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Generalizing Self-Organizing Map
for Categorical Data

Chung-Chian Hsu

Abstract—The self-organizing map (SOM) is an unsupervised
neural network which projects high-dimensional data onto a
low-dimensional grid and visually reveals the topological order of
the original data. Self-organizing maps have been successfully ap-
plied to many fields, including engineering and business domains.
However, the conventional SOM training algorithm handles only
numeric data. Categorical data are usually converted to a set of
binary data before training of an SOM takes place. If a simple
transformation scheme is adopted, the similarity information
embedded between categorical values may be lost. Consequently,
the trained SOM is unable to reflect the correct topological order.
This paper proposes a generalized self-organizing map model that
offers an intuitive method of specifying the similarity between
categorical values via distance hierarchies and, hence, enables the
direct process of categorical values during training. In fact, dis-
tance hierarchy unifies the distance computation of both numeric
and categorical values. The unification is done by mapping the
values to distance hierarchies and then measuring the distance in
the hierarchies. Experiments on synthetic and real datasets were
conducted, and the results demonstrated the effectiveness of the
generalized SOM model.

Index Terms—Categorical data, cluster analysis, distance hier-
archy, neural networks, self-organizing map (SOM).

I. INTRODUCTION

THE self-organizing map (SOM), proposed by Kohonen, is
an unsupervised neural network which projects high-di-

mensional data onto a low-dimensional grid [1] and [2]. The
projected data preserves the topological relationship of the orig-
inal data; therefore, this ordered grid can be used as a convenient
visualization surface for showing various features of the training
data, for example, cluster structures [3].

Since it was originally proposed, the SOM has had many ap-
plications. The applications initially focused on engineering, in-
cluding image processing [4]–[7], process monitoring and con-
trol [8], [9], speech recognition [10], [11], and flaw detection
in machinery [12]. Recently, applications to other fields have
emerged including business and management, such as informa-
tion retrieval [13], [14], medical diagnosis [15], [16], time-se-
ries prediction [17], [18], optimization [19], as well as financial
forecasting and management [20]–[22].

Training an SOM using a dataset involves two key steps:
Determining the best matching unit (BMU) and updating the
BMU and its neighbors. The conventional SOM training al-
gorithm can process only numeric data since determining the
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BMU from map units and updating BMU’s topological neigh-
bors are both based on a numeric distance function, typically
the Euclidean. However, various types of huge data, including
numeric, categorical, and even mixed data, are continuously ac-
cumulating due to the advent of information technology and the
popularity of information systems. For instance, for student data
in a campus database, the department attribute is categorical.
For sales transactions in a sales database, the product attribute
is categorical while the sales-amount attribute is numeric. Un-
able to process categorical data would confine the applicability
of SOM.

A typical approach to processing categorical values in the
current SOM training process is resorted to a preprocess such
as binary encoding, which transforms each categorical attribute
into a set of binary attributes in the way that each distinct cat-
egorical value is associated with one of the binary attributes.
Consequently, after the transformation, all categorical attributes
become binary attributes, which can thus be treated as numeric
attributes with the domain of .

This straightforward approach has several drawbacks in-
cluding increased dimensionality of the transformed relation,
difficulty in maintaining the transformed relation schema,
and inability to convey the semantics of the original attribute.
Most importantly, this approach fails to preserve the similarity
information embedded between categorical values. As a result,
a trained SOM is unable to generate correct topological order
when categorical values are involved and similar to one another
in a different extent.

This paper aims at improving the ability of the SOM to
process categorical data and mixed data in a direct and natural
manner. We propose a generalized SOM (or GSOM) model
such that the extended SOM can handle mixed data directly
and reflect their topological relationship faithfully.

The reason why categorical values cannot be handled
straightly in the conventional SOM algorithm is due to the
lack of a direct representation and computation scheme of the
distance between categorical values. To solve the problem, we
propose a general distance representation structure, distance hi-
erarchy, and then integrate it with the SOM to facilitate distance
computation. In the integrated GSOM model, every attribute
of the training dataset and its correspondent component of a
GSOM unit both associate with a distance hierarchy . To com-
pute the distance between a training pattern and a GSOM unit,
we map the attribute values of the pattern and the correspondent
components of the GSOM unit to their associated distance
hierarchies. Then, the distance is computed by aggregating
the distances between the mapping points in their hierarchies.
Accordingly, our GSOM model makes possible the measuring
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of the distance involving categorical values in a numeric way
naturally.

It is worth mentioning that the distance computation scheme
based on distance hierarchy unifies several traditional ap-
proaches including simple matching, binary encoding, and
numeric value subtraction. The details are given in Sec-
tion III-D.

A sophisticated transformation scheme that integrates sim-
ilarity information between categorical values into numeric
codes is possible to reflect the relationship of categorical data,
for example, the one of the topological mappings of animals
in [23], in which each animal is attributed with 13 binary
qualities including Size_small, Size_medium, Size_big, 2_legs,
etc. For the encoding of an animal (for example, a hen), the
three attributes Size_small, 2_legs, and Has_feathers are set to
1, and the other attributes are set to 0. In addition, there have
been many fuzzy-SOM hybrid realizations recently [24]–[29].
An alternative is resorting to fuzzy system concepts that can be
used to convert categorical data into fuzzy membership values,
which are numeric. However, these sophisticated schemes
require extensive expert domain knowledge to specify the
mapping between categorical values and their numeric codes.
In complex cases, it might not be easy to devise an appropriate
mapping. On the contrary, our proposed model via distance
hierarchy offers an easy, intuitive approach to specifying the
domain knowledge. Additionally, GSOM treats categorical
and numeric values in a unified representation scheme, and its
training algorithm processes categorical and numeric values
directly.

This paper is organized as follows. In Section II, the basics
of the SOM are briefly reviewed, and a detailed discussion of
the process by which the conventional SOM handles categor-
ical data is presented. In Section III, we propose a general-
ized SOM model which can directly handle categorical as well
as mixed data. Section IV presents the experimental results of
training GSOM using synthetic and real datasets. Comparisons
to the conventional SOM are also reported. Section V gives con-
cluding remarks.

II. SELF-ORGANIZING MAP

A. The SOM Training

The SOM can nonlinearly project high-dimensional data onto
a low-dimensional grid [4]. The projection preserves the topo-
logical order in the input space; hence, similar data patterns in
the input space will be assigned to the same map unit or nearby
units on the trained map. The core process of the projection
is first, for each input pattern, determining its BMU from the
map units. The BMU is the unit that is most similar to the input
pattern. Then the process proceeds to update the BMU and its
neighborhood units so as to reduce the difference between those
units and the input pattern. In short, the two key steps in the
SOM training algorithm are: 1) determining the BMU, and 2)
updating the BMU and its neighbors.

Specifically, an input pattern is a high-dimensional vector of
real numbers, , in the Euclidean space
where is the value of the th component. Each unit on an
associated SOM for an -dimensional training dataset is also

an -dimensional real vector,
where is the value of the th component. The method for
determining the BMU with respect to an input pattern is to
identify the unit that is most similar to . A distance function
is usually employed to measure the similarity. The smaller the
distance is, the more similar they are. Formally, the BMU of an
input is defined as where is a
unit on the map. A typical method for computing the distance

is to use the Euclidian distance function

(1)

Once the BMU is identified, the BMU and its neighbors are to
be updated to reduce the difference with the input pattern. The
updating is centered at the BMU, and the adjustment amount de-
creases with the increasing distance to the BMU. Similarly, the
update neighborhood also decreases with the increasing training
epochs. Formally, the update rule for a neighborhood unit is

(2)

where is the learning-rate function and is
the neighborhood function often taken as a Gaussian function.
Both and the width of decrease gradually with the
increasing step .

Because of the way it computes the Euclidean distance
between the input pattern and map units, the traditional SOM
training algorithm can handle only numeric values and is unable
to directly process categorical values. In case that a categorical
attribute is involved in a dataset, a popular approach is to
perform attribute transformation. In Section II-B, we describe
the transformation process and discuss the shortcomings of this
approach.

B. Problem With the Conventional Approach

Typical approaches by which the conventional SOM handles
categorical attributes are some sorts of binary encodings that
transform each categorical attribute to a set of binary, and thus
numeric, attributes before training an SOM starts. Specifically,
a popular technique is to transform a categorical attribute to bi-
nary attributes according to its domain such that each distinct
categorical value becomes a binary attribute in the new dataset.
For an illustrative example as shown in Fig. 1, suppose the do-
main of the attribute Favorite_Drink is Coke, Pepsi, Mocca,
Nescafe , then Favorite_Drink is transformed to a set of at-
tributes Coke, Pepsi, Mocca, and Nescafe. As indicated in Fig. 1,
a data pattern having Coke as the value of Favorite_Drink has
1 marked in the Coke attribute of the transformed relation, and
the other three attributes (Pepsi, Mocca, and Nescafe) are set to
0.

This approach has the following four drawbacks: 1) It is un-
able to determine the similarity information among categorical
values. For example, the transformed relation does not show
that Coke is more similar to Pepsi than Mocca. 2) When the
domain of a categorical attribute is large, transforming it to a
set of binary attributes increases the dimensionality of the rela-
tion, resulting in wasting storage space and increasing training
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Fig. 1. Categorical attribute Favorite_Drink is transformed to four binary attributes according to its domain.

Fig. 2. (a) Distance hierarchy with link weight 1. (b) Two-level distance hierarchy for simple matching approach. (c) Degenerated distance hierarchy with link
weight w = (max �min ) for a numeric attribute A.

time. 3) It is hard to maintain the new schema. When the do-
main of an attribute changes, the transformed relation schema
needs to be changed. For instance, if “Juice” is added to the do-
main of the Favorite_Drink, an additional attribute Juice needs
to be included in the transformed relation schema. 4) New bi-
nary attributes are unable to reflect the semantics of the original
attribute. For example, after the transformation, the four binary
attributes do not express the meaning of Favorite_Drink.

III. GENERALIZING THE SELF-ORGANIZING MAP

We first introduce distance hierarchy, which enables direct
expression of the distance between categorical values. Then, a
generalized self-organizing map model is proposed, and the ap-
proach to training a GSOM is presented.

A. Distance Hierarchy

To overcome the drawbacks of the conventional approach,
we propose distance hierarchy, a concept hierarchy [30] and
[31] extended with link weights as shown in Fig. 2. The dis-
tance hierarchy facilitates the representation and computation
of the distance between categorical values. In fact, it is a gen-
eral distance representation mechanism for both categorical and
numeric values. This argument will be discussed later in Sec-
tion III-D.

A concept hierarchy is composed of concept nodes and links,
where higher-level nodes represent more general concepts while
lower-level nodes represent more specific concepts. We extend
the structure with link weights: Each link has a weight repre-
senting a distance. The distance between two concepts at leaf
nodes is then defined as the total link weight between those two
leaf nodes.

Link weights are assigned by domain experts. There are sev-
eral assignment alternatives. The simplest way is to assign all
links a constant weight, e.g., 1. Other alternatives include con-
sidering different weight assignments according to the levels
where nodes reside. For instance, an option is to assign heavier
weights to the links closer to the root and lighter weights to the
links further away from the root. For simplicity, unless stated
explicitly, each link weight is set to 1 in this paper.

A point in a distance hierarchy consists of two parts, an
anchor and a positive real-valued offset, denoted as ,
where the anchor is a leaf node and the offset represents the dis-
tance from the root of the hierarchy to . Functions anchor and
offset return these two elements, respectively; that is, anchor

and offset . For example, in Fig. 2(a),
assume Pepsi indicating that is in the path of
(Pepsi, Any) and is 0.3 away from the root Any. Moreover, an-
chor Pepsi, and offset .

Definition (Equivalent Points): Two points, and , in a
distance hierarchy are equivalent, denoted as , if they
are at the same position in the hierarchy; that is, given

and , if and
.

A point is an ancestor of a point if is in the path from
to the root. A least common ancestor of two points and

, denoted as , is defined as a point at the deepest
tree node that is an ancestor of and . Since all the points
at that tree node are equivalent, we will use the tree node label
as the least common ancestor directly for simplicity if there is
no confusion. The least common point of and , denoted as

, is defined as one of the three cases: 1) either
or if ; 2) if is an ancestor of ; otherwise, 3)

.

For example, in Fig. 2(a), points and are equivalent, and
they are ancestors of points and . is a point
at the node Carbonated_Drink (or Carbonated_Drink for sim-
plicity). is either or since they are equivalent.

since is an ancestor of . is
Carbonated_Drink since and are not equivalent, and none
of them are the ancestors of the others

Two points at the same position are equivalent. However,
equivalent points in a distance hierarchy unnecessarily have
identical values. In particular, they may have distinct an-
chors, as shown in Theorem 1. For example, in the case of

Coke and Pepsi , is equivalent to .
Theorem 1: Given , , and

, if and , then and
are equivalent, i.e., .
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Proof: Let . Since
, is in the path between and the root. Similarly,

is in the same path between and the root, too. Furthermore,
because of , the distance from the root to and to
is the same; therefore, and must be at the same position.
In other words, .

The distance between two points in a distance hierarchy is
the total weight between them. Let and

be two points, then, the distance between and is
defined by

(3)

where is the distance between the root and the least
common point of and . According to (3) and the definition
of equivalent points, the distance between equivalent points is
obviously equal to zero.

For example, in Fig. 2(a), assume that Coke ,
Pepsi , Coke and Pepsi , the

distance between and is zero since they are equivalent. The
distance between and is . Because

is the Carbonated_Drink and , the
distance between and is, therefore, .

A special type of distance hierarchy, called numeric distance
hierarchy, for a numeric attribute, is a degenerated one which
consists of only two nodes and a link, as shown in Fig. 2(c). The
two nodes are the root labeled by and the leaf labeled by

. The only link has the weight that is equal to the range
of the numeric attribute, say ; that is, .
A point in a numeric distance hierarchy has the value of

where the anchor is always the and the offset
is the distance from to the root .

B. Mapping Data to Distance Hierarchies

In this section, we discuss how to map a multidimen-
sional data pattern to a set of distance hierarchies. Let

, either Dom a categorical
value or a numeric value, and their associated dis-
tance hierarchies be . We first describe
the association between an attribute and its corresponding
distance hierarchy. A categorical attribute associates with
the distance hierarchy in the way that the domain of
corresponds with the label set of the leaf nodes of , denoted
as Leaf , i.e., Dom , Leaf and
vice versa, or Dom Leaf . A numeric attribute
associates with the distance hierarchy , which is a numeric
one having a root , a leaf , and a link weighted by
the range of , i.e., .

We are now at the position to state the mapping between a
data pattern and its distance hierarchies. An -dimensional data
pattern associates with the set of distance hierarchies in the way
that each attribute value can be mapped to a point in its distance
hierarchy. Specifically, given and the set of
distance hierarchies , for a categorical
with the value (i.e., ), maps the value to
a point in where has the value .
In other words, the mapping point is at the leaf node labeled
by the same value . Recall that the domain of and the leaf

label set of are identical. The offset , the distance from
the root to , is, therefore, the distance from the root to the leaf
node , i.e., .

In the case of a numeric with a value , the mapping
maps to the point with the value
in its degenerated , where is the only leaf and

is the minimum value of .
For example, suppose Coke , as shown in

Fig. 2(a) and as shown in Fig. 2(c) with
and , the mapping Coke is the point
on the node Coke in , i.e., Coke Coke .
Note that for brevity, is used for Favorite_Drink and
for Amount. The mapping is a point with the value
( , 7) in , i.e., .

C. Measuring the Distance Between Patterns

The distance between two data patterns is defined according
to the mapping points in their associated distance hierarchies.
All attribute values of two patterns are mapped to their hierar-
chies, and then, the distances between correspondent mapping
points are aggregated.

Let two -dimensional patterns and
and their associated distance hierarchies

be . The distance between and refers
to the total distance of all corresponding mapping points in the
hierarchies. Formally, the distance between and is defined
by

(4)

where and are the mappings of and to .
An attribute weight allows assigning a different weight to a
specific attribute. is an integer constant. In case of , the
metric is similar to a weighted Manhattan distance. If ,
the metric is similar to a weighted Euclidean distance.

The illustrative example of Fig. 1 is continued. We assume
Coke , Pepsi , and Mocca , the distance

between and with respect to [see Fig. 2(a)] and
[ see Fig. 2(c)], set to 1, and calculated as follows.
The distance of the first components of and after mapping is

Coke Pepsi . The distance of the second com-
ponents of and is . Therefore,

. Similarly, the distance between
and is . These three patterns are
correspondent to those in Fig. 1. We can see that the distance
measured via distance hierarchies is able to distinguish the dif-
ferent degree of the similarities among them. On the contrary,
the conventional Euclidean distance via binary transformation
is not. In addition, our scheme provides a unified platform for
measuring the distance of the mixed-type data.

In terms of implementation, for a numeric attribute ,
is equal to since

.
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Fig. 3. GSOM training algorithm.

Normalization can be performed to handle the scaling
problem of attributes. The - normalization can be
adapted. The value range of an attribute, numeric or categorical,
is measured in terms of the mapping points in its distance hier-
archy. Specifically, the value range is the maximum distance in
its hierarchy. For a numeric attribute, the range is the distance
of the mapping points on and . For a categorical
attribute, the range is the distance of the two mapping points
that are most apart in the hierarchy.

D. Unifying Traditional Approaches

The proposed scheme unifies several traditional approaches
of handling categorical data and numeric data, including simple
matching, binary encoding, and numeric value subtraction. In
other words, the scheme handles the categorical and the numeric
data in a unified manner.

The simple matching approach, in which two identical cate-
gorical values result in a distance 0 or, otherwise, a distance 1,
can be treated as a special case as follows. Each categorical at-
tribute, say , associates to a two-level distant hierarchy ,
which has all the domain values as the leaves of and each
link weight set to 0.5 [see Fig. 2(b)]. Consequently, two patterns
with an identical categorical value map to the same po-
sition in and result in a distance 0. Otherwise, two distinct
values are mapped to two different leaves and result in a dis-
tance 1.

The binary encoding approach, in which each categorical
attribute is transformed to a set of binary attributes, can be
modeled by the proposed scheme in the following way: Trans-
forming the categorical attributes and then associating each
new binary attribute with a numeric distance hierarchy that
has a root , a leaf , and a link with weight 1. The
minimum and maximum values of the binary attribute are 0
and 1, respectively.

The value subtraction approach, in which subtraction oper-
ation applies directly to two numeric values, can be modeled
by mapping the values to their numeric distance hierarchy [see
Fig. 2(c)] and then measuring the distance between the mapping
points.

E. The Generalized SOM

Given an -dimensional dataset , a generalized SOM model
contains a map of -dimensional units and a set of distance hi-
erarchies . Each attribute of the

dataset is associated with in the manner as mentioned in
Section III-B. That is, for a categorical , Dom Leaf

and each value can be mapped to a point at the leaf
labeled by . For a numeric , contains only the root ,
one leaf and one link with weight .
An attribute value is then mapped to the position that is below

by the offset .
For the dataset , an associated two-dimensional generalized

self-organizing map consists of a set of GSOM units arranged
in a two-dimensional grid. Let be a unit of the GSOM, the
th component corresponds to the th attribute of ,

which could be a numeric or a categorical attribute. We call a
component of a GSOM unit either categorical or numeric, de-
pending on what type of the attribute the component associates
with. Each component is composed of two parts, ,
where is a symbolic value and is a real number. For a
categorical , shares the same domain with , i.e., Dom

Dom . The numeric value is in the range between
0 and the height of , i.e., height . For a nu-
meric , the symbolic value is always and has the
same range as , i.e., subject to

.
Each component is also associated with the same distance

hierarchy as and can also be mapped to a point in . For
a categorical with the value , is mapped to a point

with the same value; that is, . Re-
call that the symbolic part of a categorical component shares the
same domain with and, therefore, the same with the leaf set
of . Similarly, for a numeric with the value ,

is mapped to a point in such that its anchor is the
leaf node and is below by , i.e.,

.
We continue the example in Section III-B. Let

Pepsi be a unit of the GSOM with the
components correspondent to the attributes of the input data.
Similarly, we can map each component of to its associated
hierarchy. is mapped to a point at the position of (Pepsi,
0.3) in , and is mapped to a point at the position of
( , 5) in .

F. Training a GSOM

Given an -dimensional dataset , a GSOM and a set of
distance hierarchies, the GSOM training algorithm is outlined
in Fig. 3.
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Like training a conventional SOM, two key steps are identi-
fied in training a GSOM: 1) determining the BMU, and 2) up-
dating the BMU and its neighborhood units. The BMU is se-
lected from the units such that it has the minimum distance to the
input training pattern. The distance between a training pattern
and a GSOM unit is computed as the root of the total squared
difference between the correspondent components of and .
The difference between the components of and is com-
puted by mapping the components to their hierarchies and then
measuring the distance in the hierarchy. Formally,

where and map
and to , respectively.
We continue the example in Section III-E. The distance be-

tween Coke and Pepsi is
calculated as follows. The distance of the first components of
and after mapping is Coke Pepsi . The
distance of the second components of and is

. The distance between and is, therefore,
.

Once the distance between a training pattern and the BMU is
determined, the adjustment amounts of the BMU and its neigh-
bors are computed by multiplying the distance by a learning rate
and a neighborhood function. Then, the BMU and its neigh-
bors are adjusted by their respective adjustment amount such
that the adjusted units become closer toward the training pat-
tern. The adjusting of each component of a GSOM unit
toward its correspondent attribute of a training pattern is
accomplished by moving the mapping point of in to-
ward the mapping point of .

Note that in the context of training a GSOM, it is always a
point adjusted toward the other point that is located at a leaf
node, because the value of a categorical attribute of a training
pattern is always mapped to a leaf node. Therefore, for sim-
plicity, we limit our discussion of adjusting a point to this situ-
ation.

During the adjusting phase, is the adjusting aim of . In
terms of the points in their associated hierarchy, the mapping
points, say and , of and form the adjustment path
where moves toward along the path during adjusting. In
particular, referring to Fig. 2(a), let be the mapping point
which and move toward, the anchors of , , and be
(Coke), (Pepsi), and (Pepsi), respectively, the adjustment
amount be , and be the least common ancestor of and

. In this example, of and is the Carbonated_Drink.
Case 1: If is an ancestor of and it does not cross
after adjustment, then the new is , where
is the offset of to the root. Case 2: If is an ancestor of

and it crosses after adjustment, then the new
is . Case 3: If is an ancestor of and does
not cross after adjustment, then the new is .
Case 4: If is an ancestor of and crosses after
adjustment, then the new is . Note that
whenever the adjusted point crosses its least common ancestor

, the point changes its anchor to the anchor of the other
point that it moves toward. For instance, new and new in
Case 2 and 4 have changed their anchors.

Followed is an illustration of the adjusting process. Assume
that is mapped to the point Coke in Fig. 2(a).
After computation, the adjustment amount to a unit compo-
nent is assumed to be . If is mapped to the

Fig. 4. Distance hierarchies for the synthetic datasets.

TABLE I
SYNTHETIC CATEGORICAL DATASET

point Pepsi , then moves toward and be-
comes (Coke, 1.2) after adjustment. Accordingly, after the ad-
justment, new becomes (Coke, 1.2). If is mapped to

Pepsi , then moves upward, crosses the node Car-
bonated_Drink, and becomes Coke . New there-
fore becomes (Coke, 1.6). Note that both cases crossed the least
comment ancestor of Coke and Pepsi (i.e., Carbonated_Drink)
and hence changed its anchor. If instead, new
and new do not cross the least comment ancestor. Therefore,
new and new retain their anchors and become (Pepsi, 0.5)
and (Pepsi, 1.1), respectively.

Adjusting a numeric can be made easier because the hi-
erarchy that associates with is degenerated. Assume that

and the adjustment amount is . The map-
ping point of should be at the position of

in . After adjustment, moves to the position of
. In terms of the component, be-

comes after the adjustment.

G. Initializing a GSOM

To initialize a GSOM, each unit is set to a random vector in
its valid range. In terms of the mapping points in their distance
hierarchies, each component of a GSOM unit is initially asso-
ciated to a random position in its hierarchy. In particular, for a
categorical associated with the attribute of the
training data, the symbolic part is set to a value randomly
chosen from the domain of , i.e., ,
which is associated with the node labeled in . The nu-
meric part shall be randomly set in the range between 0 and
the value from the root to the node , i.e., . For
a numeric associated with , is set to the
value and to a random number between the minimum
and the maximum of , i.e., . Therefore,
when mapped, will be positioned at a location between its
anchor and the root of .

IV. EXPERIMENTS

We conducted experiments on several synthetic datasets, and
the results from different datasets showed consistent outcomes.
We present the results of two synthetic datasets, depicting the
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Fig. 5. Training results of a 100-unit GSOM using (a) binary encoding for categorical attributes and (b) categorical attributes directly.

effectiveness of the GSOM and the comparison with the conven-
tional SOM. We also apply the GSOM to analyze a real dataset.

Our prototype GSOM system was developed using Borland
C++ Builder. The map is two dimensional, and its units are ar-
ranged on a rectangular lattice. The distance hierarchies for cate-
gorical attributes used in the experiments were constructed man-
ually, and the weight of each link of the distance hierarchies was
set to one. Fig. 4 shows the categorical distance hierarchies for
the synthetic datasets.

A. Synthetic Categorical Data

This experiment aims to show the effectiveness of the GSOM
for handling categorical data and to compare its performance
to that of the conventional SOM. The experiment consists of
three parts. The first part used a GSOM with the categorical
attributes being binary-encoded. The second part used a GSOM
with the categorical attributes being used directly. The third part
used the conventional SOM toolbox [32] with the categorical
attributes being binary-encoded. The toolbox was developed by
the Laboratory of Information and Computer Science, Helsinki
University of Technology, Helsinki.

Table I shows the first synthetic dataset, which has six groups
of two categorical attributes including Department and Drink.
The total number of data patterns is 90, and each group has 10 or
20 patterns. The patterns in Group 1 and 2 are students from the
Engineering College and all like carbonated drinks. The patterns
in Group 3 and 4 are students from the Management College
who like coffee. The patterns in Group 5 and 6 are students
from the Design College who like juice. Obviously, if we take
into consideration the similarity embedded between categorical
values, the patterns in Group 1 and 2 are then more similar to
each other than to the patterns in other groups. Similar situations
occur in the patterns in Group 3 and 4, and the patterns in Group
5 and 6.

The first part of the experiment uses a GSOM with the cate-
gorical attributes being transformed to a set of binary attributes.
The map size is 100 units. The learning rate is set to a linear
function with the initial value

and the training time at least 10 times of the map
size. The neighborhood function is set to a Gaussian function.

The training results are shown in Fig. 5(a). The spots indicate
where the training patterns are assigned. The spot size is pro-
portional to the number of patterns assigned to the spot. Clearly,

the patterns are assigned to six groups on the trained GSOM. In-
specting the patterns assigned in the units, we find that each of
the groups in the data space naturally corresponds to a group on
the map. That means the patterns from the same data group are
assigned to the same unit of the map. However, this trained map
does not reflect the topological order that we embedded among
the groups in the dataset. For instance, Group 5 is located at the
upper-left part while Group 6 is located at the lower-middle of
the trained map. Although their patterns are close in the data
space, they are not next to each other on the map.

The second part of the experiment uses the GSOM with the
categorical values being used directly. The training parameters
are set to the same as those of the first part. Fig. 5(b) shows the
results indicating that the training patterns forms six groups on
the map. Inspecting further, we found that the patterns from a
group in the data space is also correctly assigned to the same
unit. In contrast to Fig. 5(a), similar groups in the dataset come
next to each other on the map. For example, in Group 1 and 2,
both the students of the Engineering College with carbonated
drinks, come close to each other on the upper-right of Fig. 5(b).
Similarly, Group 3 and 4, as well as Group 5 and 6, are next
to each other on the map. This phenomenon does not appear
on the maps of the first and the third parts of the experiment,
in which both transform the categorical values to binary values
before training.

The third part of the experiment uses the SOM toolbox de-
veloped in the Helsinki University of Technology, referred to as
KSOM in this paper. We run the KSOM with the same size of
the previous experiment (i.e., 100 units), and the categorical at-
tributes are transformed to binary attributes. The training results
are shown in Fig. 6. The six white spots on the trained KSOM
indicate that the input patterns are clustered into six groups. Ex-
amining the details, we found that each group on the trained
KSOM also corresponds to a group in the dataset. However,
like the results of the first part, no special topological order is
found among the six groups. For instance, Group 1 is located at
the lower-left part of the map while Group 2 is far away at the
upper-middle.

When trained using categorical attributes directly, our GSOM
can show the categorical value distribution of the prototype vec-
tors associated with individual GSOM units as in Fig. 7. From
this kind of map, we can tell how the categorical values spread
out on the map. We use the color of a unit to show the symbolic
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Fig. 6. Training results of a 100-unit Kohonen SOM.

Fig. 7. Value distribution of the categorical attribute Department on the trained
GSOM.

part of a GSOM unit’s component and the
lightness of the color to show the numeric part , which indi-
cates how far the mapping point is in its hierarchy away from
the root. The lighter the color is, the smaller the numeric value
of the component is. Equivalently, lighter color represents that
the mapping point is closer to the root.

Fig. 7 shows the value distribution of the attribute Depart-
ment. As shown, the MIS and MBA of the Management College
are distributed at the upper-left and the lower-left area, respec-
tively, while the EE and CE of the Engineering College are dis-
tributed at the upper-right of the map. Note that some units, like
those at (4, 3), (4, 4), and (4, 5) of the map, have lighter colors,
which means that the mapping points of the units in their dis-
tance hierarchy have smaller offsets and are closer to their root.
These units are usually found at the boundary where different
symbolic parts, representing different groups, meet.

In various experiments, we tried different initialization of the
GSOM and tried different input order of the training data to

TABLE II
SYNTHETIC MIXED DATASET

check whether the GSOM produces consistent outcomes. The
experimental results showed that neither different initialization
nor different input order affect the results of topological or-
dering.

B. Synthetic Mixed Data

This experiment uses a synthetic mixed dataset, consisting of
categorical and numeric attributes, to check the applicability of
the GSOM. The synthetic dataset has 360 patterns including two
categorical attributes, Department and Drink, and one numeric
attribute, Amount. The distribution of the dataset is shown in
Table II. For the Amount of each group, we decide an average
amount , set the standard deviation to five percent of , and
then generate an amount for each pattern in the group according
to a normal distribution . The map size is 100 units,
and other parameter settings are the same with those of the first
experiment.

The training results are shown in Fig. 8. Due to the inclusion
of the numeric attribute, the patterns in the same group, which
have identical values on Department and Drink, in the training
dataset may not necessarily be assigned to the same unit on the
trained GSOM. Roughly, the groups which have larger varia-
tions of the numeric values are likely to spread wider on the
trained map. For example, Group 1, 4, and 7 spread wider than
the others.

Fig. 8(b) shows the results of training a GSOM using the cate-
gorical attributes directly. Group 1–3 are next to one another on
the map. Inspecting the patterns in the units, we found that they
are all from the Management College and all like carbonated
drinks. Similarly, Group 4–6, as well as Group 7–9, are gath-
ered nearby. On the contrary, the results of training a GSOM
using binary encoding for the categorical attributes are shown
in Fig. 8(a), which do not reflect the correct topological order.
For example, Group 7 is at the lower-right part while Group 8
and 9 are far apart at the upper-right. Moreover, Group 2 and 3
come in between them.

Note that Fig. 8(a) indicates that the numeric attribute Amount
has significant impact on the training. The patterns with larger
amounts, i.e., Group 1, 4, and 7, tend to be under the diagonal
of the map while the other groups, with smaller amounts, tend
to gather above the diagonal. Fig. 8(b) does not show this trait
because categorical attributes in the direct GSOM approach as-
sume more diverse impact during the training due to different
extent of the similarity between categorical values. For instance,
using the distance hierarchy in Fig. 4, the distance between Coke
and Mocca is as twice as that of Coke and Pepsi. Consequently,



302 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 17, NO. 2, MARCH 2006

Fig. 8. Training results of a 100-unit GSOM using (a) binary encoding for categorical attributes and (b) categorical attributes directly.

Fig. 9. Distance hierarchies for (a) Marital_status, (b) Relationship, and (c) Education attributes of the UCI Adult dataset.

distinct categorical values may contribute differently to the dis-
tance computation between a pattern and a GSOM unit. This is
different from the binary GSOM approach in which two distinct
categorical values always result in the same difference; hence,
the numeric attribute plays relatively more important role in ar-
ranging the topological order.

C. Real Mixed Data

We applied the GSOM model to analyze the real dataset Adult
from the UCI repository [33], which has 48 842 patterns of 15
attributes, including eight categorical attributes, six numerical
attributes, and one class attribute. The class attribute indicates
whether the salary is over 50 K. In the dataset, 76% of the pat-
terns have the value of .

In this experiment, we randomly draw 10 000 patterns
and use seven attributes which include three categorical at-
tributes, Marital_status, Relationship, and Education; and
four numeric attributes, Capital_gain, Capital_loss, Age, and
Hours_per_week. The drawn patterns have 75.76% of ,
close to the distribution of the original dataset. Distance hierar-
chies for the categorical attributes are constructed as shown in
Fig. 9.

TABLE III
SALARY DISTRIBUTION IN INDIVIDUAL CLUSTERS GROUPED

ACCORDING TO THE TRAINED GSOM

After training a 400-unit GSOM using the categorical at-
tributes directly, we manually group the results to seven clusters
consisting of 9721 patterns in total, as shown in Fig. 10(b). The
distribution of the salary in each group is shown in Table III,
sorted decreasingly by the ratio of . Group 7 has the
largest ratio 59.6% of . Group 1, 2, 5, and 6 all have
much lower ratios than the original dataset. The remaining 279
patterns are treated as outliers, which are indicated by Group 0
in Table III.
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Fig. 10. Adult dataset training results of a 400-unit GSOM using (a) binary encoding for categorical attributes and (b) categorical attributes directly.

TABLE IV
MODE AND ITS PERCENTAGE OF CATEGORICAL ATTRIBUTES AND THE AVERAGE OF NUMERIC ATTRIBUTES IN INDIVIDUAL CLUSTERS ON THE

TRAINED GSOM USING THE ADULT DATASET

On the other hand, the results of using the binary encoding
approach are shown in Fig. 10(a), in which pattern distribution
appears relatively uniform. Consequently, it is difficult to cluster
the results to seven groups.

Table IV shows the characteristics of the data patterns corre-
sponding to the clusters on the GSOM in Fig. 10(b). Note that
since the attribute Education has a large domain, we show the
values aggregated according to Level 1 in its distance hierarchy
[Fig. 9(c)]. For instance, the values Prof_school, Master, and
Doctorate are generalized to the value Advanced. For a categor-
ical attribute, the mode and its percentage in a cluster are shown.
For a numeric attribute, the average value of the cluster is pre-
sented. For example, having the largest ratio of , Cluster
7 has 47% of its patterns possessing an advanced education,
99% having the Marital_Status value Married-civ-spouse, and
53% having the Relationship value Wife. For numeric attributes,
Cluster 7 has the average values Age 42, Hours_per_week 42,
Capital_gain 3163, and Capital_loss 166.

Some topological order in Fig. 10(b) can be identified by
inspecting Table IV. The lower-left area, where Cluster 7 and
3 reside, has the largest ratios of and also has larger
values in numeric attributes. Namely, they are older, work more
hours, and have larger Capital_gain and Capital_loss. Further-
more, nearly all the patterns in that area have the Marital_Status
value Married_civ_spouse. On the contrary, the upper-right
area, where Cluster 2 and 5 reside, has the smallest ratios of

. Most of the patterns in that area are Never_married
and Own_child. These patterns have smaller values in the nu-
meric attributes. In other words, they are younger and have less
work hours, smaller Capital_gain, and smaller Capital_loss.
Roughly, these characteristics match our general perception
regarding the household salary.

V. CONCLUDING REMARKS

Along with other experiments we conducted, the results also
confirmed that the GSOM shares the following common prop-
erties with the conventional SOM: 1) When input patterns are
relatively diversified, the map size should not be too small, oth-
erwise the clustering performance will decrease. 2) The initial
range of updating BMU’s neighbors should cover most part of
the map and then gradually decrease the range as the training
time elapses. 3) Neither the initialization of the map nor the
order of inputting patterns has significant impact on the topo-
logical ordering of the trained map. 4) The training time and the
labeling time both linearly depends on the dataset size and the
map size.

The contribution of this research is generalizing the SOM to
directly handle categorical data and mixed data such that the
SOM can process more diverse data and thus expand its ap-
plicability. In addition, we propose the structure distance hi-
erarchy that can model several traditional distance computa-
tion schemes, including simple matching, binary transforma-
tion, and numeric subtraction. Furthermore, distance hierarchy
offers a unified platform for measuring the distance between
mixed-type, numeric, and categorical data.
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