cycle
is shown in Fig. 3.

First, acquisition campaigns are marketing cam-
paigns that are directed to the target market and
seek to interest prospects in a company’s product
or service. If prospects respond to company’s
ure is adapted from Berry and Linoff (2000).
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inquiry then they will become respondents.
Responders become established customers when
the relationship between them and the companies
has been established. For example, they have made
the initial purchase or their application for a certain
credit card has been approved. At this point, com-
panies will gain revenue from customer usage. Fur-
thermore, customers’ value will be increased not
only by cross-selling that encourages customers to
buy more products or services but also by up-selling
that encourage customers to upgrading existing
products and services. On the other hand, at some
point established customers stop being customers
(churn). There are two different types of churns.
The first is voluntary churn, which means that
established customers choose to stop being custom-
ers. The other type is forced churn, which refers to
those established customers who no longer are good
customers and the company cancels the relation-
ship. The main purpose of CRM is to maximize cus-
tomers’ values throughout the life-cycle.

With large volumes of data generated in CRM
data mining plays a leading role in the overall
CRM (Rud and Brohman, 2003; Shaw et al.,
2001). In acquisition campaigns data mining can
be used to profile people who have responded to
previous similar campaigns and these data mining
profiles is helpful to find the best customer segments
that the company should target (Adomavicius and
Tuzhilin, 2003). Another application is to look for
prospects who have similar behavior patterns to
today’s established customers. In responding cam-
paigns data mining can be applied to determine
which prospects will become responders and which
responders will become established customers.
Established customers are also a significant area
for data mining. Identifying customer behavior pat-
terns from customer usage data and predicting
which customers are likely to respond to cross-sell
and up-sell campaigns, which is very important to
the business (Chiang and Lin, 2000). Regarding for-
mer customers, data mining can be used to analyze
the reasons for churns and to predict churn (Chiang
et al., 2003).

Optimization also plays an important role in
CRM and in particular in determining how to
develop proactive customer interaction strategy to
maximize customer lifetime value. A customer is
profitable if the revenue from this customer exceeds
company’s cost to attract, sell and service this cus-
tomer. This excess is called the customer lifetime
value (LTV). In other words, LTV is the total value
Please cite this article in press as: Olafsson, S. et al., Operatio
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to be gained while the customer is still active and it
is one of the most important metric in CRM. There
is much research that has been done in the area of
modeling LTV using OR techniques (Schmittlein
et al., 1987; Blattberg and Deighton, 1991; Dreze
and Bonfrer, 2002; Ching et al., 2004).

Even when the LTV model can be formulated, it
is difficult to find the optimal solution in the pres-
ence of great volume of data. Some researchers have
addressed this by using data mining to find out the
optimal parameters for the LTV model. For exam-
ple, Rosset et al. (2002) formulate the following
LTV model

LTV ¼
Z 1

0

SðtÞvðtÞDðtÞdt; ð22Þ

where v(t) describes the customer’s value over time,
S(t) describes the probability that the customer is
still active at time t, and D(t) is a discounting factor.
Data mining is then employed to estimate customer
future revenue value and estimate the customer’s
churn probability over time from current data. This
problem is difficult in practice, however, due to the
large volumes of data involved. Padmanabhan and
Tuzhilin (2003) presented two directions to reduce
the complexity of the LTV optimization problem.
One direction is to find good heuristics to improve
LTV values and the other strategy is to optimize
some simpler performance measures that are related
to LTV value. As for the latter direction, the author
pointed out that data mining and optimization can
be integrated to build customer profiles, which is
critical in many CRM applications. Data mining is
first used for discover customer usage patterns and
rules and optimization is then employed to select a
small number of best patterns from the previously
discovered rules. Finally, according to the customer
profile, the company can achieve targeting and
spend money on those customers who are likely to
respond within their budget.

Campaign optimization is another problem
where a combination of data mining and operation
research can be applied. In the campaign optimiza-
tion process a company needs to determine which
kind of offers should go to which segment of cus-
tomers or prospects through which communication
channel. Vercellis (2002) presents two stages of cam-
paign optimization models with both data mining
technology and an optimization strategy. In the first
stage optimization sub-problems are solved for each
campaign and customers are segmented by their
scores. In the second stage, a mixed integer optimi-
ns research and data mining, Eur. J. Oper. Res. (2006),



S. Olafsson et al. / European Journal of Operational Research xxx (2006) xxx–xxx 17

ARTICLE IN PRESS
zation model is formulated to solve the overall cam-
paign optimization problem based on customer seg-
mentation and the limited available resources.

As described above, numerous CRM problems
can be formulated into optimization problems but
there are usually very large volumes of data that
may make the problem difficult to solve. Combining
the optimization problem with data mining is valu-
able in this context. For example, data mining can
be used to identify insightful patterns from cus-
tomer data and then these patterns can be used to
identify more relevant constraints for the optimiza-
tion models. In addition, data mining can be applied
to reduce the search space and improve the comput-
ing time. Thus, investigating how to combine opti-
mization and data mining to address CRM
problems is a promising research area for the oper-
ation research community.

4.2. Personalization

Personalization is the ability to provide content
and services tailored to individuals on the basis of
knowledge about their preferences and behavior.
Data mining research related to personalization
has focused mostly on recommender systems and
related issues such as collaborative filtering, and rec-
ommender systems have been investigated inten-
sively in the data mining community (Breese et al.,
1998; Geyer-Schulz and Hahsler, 2002; Lieberman,
1997; Lin et al., 2000). Such systems can be catego-
rized into three groups: content-based systems,
social data mining, and collaborative filtering. Con-
tent-based systems use exclusively the preferences of
the user receiving the recommendation (Hill et al.,
1995). These preferences are learned through impli-
cit or explicit user feedback and typically repre-
sented as a profile for the user. Recommenders
based on social data mining consider data sources
created by groups of people as part of their daily
activities and mine this data for potentially useful
information. However, the recommendation of
social data mining systems are usually not personal-
ized but rather broadcast to the entire user commu-
nity. On the other hand, such personalization is
achieved by collaborative filtering (Resnick et al.,
1994; Shardanan and Maes, 1995; Good et al.,
1999), which matches users with similar interests
and uses the preferences of these users to make
recommendations.

As argued in Adomavicius and Tuzhilin (2003),
the recommendation problem can be formulated
Please cite this article in press as: Olafsson, S. et al., Operatio
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as an optimization problem that selects the best
items to recommend to a user. Specifically, given a
set U of users and a set V of items, a ratings function
f : U · V! R can be defined to specify how each
user u 2 U likes each item v 2 V. The recommenda-
tion problem can then be formulated as the follow-
ing optimization problem:

max f ðu; vÞ
subject to u 2 U

v 2 V :

ð23Þ

The challenge for this problem is that the rating
function can usually only be partially specified, that
is, not all entries in the matrix {f(u, v)}u2U,v2V have
known ratings. Therefore, it is necessary to specify
how unknown ratings should be estimated from
the set of the previously specified ratings (Padma-
nabhan and Tuzhilin, 2003). Numerous methods
have been developed for estimating these ratings
and Pazzani (1999) and Adomavicius and Tuzhilin
(2003) describe some of these methods. Once the
optimization problem is defined data mining can
contribute to its solution by learning additional con-
straints with data mining methods. For more on OR
in personalization we refer the reader to Murthi and
Sarkar (2003), but simply note that this area has a
wealth of opportunities for the OR community to
contribute.
5. Conclusions

As illustrated in this paper, the OR community
has over the past several years made highly signifi-
cant contributions to the growing field of data min-
ing. The existing contributions of optimization
methods in data mining touch on almost every part
of the data mining process, from data visualization
and preprocessing, to inductive learning, and select-
ing the best model after learning. Furthermore, data
mining can be helpful in many OR application areas
and can be used in a complementary way to optimi-
zation method to identify constraints and reduce the
search space.

Although large volume of work already exists
covering the intersection of OR and data mining
we feel that the current work is only the beginning.
Interest in data mining continues to grow in both
academia and industry and most data mining issues
where there is the potential to use optimization
methods still require significantly more research.
This is clearly being addressed at the present time,
ns research and data mining, Eur. J. Oper. Res. (2006),
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as interest in data mining within the OR community
is growing, and we hope that this survey helps to
further motivate more researchers to contribute to
this exciting field.
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