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Abstract

In our previous work, we have presented an algorithm that extracts classification rules

from trained neural networks and discussed its application to breast cancer diagnosis.

In this paper, we describe how the accuracy of the networks and the accuracy of the

rules extracted from them can be improved by a simple pre-processing of the data.

Data pre-processing involves selecting the relevant input attributes and removing those

samples with missing attribute values. The rules generated by our neural network rule

extraction algorithm are more concise and accurate than those generated by other rule

generating methods reported in the literature.

Keywords. Neural network rule extraction; Wisconsin breast cancer diagnosis; Data

pre-processing; Attribute selection.
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1 Introduction

Neural networks have been shown to be valuable tools for pattern classification in

various areas of the medical field [2, 3, 5, 6, 7, 9, 10, 12, 20, 21]. Given an input

pattern, the neural network prediction is normally computed as a complex nonlinear

mapping of the input attribute values. In some applications, in addition to achieving

high predictive accuracy, having a set of meaningful and easy to explain classification

rules is desirable. Such rules can be verified by the experts and may provide better

understanding of the problem in hand. It is not surprising, therefore, that in recent

years there is a proliferation of algorithms which extract rules from trained neural

networks [1].

A rule extraction algorithm that we have proposed earlier is NeuroRule [13]. It is

an algorithm that extracts rules from trained feedforward neural networks with a single

hidden layer. Two key components of this algorithm are a network pruning method

[15] and a hidden unit clustering algorithm. An effective pruning algorithm removes

the redundant connections and units from the network. A robust clustering algorithm

clusters or discretizes the hidden unit activation values of the input patterns into a

small number of clusters. The rules are extracted in two steps. The network outputs

are first described as classification rules in terms of the clustered hidden unit activation

values. Each cluster of hidden unit activation values is then explained as rules that

involve the input attributes. By merging the two sets of rules, the algorithm obtains

a set of rules that explains the network outputs in terms of the input attributes of

the data. A more concise set of rules can be thus expected from a network with fewer

connections and fewer clusters of hidden unit activations.

An application of NeuroRule to the Wisconsin breast cancer diagnosis (WBCD)

problem has been reported in our previous work [14]. Since then, there have been a

number of papers that introduce new methods for rule generation and their application

to WBCD. Among the methods presented in these papers are a combined fuzzy-genetic

3



approach [11] and three neural network rule extraction algorithms [18, 19]. A common

feature of these more recent works is that their authors claim their methods can achieve

better performance than NeuroRule in terms of rule simplicity and rule accuracy.

In this paper we propose how the performance of NeuroRule for WBCD can be

improved by data pre-processing. Two steps are involved in the data pre-processing.

The first step is to check samples with missing attributes values. Of the 699 samples

in the WBCD data set, 16 samples have one missing attribute value each. Before

neural network training starts, those samples with missing attribute values are simply

discarded. This is also done by other researchers [11, 19] before they applied their

methods. The second step of data pre-processing is to select the most relevant attributes

of the data for classification. Attribute selection is done by neural networks with one

hidden unit. The advantage of attribute selection is that it reduces the computation

time required to train and prune the the neural networks for rule generation.

In Section 2 of this paper we provide a brief outline of NeuroRule. The results of

our experiments using NeuroRule on the pre-processed WBCD data set are presented

in Section 3. Sample rules that are extracted from three different pruned networks are

presented here. In this section, we also compare our results with those from other rule

generating methods. Finally, we conclude in Section 4.

2 Rule extraction with NeuroRule

We give a brief outline of NeuroRule [13] in this section. As the feedforward neural

networks are among the most common type of networks used, NeuroRule attempts

to extract rules from this type of networks. The network is assumed to have an input

layer, a hidden layer, and an output layer. The number of units in the input and output

layers depends on the dimensionality of the data and the number of classes or groups of

samples. The number of units in the hidden layer can be determined by either having

many hidden units and then removing those redundant ones or by starting with one
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hidden unit and then adding more units as needed to achieve the minimum required

accuracy. In this paper, as in our previous work, we adopt the first approach. The

number of hidden units needed for classifying the samples of the WBCD data set using

a single hidden layer feedforward neural networks is as few as three and as many as

nine [4, 14, 19].

Network connections link units in the input layer to units in the hidden layer and

units in the hidden layer to those in the output layer. There is no direct connections

between units in the input layer and units in the output layer. Given this network

structure, it is natural to decompose the process of rule extraction into two steps and

then combine the two sets of rules. The outline of the rule extraction method is as

follows:

1. Select and train a network to meet the prespecified accuracy requirement.

2. Remove the redundant connections in the network by pruning while maintaining

its accuracy.

3. Discretize the hidden unit activation values of the pruned network by clustering.

4. Extract rules that describe the network outputs in terms of the discretized hidden

unit activation values.

5. Generate rules that describe the discretized hidden unit activation values in terms

of the network inputs.

6. Merge the two sets of rules generated in Steps 4 and 5 to obtain a set of rules

that relates the inputs and outputs of the network.

In Step 1, we train the network by minimizing the augmented error function

F (w, v) = −

k
∑

i=1

C
∑

p=1

(

tip log Si
p + (1 − tip) log(1 − Si

p)
)

+ P (w, v), (1)
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where P (w, v) is the penalty term

P (w, v) = ε1
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In the above equations, ε1, ε2 and β are positive parameters, tip is the target output at

unit p for the n-dimensional input sample xi, while Si
p is the network output for this

sample

Si
p = σ





h
∑

j=1

δ
(

(xi)T wj
)

vj
p



 , (3)

where (xi)T wj denotes the scalar product of the input vector xi and wj , the weight

vector for connections from the input units to hidden unit j. δ(.) is the hyperbolic

tangent function, and σ(.) is the sigmoid function. The weight of the connection from

input unit ` to hidden unit j and the connection from hidden unit j to output unit

p are denoted as w
j
` and vj

p, respectively. The number of training samples is k, the

dimensionality of the data is n and the number of hidden units is h. For a binary

classification problem C = 1 output unit is sufficient, otherwise C is set to the number

of classes in the data set.

Once network training has stopped, network pruning begins. Network connections

are selected for removal based on their magnitudes. After one or more connections have

been removed, the network is retrained and rechecked to see if any more connections

can be removed. The details of the network pruning algorithm can be found in [15].

Since hidden unit activation values have been computed as the hyperbolic tangent

of the weighted inputs, their values will lie in the interval [−1, 1]. Before rules are

extracted, the activation values are clustered. Clustering is equivalent to dividing

the interval [−1, 1] into several subintervals. We have developed several clustering

algorithm such as Chi2 [16] and greedy clustering algorithm (GCA) [17]. The goal of

applying a clustering algorithm to the hidden unit activations is to have the network

outputs described by as few cluster combinations as possible. Cares are taken when
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clustering so that a sample that is correctly classified by the trained network will still

be correctly classified after its hidden unit activation values have been clustered.

In the next section, we present the results from applying the clustering algorithm

to a pruned network that have been trained on the WBCD data set. We also show the

rules that are extracted from 3 different pruned networks.

3 The WBCD problem

3.1 Data set and its pre-processing

The data set 1 consists of 699 samples taken from fine needle aspirates from human

breast tissue. They have been collected by Dr. W.H. Wolberg at the University of

Wisconsin - Madison Hospitals. Each sample consists of nine measurements: A1. clump

thickness, A2. uniformity of cell size, A3. uniformity of cell shape, A4. marginal

adhesion, A5. single epithelial cell size, A6. bare nuclei, A7. bland chromatin, A8.

normal nucleoli, and A9. mitosis. The measurements are assigned an integer value

between 1 and 10, with 1 being the closest to benign and 10 the most anaplastic.

Associated with each sample is its class label, which is either benign or malignant.

Since we are extracting Boolean rules, the attribute values are recoded into binary

values 0 or 1 using the following scheme

Ai = k ⇔















I10×(i−1)+j = 1 ∀ j = 1, 2, . . . , k

I10×(i−1)+j = −1 ∀ j = k + 1, k + 2, . . . , 10

Hence, in total there are 9× 10 input units in the network. The number of output unit

is 1, benign samples are given the target value of 0, while malignant samples are given

the target value of 1. Binary coding the original data increases the dimensionality of

the input data ten fold. This may increase the network training time since the number

of network connections increases proportionally. However, this drawback can be more

1It is publicly available from http://www.ics.uci.edu/˜mlearn/MLRepository
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than compensated by the fact that the classification problem in the new input space

can be very much simpler than in the original input space. Indeed, for the WBCD data

set, after the input data are binary coded as described above, all 699 samples become

linearly separable. There exists a hyperplane in IR90 such that all the benign samples

lie on one side of this hyperplane and all the malignant samples lie on the other side.

The two data pre-processing steps are the following:

1. Removal of data with missing attributes values. A small portion of the data (16

out of 699 samples) has 1 missing attribute value. We discard all these samples.

This step was also applied by other authors [11, 18], hence fair comparison of

our results against theirs can be made. The 683 samples (339 malignant and 444

benign) with complete attribute values are split randomly into a training set that

consists of 119 malignant samples and 222 benign samples and a test set that

consists of the remaining 120 malignant samples and 222 benign samples.

2. Selection of relevant input attributes. Previous works on this data set indicate

that only a small subset of the input attributes is needed for classification. Our

approach to reduce the dimensionality of the input data is to employ neural

networks with a single hidden unit. Fifty neural networks each having 90 input

units, 1 hidden unit and 1 output unit are trained and pruned. Each of these

networks is trained to achieve 100% accuracy on the training data set. Network

connections are removed as long as the resulting network can still achieve this

perfect classification accuracy. The input units left after pruning indicate not

only which of the original 9 input attributes of the data are relevant, but they

also indicate the cut-off values of each of these relevant attributes. Due to the

nonconvexity of the error function (1), networks that have been initialized with

different random connection weights will result in different network configuration

when the pruning process terminates. As a consequence, the selected input sets

are not always the same. This is the reason why we trained and pruned 50
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networks initialized with different weights to select the relevant input attributes.

Attributes that are still present in 10 or more pruned networks are considered to

be important for classification. There are 25 such attributes and they are used

to train neural networks for rule generation.

3.2 Results from network training and pruning

We conducted two sets of experiments on the WBCD data training and test data sets.

In the first experiment, 100 neural networks each with 3 hidden units were trained.

While in the second experiment, another 100 neural networks each with 5 hidden

units were trained. Each network connection was assigned a different initial random

weights in the interval [−1, 1]. Network connections were removed by our N2P2F

pruning method [15] as long as the their accuracy rates on the training data set is

still 95% or higher. From each training session, we also recorded the network with the

fewest connections that correctly classifies at least 98% of the training samples for rule

extraction. The parameters in the penalty term (2) were set as follows: β = 10, ε1 =

1, ε2 = 103. The results from the experiments are summarized in Table 1.

TABLE 1 HERE

The figures in Table 1 show that by removing samples with missing values, more

accurate pruned networks can be obtained. In our previous work [14], we reported

average predictive accuracy rates of 92.73% and 93.78% respectively, for the networks

pruned to 95% and 98% accuracy on the training samples. The corresponding figures

are now 95.44% and 96.66%, thus giving an average increase of almost 3% for each

network on the test samples and 1.5% on the entire 683 samples with no missing

values. As a result, we are also able to extract rules with better accuracy rates. Some
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of the pruned networks and the rules extracted from them are presented in the next

subsection.

Pruning the networks to achieve 95% classification accuracy reduces the number of

network connections significantly. On average, the networks have 8 connections left.

However, many of these networks seem to be over-pruned as their accuracy rates both on

the training and test data sets drop. The average predictive accuracy drops by slightly

more than 1% for the networks with 3 and 5 hidden units. Networks that were pruned

to 98% accuracy preserve their predictive accuracy rate of about 96.7%. Is is also worth

noting that in order to achieve 1% higher predictive accuracy rates, almost twice as

many network connections are needed. For the 3 hidden unit networks, networks with

an average number of 7.59 connections achieve 95.51% predictive accuracy. The average

number of connections of networks that achieve 1.20 % higher predictive accuracy is

13.89. For the 5 hidden unit networks, an improvement of 1.24% in the predictive

accuracy is obtained by the networks with an average of 14.35 connections over those

with an average of 8.03 connections.

3.3 Extracted rules

We give three examples of rule sets that are extracted from the pruned networks here.

The examples are chosen to illustrate the many different possibilities to describe the

WBCD data set with high degree of accuracy. Neural networks trained with different

initial weights will yield different final pruned networks. The rules generated from

the different pruned networks vary in their complexity and generalization capability as

shown by our there examples presented below.

Example 1.

FIGURE 1 HERE

10



A small network with only 4 input units and 2 hidden units is found to be able to

classify the samples in the training and test data sets with more than 97% accuracy

rates. This network is depicted in Figure 1. Of the 341 training samples, 331 are cor-

rectly classified, giving a classification accuracy rate of 97.07%. The activation values

of the 331 samples (216 benign samples and 115 malignant samples) were clustered by

GCA and 2 clusters were found at each of the 2 hidden units. At hidden unit H1, all

activation values in the subinterval [−1, 0) can be replaced by its lower bound value of

-1 and all activation values in the subinterval [0, 1] can be replaced by 0. At hidden unit

H2, the 2 cluster values are -0.94 and 0.15. There was no training sample with hidden

unit activation that is less than -0.94 at H2. The 2 hidden units left and the 2 clusters

at each hidden unit imply that it is possible to represent the WBCD training data as

four 2-dimensional samples and correctly distinguish between 216 benign samples and

115 malignant samples.

Let us denote α1 = 1 if a sample activation value at hidden unit H1 falls in the

first subinterval [−1, 0), and α1 = 2 otherwise. Similarly, let α2 = 1 indicate that the

sample activation value at hidden unit H2 falls in in the subinterval [−0.94, 0.15) and

α2 = 2 indicate that the activation value falls in the interval [0.15, 1].

The samples represented by 4 hidden unit cluster combinations can be distinguished

by the very simple rule:

Rule 1a:

If α1 = 2 and α2 = 1, the benign,

else malignant.

Instead of having a default rule for malignant class, we can also have rules that describe
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the samples of this class explicitly:

Rule 1b:

If α1 = 1, then malignant,

If α2 = 2, then malignant,

else benign.

Hidden unit H1 is connected to I16 and I55, while hidden unit H2 is connected to

I4 and I72. The next step of NeuroRule is to determine what combinations of these

inputs produce the different cluster activation values. For this purpose, we make use of

X2R [8]. It takes as input a set of discrete patterns with the class labels and produces

the rules describing the relationship between the patterns and their class labels. For

H1, it found that α1 = 1 iff I16 = 1 or I55 = 1, otherwise α1 = 2. For H2, α2 = 1 iff

I4 = I72 = 0, otherwise α2 = 2.

We replace the rule conditions in Rule set 1b to obtain the following rules in terms

of the binary encoded inputs of the WBCD data set:

Rule 1c:

If I4 = I16 = I55 = I72 = 0, then benign,

else malignant.

or the second set of rules that describes malignant samples:

Rule 1d:

If I16 = 1, then malignant,

else if I55 = 1, then malignant,

else if I4 = 1, then malignant,

else if I72 = 1, then malignant,

else benign.

In terms of the original 9 attributes of the data, the corresponding rule set is either the
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set that describes the benign samples:

Rule 1e:

If A1 ≤ 6,A2 ≤ 4,A6 ≤ 5,A8 ≤ 8, then benign,

else malignant.

or a second set of rules that describes malignant samples:

Rule 1f:

If A2 ≥ 5, then malignant,

else if A6 ≥ 6, then malignant,

else if A1 ≥ 7, then malignant,

else if A8 ≥ 9, then malignant,

else benign.

The accuracy rates of the rule sets 1e and 1f on both the training and test data sets

are exactly the same as the accuracy of the pruned neural network from which they

were generated. These are summarized in Table 2.

TABLE 2 HERE

Example 2.

FIGURE 2 HERE

The network chosen for this example has 3 hidden units left after pruning (Figure

2). Hidden unit H1 is connected to input unit I16, hidden unit H2 to input unit I54,

and hidden unit H3 to input units I5, I36, I58 and I78. Two clusters were found by the

clustering algorithm at each of the 3 hidden units. The rule set that is extracted from

this pruned network is as follows:
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Rule 2a:

If A2 ≤ 4 and A6 ≤ 2 and A8 ≤ 2, then benign,

else if A1 ≤ 6 and A1 ≤ 5 and A2 ≤ 4 and A8 ≤ 2, then benign,

else if A1 ≤ 5 and A2 ≤ 4 and A4 ≤ 4 and A6 ≤ 2, then benign,

else malignant.

A set of rules that describe the malignant samples instead of the benign samples

can also be generated from the same pruned network:

Rule 2b:

If A2 ≥ 5, then malignant,

else if A6 ≥ 7, then malignant,

else if A6 ≥ 3 and A8 ≥ 3, then malignant,

else if A1 ≥ 6 and A6 ≥ 3, then malignant,

else if A4 ≥ 5 and A8 ≥ 3, then malignant,

else if A1 ≥ 6 and A8 ≥ 3, then malignant,

else benign.

The accuracy rates of Rule 2a and Rule 2b are the same, but they are slightly higher

than the accuracy of the pruned network. A malignant sample in the training data

set that was misclassified by the pruned network is correctly classified by the rules.

Only samples that have been correctly classified by a pruned network are used to find

the clusters of hidden unit activation values. The rules extracted from the network

will correctly classified all these samples. However, it is possible that one or more

samples that are misclassified by the network to be correctly classified by the rules as

this example shows. For this example, it turns out the rules also correctly classify one

benign sample in the test set that was misclassified by the network. The accuracy rates
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of the rules are summarized in Table 3.

TABLE 3 HERE

Example 3.

One of the pruned networks with the highest overall accuracy rate of 98.24% has only

2 hidden units and 9 connections. The rule set extracted by NeuroRule is as follows:

Rule 3:

If A2 ≤ 4 and A6 ≤ 2 and A8 ≤ 2, then benign,

else if A2 ≤ 4 and A6 ≤ 2 and A8 ≤ 8 and A1 ≤ 6, then benign,

else if A1 ≤ 5 and A4 ≤ 4 and A6 ≤ 5 and A8 ≤ 2, then benign,

else if A1 = 6 and A2 ≤ 4 and A6 ≥ 6 and A8 ≤ 8, then benign,

else if A2 ≤ 4 and A4 ≥ 5 and A6 ≤ 5 and 3 ≤ A6 ≤ 5 and A8 ≤ 8, then benign,

else malignant.

TABLE 4 HERE

The accuracy rates of Rule 3 are shown in Table 4. The classification accuracy of

these rules is slightly higher than the accuracy of the network and the rules in Example

2. However, their predictive accuracy is lower. This example clearly illustrates that a

network that fits the training data better with more parameters does not necessarily

generalize better. An additional disadvantage of having a pruned network that overfits

the data is that the rule set generated from it will be more complex. Compared to the
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rule sets in Examples 1 and 2, this rule set has more rules and more conditions per rule

on average.

3.4 Comparison with other rule extraction methods

TABLE 5 HERE

Several other authors have made use of the WBCD data set to measure the per-

formance of their rule generating algorithms. Taha and Gosh [18, 19] proposed 3

algorithms for rule extraction from neural networks. These algorithms are Binarized

Input-Output Rule Extraction (BIO-RE), Partial Rule Extraction (Partial-RE) and

Full Rule Extraction (Full-RE). BIO-RE is a black box rule extraction technique which

does not require informations regarding the internal network structure to generate rules.

The method can be applied to data with binary attributes only. A truth table is con-

structed from the pairs of input samples and their network outputs, logic minimization

tools are then utilized to obtain the optimal binary classification rules.

Partial-RE searches for a set of incoming connections to a unit that will caused the

unit to be active. To speed up the search, weight connections to each hidden unit and

output unit are first sorted. Positive weights are grouped into one set and negative

weights into a second set. The rule generated can be of the form: if (input units

with positive connections are active), then output unit is active or if (input units with

negative connections are not active), then output unit is active, or the combination of

the two. Partial-RE assumes that all inputs have the same range so that the effect of

these inputs on a hidden unit is determined by their weights only.

The third technique Full-RE is similar to NeuroRule, both methods decompose the

rule extraction process into two steps: rules between hidden and output units and rules
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between input units and hidden units. The difference is that Full-RE employs linear

programming and an input discretization method to find a combination of the input

values that will cause a hidden unit to be active.

A rule generating method that combines genetic algorithm and fuzzy logic is pro-

posed by Peña-Reyes and Sipper [11]. The number of rules to be generated by the

method needs to be determined a priori. For WBCD, this ranges from 1 to 5. How-

ever, the number of conditions per rule is automatically found by the evolutionary

algorithm. A rule condition is composed of one or more simple fuzzy expressions joined

by fuzzy operators. A simple fuzzy rule condition is either if input is Low or if input

is High. For each of the 9 input attributes, two parameters are needed to encode its

membership function. P and d are the parameters that define the start point and the

length of membership function edges, respectively. To obtain their results, the authors

fixed the population size to 200 individuals. The algorithm terminates when the max-

imum number of generations is reached or when there is no significant increase in the

fitness of successive generations. A second set of experiments was also conducted by

the authors where they restricted the number of conditions per rule. To make up for

less conditions per rule, they increased the number of rules up to 7.

Table 5 compares the performance of NeuroRule and the other algorithms. BIO-RE,

Partial-RE and Full-RE results were reported by Taha and Gosh in [19]. Fuzzy-GAs

are the results obtained by Peña-Reyes and Sipper from their fuzzy genetic approach.

Fuzzy-GA results shown in Table 5 are summarized according to the number of rules

since since their algorithm requires it to be fixed by the user.

From Table 5 we can see that NeuroRule generates more compact sets of rules. Rule

1e has only 1 rule with 4 conditions. The only other algorithm that can generate a rule

set with only 1 rule is the one that specifically searches for this type of rules, namely

Fuzzy-GA1. Fuzzy-GA1 rule however, is not as accurate as Rule 1e of NeuroRule.

Fuzzy-GA1 rule has 4 conditions, but it should be noted that a fuzzy rule condition
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such as Low or High is actually defined by 2 parameters P and d. Hence, the number

of conditions per rule of Fuzzy-GAs is actually twice as much.

The highest overall accuracy is 98.24% obtained by Rule 3 and by Fuzzy-GA4.

Fuzzy-GA4 rule set has on average 5.8 fuzzy conditions per rule, while Rule 3 consists

of 5 rules with 21 crisp conditions. From the figures in Table 5, we may conclude that

NeuroRule and the fuzzy genetic approach produce rule sets that are comparable in

accuracy, but the rule sets of the former are smaller that those of the latter.

The accuracy of the rules obtained by BIO-RE, Partial-RE and Full-RE are lower

than those obtained by the NeuroRule or the fuzzy genetic approach. The number of

conditions per rule of these 3 algorithms are comparable to those of NeuroRule, but

more rules are generated by BIO-RE, Partial-RE and Full-RE. It is pointed out by

Taha and Gosh [18, 19] that the accuracy rates of NeuroRule drop significantly when

the default rule is not taken into account. They also pointed out that it may not

be desirable to classify a sample by default, that is, a sample is classified as either

benign or malignant because “none of the above conditions” is satisfied. A complete

rule set that covers each sample in the training data set by at least one of the rules

in the set can be generated by NeuroRule. Examples 1 and 2 clearly illustrate this

possibility. We can simply merge Rule 1e and Rule 1f for example, to obtain rules

for both benign and malignant cases. When this is done, the overall accuracy of the

resulting merged rule set is still 97.36%. The total number of rules will be 5 and the

number of conditions per rule is 1.6. The resulting merged rule set is more compact and

the overall accuracy is more than 1% higher than Full-RE’s rule set. Having a default

rule is still necessary even when rules that cover all samples in the training data have

been generated. Without a default rule, it is possible that a new sample cannot be

classified because its attribute values do not satisfy the conditions of any of the rules.
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4 Conclusion

In this paper, we present the application of our method for rule extraction from neural

networks on the Wisconsin Breast Cancer Diagnosis dataset. The paper highlights

the usefulness of data pre-processing before rules are extracted or neural networks

are trained. The data pre-processing step entails the removal of samples with missing

attribute values and the selection of a subset of the original attributes for classification.

The advantages of data pre-processing include higher network predictive accuracy and

faster network training. More accurate rule sets can be extracted from pruned networks

that achieve high accuracy rates. Faster network training time allows us to train many

networks which will provide us with different pruned network structures to choose from

for rule extraction. We note that our algorithm NeuroRule can be applied to extract

rules from any pruned neural networks with a single hidden layer. It can be expected

that networks with higher classification accuracy will generate larger sets of rules.

This, however, does not imply that the networks and the rules extracted from them

necessarily have better predictive accuracy as the examples presented in this paper

show.

We compared the results from our method against those of other rule extraction

methods. Our method can generate more compact rules with higher overall accuracy

rates. We hope that the results presented here will lead to more application of the

method to other problem domains.
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Table captions:

Table 1 Summary of the results from 100 networks with h = 3 hidden units and 100

networks with h = 5 hidden units. The values shown are the averages and in

parentheses, the standard devisions.

Table 2 The accuracy of Rules 1e and 1f.

Table 3 The accuracy of Rules 2a and 2b.

Table 4 The accuracy of Rule set 3.

Table 5 Comparison of NeuroRule and other rule extraction algorithms on WBCD.
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Figure captions:

Figure 1 A pruned network with only 4 connections from the input units to the hidden

units. Its classification accuracy is 97.07% and its predictive accuracy is 97.66%.

Numbers shown are connection weights.

Figure 2 A pruned network that achieves 97.65% classification accuracy and 97.95%

predictive accuracy.
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h = 3 Before pruning:

Number of connections 81 (0.00)

Accuracy on training data 99.36 (0.50)

Accuracy on test data 96.67 (0.63)

Overall accuracy 98.01 (0.30)

After pruning: 95% 98%

Number of connections 7.59 (1.75) 13.89 (2.58)

Accuracy on training data 95.83 (0.70)% 98.40 (0.22)%

Accuracy on test data 95.51 (1.25)% 96.71 (0.57)%

Overall accuracy 95.67 (0.83)% 97.56 (0.29)%

h = 5 Before pruning:

Number of connections 135 (0.00)

Accuracy on training data 99.50 (0.32)

Accuracy on test data 96.52 (0.62)

Overall accuracy 98.01 (0.31)

After pruning: 95% 98%

Number of connections 8.03 (1.96) 14.35 (2.33)

Accuracy on training data 95.87 (0.70)% 98.43 (0.25)%

Accuracy on test data 95.36 (1.29)% 96.60 (0.63)%

Overall accuracy 95.61 (0.89)% 97.52 (0.34)%
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Training set Test set Training and test sets

Malignant 115/119 117/120 232/239

samples 96.64 % 97.50 % 97.07 %

Benign 216/222 217/222 433/444

samples 97.30 % 97.75 % 97.52 %

Overall 331/341 334/342 665/683

97.07 % 97.66 % 97.36 %
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Training set Test set Training and test sets

Malignant 118/119 120/120 238/239

samples 99.16 % 100.00 % 99.58 %

Benign 216/222 216/222 432/444

samples 97.30 % 97.30 % 97.30 %

Overall 334/341 336/342 670/683

97.95 % 98.25 % 98.10 %
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Training set Test set Training and test sets

Malignant 118/119 119/120 237/239

samples 99.16 % 99.17 % 99.17 %

Benign 218/222 216/222 434/444

samples 98.20 % 97.30 % 97.75 %

Overall 336/341 335/342 671/683

98.53 % 97.95 % 98.24 %
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Method #Rules #conditions #conditions per rule Overall accuracy

NeuroRule - Rule 1e 1 4 4.0 97.36%

NeuroRule - Rule 1f 4 4 1.0 97.36%

NeuroRule - Rule 2a 3 11 3.7 98.10%

NeuroRule - Rule 2b 6 10 1.7 98.10%

NeuroRule - Rule 3 5 21 4.2 98.24%

BIO-RE 10 30 3.0 96.63%

Partial-RE 9 24 2.7 96.49%

Full-RE 5 9 1.8 96.19%

Fuzzy-GA1 1 4 4.0 97.07%

Fuzzy-GA2 2 6 3.0 97.36%

Fuzzy-GA3 3 16 5.3 97.66%

Fuzzy-GA4 4 23 5.8 98.24%

Fuzzy-GA5 5 30 6.0 97.95%

Fuzzy-GA6 6 37 6.2 98.10%

Fuzzy-GA7 7 35 5.0 97.95%
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I−16 I−55 I−72I−4

−2.81
−1.52

2.78
1.88

−6.34 4.49

H1 H2

Bias

−1.73
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I−16I−5 I−78I−58I−54I−36

−14.28

8.89

Bias−5.53

−3.85

10.22

4.00
4.636.524.20

−2.26

3.09
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