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Abstract. Filtering constraint networks to reduce search space is one of the
main cornerstones of Constraint Programming and among them (Generalized)
Arc Consistency has been the most fundamental. While stronger consistencies
are also the subject of considerable attention, none matches GAC’s and for this
reason it continues to advance at a steady pace and has become the popular choice
of consistency for filtering algorithms. In this paper, we build on the success of
GAC by proposing a way to transform a constraint network into another such that
enforcing GAC on the latter is equivalent to enforcing a stronger consistency on
the former. The key idea is to factor out commonly shared variables from con-
straints’ scopes, form new variables, then re-attach them back to the constraints
where they come from. Experiments show that this method is inexpensive and
outperforms specialized algorithms and other techniques when it comes to full
pair-wise consistency (FPWC).

1 Introduction

Generalized arc consistency (GAC) is one of the most studied filtering algorithms for
constraint satisfaction problems (CSPs) due to its simplicity and excellent performance
in practice. Domain reduction interspersed with GAC during backtracking search has
become the foremost method for solving a general CSP [17]. GAC on positive table
constraints, in particular, has received a great deal of attention in recent years [3, 4, 9,
10, 12, 14]. These advances in turn provide a basis for many algorithms that enforce
even stronger consistencies than GAC to build on.

In [6] it was shown that a network is pairwise consistent (PWC) iff its dual CSP is
arc consistent. PWC is a k-wise consistency [5] for the case where k = 2. This is one
of the earlier works that demonstrates how (G)AC can be used to achieve other types of
consistencies. Consistencies of level/order higher than GAC are also the subject of many
recent works [8, 11, 16]. Specifically, maxRPWC, PWC, and FPWC are investigated in
[2, 11, 16]. Many of the algorithms that enforce these consistencies are based on well-
established GAC algorithms. In [16], the authors extended the GACva algorithm [12] to
enforce maxRPWC. Subsequently, STR2 was extended to cope with FPWC, resulting
in eSTR2 [11] which gets improvement similar to how STR2 outperforms GACva.

As another area of focus in CSPs, researchers have studied how to transform non-
binary constraint networks into equivalent binary constraint networks so that the algo-
rithms and methods from the binary case can be applied [1, 18]. Two techniques emerge
as a result: the hidden transformation and the dual transformation. Both rely on the dual



variable associated with each constraint, whose domain values have a one-to-one corre-
spondence with the constraint’s tuples. Nevertheless, the benefits of the transformation
diminish as filtering algorithms for non-binary CSPs get better.

In this paper, we propose to transform a non-binary constraint network into another
non-binary constraint network such that the latter is GAC if and only if the former is
full pairwise consistency (FPWC), which means both GAC and PWC. In this respect,
our intention is similar to that of the authors of [13] who proposed another kind of
transformation. Like the transformation from non-binary to binary network, the one in
[13] is based on dual variables. But here the dual variable is included into the scope of
the constraint it is associated with. The pruning power comes from the join of tables
that uses the dual variables as its scope so that propagation can be transmitted directly
to other constraints.

Our transformation works in a fundamentally different way. Instead of forming a
dual variable for each constraint, we factor out commonly shared variables among them.
These variables form new compound variables that will be augmented to only the con-
straints that are involved. For FPWC, no new constraints are created. We extend this
transformation to cover general k-wise consistency, adding new constraints reduced
from the join of k tables. Preliminary experiments show that for FPWC our method is
faster than both [13] and a specialized FPWC algorithm. For k-wise consistency where
k ≥ 3, our transformation can lower the number of nodes visited during search but it is
more costly and thus of limited application unless the search reduction is large.

2 Preliminaries

A constraint network P is a (X , C) where X is a set of n variables {x1, . . . , xn} and
C a set of e constraints {c1, . . . , ce}. D(x) is the domain of x ∈ X . During search,
Dc(x) denotes the current domain of x. If a ∈ Dc(x), a is said to be present in D(x);
otherwise a is absent from D(x). We use (x, a) to denote the value a ∈ D(x) (or
simply a when the context is clear). Each c ∈ C involves two components: a scope
(scp(c)) which is an ordered subset of variables of X ; and a relation over the scope
(rel(c)). Given scp(c) = {xi1 , . . . , xir}, rel(c) ⊆

∏r
j=1 D(xij ) represents the set of

satisfying combinations of values for the variables in scp(c). We may also refer to c
by c(xi1 , . . . , xir ) to emphasize the scope. A constraint’s scope can be made unique by
combining the constraint’s relation with relations from other constraints with the same
scope through intersection. We assume a total ordering for every rel(c) and use ρ(c, i)
to denote the ith tuple. The arity of c is |scp(c)|. Given an ordered set S ⊆ scp(c)
and τ ∈ rel(c), the projection of τ on S (τ [S]) is the tuple consisting of only the
components of τ that correspond to the variables in S. A tuple τ = (aii , . . . , aik)
where aij ∈ D(xij ) is said to be an tuple over {xi1 , . . . , xik}. The join of constraints
ci and cj (ci 1 cj) is a constraint whose scope is scp(ci)∪scp(cj) and whose relation is
{τ | τ is a tuple over scp(ci)∪ scp(cj)∧ τ [scp(ci)] ∈ rel(ci)∧ τ [scp(cj)] ∈ rel(cj)}.
The join of tuples τi ∈ rel(ci) and τj ∈ rel(cj) (τi 1 τj) is the tuple τ over scp(ci) ∪
scp(cj) such that τ [scp(ci)] = τi and τ [scp(cj)] = τj . When elements in rel(c) are
given explicitly, c is called a positive table constraint. A tuple τ ∈ rel(c) is valid iff
τ [x] ∈ Dc(x) for each x ∈ scp(c). Otherwise τ is invalid. A tuple τ ∈ rel(c) is a



support of (x, a) in c iff τ [x] = a. A value (x, a) is generalized arc-consistent (GAC)
on a constraint c involving x iff there exists a valid support τ of (x, a) in c. A value
(x, a) is GAC iff it is GAC on every constraint c involving x. A variable x is GAC iff
Dc(x) 6= ∅ and (x, a) is GAC for each a ∈ Dc(x). P is GAC iff each of its variables
is GAC. A solution to P is a valid tuple over X such that every constraint is satisfied.
P is satisfiable iff one solution exists. The constraint satisfaction problem (CSP) is the
NP-hard task of determining whether a given constraint network is satisfiable or not.

A compound variable X is a cross-product composition from {xi1 , . . . , xim} ⊆
X , called X’s signature (σ(X)), where D(X) ⊆

∏m
j=1D(xij ) and its values are

sometimes referred to as compound values. Given a constraint c and an ordered set
S = {xi1 , . . . , xim} ⊆ scp(c), we denote λc(S) to be the compound variable on S
with respect to c whose domain D(λc(S)) is {τ [S] | τ ∈ rel(c)}. It follows that
σ(λc(S)) = S. A value in D(λc(S)) may be written as ā = (ai1 , . . . , aim). We also
use π(λc(S), xik) to denote {aik | ā ∈ D(λc(S))} where k ∈ {1, . . . ,m}. Similarly,
πc(λc(S), xik) = {aik | ā ∈ Dc(λc(S))}. We may drop the subscript and write λ(S) if
there is no ambiguity. Non-compound variables are called ordinary variables. For uni-
formity, σ is defined for all variables, i.e. σ(x) = {x} for an ordinary variable x. A
value (x, a) is max-restricted pairwise consistent (maxRPWC) iff for all ci ∈ C where
x ∈ scp(ci), (x, a) has a valid support τi in rel(ci) such that for any other cj ∈ C there
exists a valid tuple τj ∈ rel(cj) and τi[scp(ci) ∩ scp(cj)] = τj [scp(ci) ∩ scp(cj)]. P
is maxRPWC iff all values are maxRPWC. P is k-wise consistent (kWC) iff given any
group of k constraints {cii , . . . , cik}, then for any τ ∈ rel(cij ) for some j there exists a
valid tuple τ ′ over

⋃k
l=1 scp(cil) such that τ ′[scp(cij )] = τ and τ ′[scp(cil)] ∈ rel(cil)

for all l ∈ {1, . . . , k}. If P is kWC then P is (k-1)WC. When k is equal to two, it is
also called pairwise consistency (PWC). P is full pairwise consistent (FPWC) iff it is
both GAC and PWC. FPWC is also equivalent to PWC together with maxRPWC [11].

3 Reformulation

First we give a straightforward reformulation of a constraint network that encodes
FPWC as follows. Given P = (X , C), we construct P+ = (X ∪ W, C+) such that
W = { λci(S), λcj (S) | S = scp(ci) ∩ scp(cj)) for all i 6= j ∧ |S| > 1} and C+ in-
cludes constraints of the following three types. The first involves a simple extension of
constraints in C. For each c′i ∈ C+, 1 ≤ i ≤ e, we have,

– scp(c′i) = scp(ci) ∪ {λci(S) | λci(S) ∈ W ∧ S ⊆ scp(ci)}}
– for any τ ∈ rel(ci), τ ′ ∈ rel(c′i) is a tuple extended from τ such that
• τ ′[x] = τ [x] for any x ∈ scp(ci)
• for any λci(S) ∈ scp(c′i), τ ′[λci(S)] = τ [S]

The second type of constraints involves equality between λci(S) and λcj (S) inW for
any i, j, and S. The third involves compatibility constraints between a compound vari-
able and each variable in its signature. That is, given λc(S) such that S = {xi1 , . . . , xim},
there is a constraint between λc(S) and each xik that forces πc(λc(S), xik) = Dc(xik).
As a result of this construction, in a generalized arc-consistent P+ any valid tuple in a
constraint c can be extended to a valid tuple over scp(c) ∪ scp(c′) for any other con-
straint c′ through variables inW . The proof is omitted due to space restrictions.



Theorem 1. P+ is GAC if and only if P is FPWC.

Next we show how P+ can be simplified while still preserving Theorem 1. Instead
of posting an equality constraint between every pair of compound variables with the
same signature, we unify all these compound variables into a single variable. Equality
constraints are removed. Given P= (X , C) and P+= (X ∪W, C+), the factor encoding
(FE) of P is the network P∗ = (X ∪W∗, C∗) where,

W∗ = {λ(S) | D(λ(S)) =
⋃
kD(λck(S)) for all k such that λck(S) ∈ W}

and for each c∗i ∈ C∗, 1 ≤ i ≤ e,
– scp(c∗i ) = scp(ci) ∪ {λ(S) | λ(S) ∈ W∗ ∧ S ⊆ scp(ci)}}
– for any τ ∈ rel(ci), τ∗ ∈ rel(c∗i ) is a tuple extended from τ such that
• τ∗[x] = τ [x] for any x ∈ scp(ci)
• for any λ(S) ∈ scp(c∗i ), τ∗[λ(S)] = τ∗[S](= τ [S]) (e1)

We call the compound variables in W∗ factor variables. P∗ is also referred to as
fe(P). Given ck ∈ C, we may denote c∗k ∈ C∗ with fe(ck). We observe that the compat-
ibility constraint in P+ can be decomposed into two conditions. Given λ(S) such that
S = {xi1 , . . . , xim}, we have,

(c1) ā ∈ Dc(λ(S))⇒ ∀k ∈ {1, . . . ,m}, aik ∈ Dc(xik)
(c2) a ∈ Dc(xik) for some k ∈ {1, . . . ,m} ⇒ ∃ā ∈ Dc(λ(S)), aik = a

We will show that the compatibility constraints in P+ are actually implied and do
not need to be posted explicitly.

Lemma 1 Enforcing GAC on fe(P) imposes the condition (c1) between a factor vari-
able and each ordinary variable in its signature.

Proof Consider λ(S) where S = {xi1 , . . . , xim} and ā ∈ Dc(λ(S)). Because fe(P)
is GAC, for any fe(c) such that λ(S) ∈ scp(fe(c)), there is a valid support of ā in
rel(fe(c)). That is, ∃τ ∈ rel(fe(c)) such that τ [λ(S)] = ā. Since τ [λ(S)] = τ [S],
τ [xik ] = aik for 1 ≤ k ≤ m, which means aik also has a valid support in rel(fe(c)). 2

Lemma 2 Enforcing GAC on fe(P) imposes the condition (c2) between a factor vari-
able and each ordinary variable in its signature.

Proof Assume aik /∈ πc(λ(S), xik) for some aik . This indicates that any ā involving aik
must be absent from D(λ(S))). Due to propagation, every τ in every rel(fe(c)) such
that λ(S) ∈ scp(fe(c)) and τ [λ(S)] = ā would eventually become invalid. Because
τ [S] = τ [λ(S)] = ā, τ [xik ] = aik . That means such τ is not a valid support of
aik . Because D(λ(S)) contains every compound values involving aik from all c whose
scope subsumes S, there is no other valid tuple τ ′ such that τ ′[xik ] = aik . Hence,
aik /∈ Dc(xik) after the propagation converges. 2

Theorem 2. fe(P) is GAC if and only if P is FPWC.

Proof Follows from Theorem 1, and Lemma 1, and 2. 2

Theorem 3. fe(P) is GAC if and only if fe(P) is FPWC.



Proof As FPWC is both GAC and PWC, (⇐) is immediate. We will prove the (⇒)
direction. Assume fe(P) is GAC. Let τi ∈ fe(ci). Now consider another constraint
fe(cj) 6= fe(ci). If there is no factor variable in scp(fe(ci)) ∩ scp(fe(cj)), then PWC is
trivial. Let f be the factor variable1 in scp(fe(ci))∩ scp(fe(cj)) such that scp(fe(ci))∩
scp(fe(cj))\σ(f) = {f}. Since fe(P) is GAC, τi[f ] must have a valid support in fe(cj).
Call it τj . Because τi and τj agree on f , by definition of factor variable they must agree
on σ(f) too, which means they agree on σ(f) ∪ {f} = scp(fe(ci)) ∩ scp(fe(cj)).
As a result, τi 1 τj is well-defined as well as being a tuple extended from τi over
scp(fe(ci)) ∪ scp(fe(cj)). Hence, fe(P) is PWC. 2

Let fek(P) denote fe(fe(. . . fe(P) . . .)) (the FE is applied k times in a row), then

Corollary 1 For all k ≥ 1, P is FPWC if and only if fek(P) is GAC.

Proof We consider k = 2 as other cases follow from induction. From Theorem 2 and
Theorem 3, we have: P is FPWC iff fe(P) is FPWC. From this statement and the result
of another application of the FE on it we derive: P is FPWC iff fe(fe(P)) is FPWC.
From Theorem 3, fe(fe(P)) is FPWC iff fe(fe(P)) is GAC. 2

This shows fek(P) for k ≥ 2 is no different than fe(P) so applying the FE more than
once in succession is pointless. A localized version of this corollary is given as follows.

Corollary 2 Given any two constraints ci and cj , if there exists a factor variable f ∈
scp(ci) ∩ scp(cj) such that scp(ci) ∩ scp(cj) \ σ(f) = {f} then adding the factor
variable f ′ whose signature is σ(f) ∪ {f} to the scopes of both constraints is futile.

Property 1 Running GAC on fe(P) can be O(e2) faster and use O(e2) smaller space
than running eSTR2 on P .

Reasoning: eSTR2 [11] is an extension of STR2 [9] that enforces FPWC. The main
difference between enforcing GAC on the FE and enforcing eSTR2 on the original net-
work is the space and time associated with factor variables vs. those associated with the
additional data structures for checking PWC in eSTR2. The overhead of running GAC
on the FE depends on factor variables, whose number can be lower than the number of
intersecting constraints. In eSTR2, the overhead depends on the number of intersecting
constraints. If P consists of only constraints such that a single factor variable is com-
mon to all and that no other factor variable exists, the space and time complexity of the
GAC on fe(P) is the same as those on P . By contrast, the space and time of eSTR2 on
P would be at least an order of O(

(
e
2

)
) = O(e2) larger. 2

Property 2 For any c ∈ C, |scp(c)| ≤ |scp(fe(c))| ≤ |scp(c)|+ |C| − 1.

The range is the result of the number of factor variables added. The lower bound is zero,
when no other constraint’s scope overlaps on more than two variables with scp(c),
whereas the upper bound is |C| − 1 when every intersection with another constraint
produces a new factor variable.

1 There may be multiple factor variables if P itself is the factor encoding of another constraint
network, which in turn is the factor encoding of another, and so on (see Corollary 1). The
factor variable f is set to be the most recent one.



3.1 Example

We give an example of P∗ and trace some GAC propagation on P∗ in this section.
Note that although relations in P∗ are an extension of those in P , the extension to
factor variables can be implicit. The expression τ [S] in (e1) can be given as a function
(i.e. the projection) that takes an input S rather than the actual result of the projection
of τ on S. Such abstract extension of tuples is demonstrated in this section.

For brevity, compound variables and values are written as a concatenation of ordi-
nary variables and values. LetP∗ = (X∪W∗, C∗), whereX = {x1, x2, x3, x4, x5, x6},
W∗ = {x1x2, x1x2x4}, C∗ = {c∗1, c∗2, c∗3, c∗4} where scp(c∗1) = {x1, x2, x3, x1x2},
scp(c∗2) = {x1, x2, x4, x1x2, x1x2x4}, scp(c∗3) = {x1, x2, x4, x5, x1x2, x1x2x4},
scp(c∗4) = {x2, x6}. Relations of P are given as tables for ci below (rel(c∗i ) will be
inferred from rel(ci)). Dc(x1) = Dc(x2) = Dc(x4) = Dc(x6) = {a, b}, Dc(x3) =
Dc(x5) = {a, b, c}, Dc(x1x2) = {aa, ab, bb}, Dc(x1x2x4) = {abb, bba, bbb}.

c1
x1 x2 x3

a a a
a b a
a b c
b b b

c2
x1 x2 x4

a b b
b b a

c3
x1 x2 x4 x5

a b b a
b b a b
b b b c

c4
x2 x6

a a
b b

We now look at some GAC propagation on this network. First, we consider whether
(x1x2x4, bbb) is GAC. Let τ = ρ(c3, 3) = (b, b, b, c). The value (x1x2x4, bbb) is GAC on
c∗3 since ρ(c∗3, 3) = (τ [x1], τ [x2], τ [x4], τ [x5], τ [x1x2], τ [x1x2x4]) = (b, b, b, c, bb, bbb)
is found to be a valid support. But (x1x2x4, bbb) is not GAC on c∗2 because no tuple
in rel(c∗2) involves bbb (i.e. rel(c∗2) = {(a, b, b, ab, abb), (b, b, a, bb, bba)}), so bbb is
removed from Dc(x1x2x4). Propagation leads back to the removal of c from Dc(x5)
as ρ(c∗3, 3) is no longer valid because ρ(c∗3, 3)[x1x2x4] = bbb /∈ Dc(x1x2x4). Next we
look at (x1x2, aa). It has no valid support in c∗2 so aa will be removed from the domain
of x1x2. Because ρ(c∗1, 1) = (a, a, a, aa), this tuple becomes invalid. Because ρ(c∗1, 1)
is the only tuple involving (x2, a) in rel(c∗1), (x2, a) is no longer GAC on c∗1. Value a
is then removed from Dc(x2). Further propagation leads to the removal of (x6, a).

4 The k-interleaved encoding

The k-interleaved encoding (kIL) [13] is closely related to the FE as both try to enlarge
constraints with auxiliary variables that represent groups of existing variables. Enforc-
ing GAC on the k-interleaved encoding is equivalent to enforcing kWC on the original
network in addition to GAC. The following definitions are taken from [13].

Definition 1 (k-dual encoding). Let P = (X , C). The k-dual encoding of P is the
constraint network Pkd = (X kd, Ckd) where:

– for each ci ∈ C, X kd contains a variable x′i where D(x′i) = {1, . . . , |rel(ci)|}.
– for each subset S of k constraints of C, Ckd contains a constraint c′ such that
scp(c′) = {x′i | ci ∈ S} and c′ is a k-ary table constraint containing the join of all
constraints in S (represented with the indexes of the original tuples).

Definition 2 (Hybrid constraints). LetP = (X , C). The set of hybrid constraints φ(C)
of P is the set {φ(ci) | ci ∈ C} where:



– scp(φ(ci)) = scp(ci) ∪ {x′i}
– for every jth tuple τ of rel(ci), τ ′ is a tuple in rel(φ(ci)) such that τ ′[x′i] = j and
τ ′[x] = τ [x] for each x ∈ scp(ci)

Definition 3 (k-interleaved encoding). Let P = (X , C). The k-interleaved encod-
ing of P is the constraint network Pki = (X ki, Cki) = (X ∪ X kd, φ(C) ∪ Ckd) where
(X kd, Ckd) is the k-dual encoding of P and φ(C) the hybrid constraints of P .

For k = 2, enforcing GAC on the 2IL has the same pruning power as enforcing
GAC on the FE, but the FE does not add any new constraint. We now look at an exam-
ple from [13] for a comparison of the 2IL and the FE. Figure 1a shows three constraints
from the original network. Figure 1b shows the FE for these constraints. A factor vari-
able’s domain of size d is normalized as {1, . . . , d}. As a result, Dc(xy) = Dc(uv) =
{11, 00, 01, 10} = {1, 2, 3, 4}. After GAC is established,Dc(y) becomes {1} andDc(v)
becomes {0}. Figure 1c shows the 2IL of 1a [13]. This example shows that while en-
forcing GAC on the kIL gives identicalDc(y) andDc(v) to Figure 1b, the kIL can take
a longer chain of propagation to do so.

x y u v

1 1 1 0
0 0 0 1
0 1 0 0
1 0 1 1

x y

1 1
0 0
0 1

u v

1 1
1 0
0 0

(a) Original

x y u v xy uv

1 1 1 0 1 4
0 0 0 1 2 3
0 1 0 0 3 2
1 0 1 1 4 1

x y xy

1 1 1
0 0 2
0 1 3

u v uv

1 1 1
1 0 4
0 0 2

(b) Factor encoding of (a)

x y u v x′
1

1 1 1 0 1
0 0 0 1 2
0 1 0 0 3
1 0 1 1 4

x y x′
2

1 1 1
0 0 2
0 1 3

u v x′
3

1 1 1
1 0 2
0 0 3

x′
1 x

′
2

1 1
2 2
3 3

x′
1 x

′
3

1 2
3 3
4 1

(c) 2-interleaved encoding of (a)
Fig. 1: Comparison of two encodings

We compare the complexity of the FE and the kIL as follows. For simplicity, we
assume there are e constraints of arity r, each associated with a table containing t tuples
and that every pair of constraints shares at least two variables in their scopes.

Property 3 The extra cells added to the tables by the FE ranges from O(et) to O(e2t).

Proof In the best case there is only one factor variable. Each constraint will be extended
with an extra column so the total extra space is O(et). In the worst case, every pair of
constraint produces one additional factor variable. Each of these factor variables will
appear in two different tables. Thus, the total is O(2t

(
e
2

)
) = O(e2t). 2

Because an optimal GAC algorithm traverses every cell of every table in the worst
case, the worst-case time complexity of GAC on the FE is thus between O(ert) (i.e. no
asymptotic difference) and O(ert+ e2t) = O(e2t) (i.e. assuming e > r).

Property 4 The extra cells added to the tables by the kIL is O(
(
e
k

)
tk)

Proof Each constraint has an extra column for indexing so the space is et. For every
subset of C of size k, a join table of arity k is created. The total space is therefore
O(et+

(
e
k

)
tk) = O(

(
e
k

)
tk). 2

For k = 2, this space becomes O(e2t2). As far as GAC is concerned, the 2IL is thus
a factor of t more expensive in the worst case than the FE.



5 Enforcing k-wise consistency through reduced join tables

Given fe(P), we may post additional constraints so that GAC may also enforce kWC.
These new constraints are created from a group of existing constraints and this section
studies their effect on the consistency level.

Given C = {ci1 , . . . , cik} in P where k ≥ 3, we define the following notation:
– mult(C) = {λ(S) | λ(S) ∈ W∗ ∧ S = scp(cij ) ∩ scp(cil) for 1 ≤ j < l ≤ k}
– sing(C) = {x | x ∈ X ∧ {x} = scp(cij ) ∩ scp(cil) for 1 ≤ j < l ≤ k}
– join(C) = rel(ci1) 1 . . . 1 rel(cik),

Definition 4. Given a set C of k constraints (k ≥ 3), the factor-reduced join of C
(frj(C)) is a constraint constructed as follows. Let |mult(C)| = o, and |sing(C)| = p,

– scp(frj(C)) = mult(C) ∪ sing(C) = {λ(S1), . . . , λ(So)} ∪ {xj1 , . . . xjp}
– rel(frj(C)) = {(τ [S1], . . . , τ [So], τ [xj1 ], . . . , τ [xjp ]) | τ ∈ join(C)}

The factor-reduced join is not a projection of join(C) as its scope may include factor
variables. Rather, it can be viewed as a projection of 1c∈C fe(c). In any case, since it is
derived from the join of C, its pruning power cannot be greater.

It should be noted that frj(C) may end up having the same scope as another existing
constraint or another frj constraint. For instance, letC1 = {c1(x1, x2, x3), c2(x1, x2, x4),
c3(x1, x5)} and C2 = {c4(x1, x2, x6), c5(x1, x2, x7), c3(x1, x5)}. Let y1 = x1x2, it
follows that scp(frj(C1)) = {x1, y1} = scp(frj(C2)). This can also happen in the case
where no factor variables are formed by the FE. For instance, let C1 = {c1(x1, x2),
c2(x2, x3), c3(x3, x4)}. Then scp(frj(C1)) = {x2, x3} = scp(c2). Both cases can be
handled by merging constraints with the same scope afterwards.

We assume that every constraint in C must be relevant. Namely, given c ∈ C there
must exist at least one other c′ ∈ C such that |scp(c) ∩ scp(c′)| ≥ 1.

Property 5 The arity of frj(C) ranges from 2 to
(|C|

2

)
.

The fe(P) with the additional constraints frj(C) for every groupC of size k is called
the factor encoding of P for k-wise consistency (FKWC), also denoted by fkwc(P, k).
Property 6 Enforcing GAC on fkwc(P ,k) is strictly weaker than enforcing both FPWC
and kWC on P and strictly stronger than enforcing FPWC on P .

We show this by an example. Consider the constraints in Figure 2a and their factor
encodings in Figure 2b, where y1 = x2x3. The networks in both figures are PWC. The
join of the three original constraints is given in Figure 2c. The projection of join(C)
onto each of the original constraint makes the following tuples 3-wise inconsistent:
(1, 1, 0, 0) ∈ rel(c1), (1, 0, 1) ∈ rel(c2), and (1, 0, 1) ∈ rel(c3). Now consider the
frj(C) in Figure 2d. GAC on {frj(C), fe(c1), fe(c2), fe(c3)} leads to the inconsistency of
(1, 1, 0, 0, 2) ∈ rel(fe(c1)) and (1, 0, 1, 2) ∈ rel(fe(c2)), but not (1, 0, 1) ∈ rel(fe(c3)).

Although the fkwc(P ,k) encoding is only partial kWC, it subsumes fe(P) so FPWC
is guaranteed by GAC. Together with the fact that kWC implies (k-1)WC, we have
Property 7 Enforcing GAC on fkwc(P ,k) is strictly weaker than enforcing GAC on the
kIL of P for k ≥ 3.

Theorem 4. Q = fe(fkwc(P, k))) is GAC if and only if P is FPWC and kWC.



c1
x1 x2 x3 x4

0 0 0 0
0 0 1 1
1 1 0 0

c2
x2 x3 x5

0 0 0
0 1 1
1 0 1

c3
x4 x5 x6

0 0 0
1 0 1
1 1 0

(a) Original: C = {c1, c2, c3}

fe(c1)
x1 x2 x3 x4 y1
0 0 0 0 0
0 0 1 1 1
1 1 0 0 2

fe(c2)
x2 x3 x5 y1
0 0 0 0
0 1 1 1
1 0 1 2

fe(c3)
x4 x5 x6

0 0 0
1 0 1
1 1 0

(b) Factor-encoded constraints
join(C)

x1 x2 x3 x4 x5 x6

0 0 0 0 0 0
0 0 1 1 1 0

(c) The join of constraints in C

frj(C)
x4 y1 x5

0 0 0
1 1 1

(d) The factor-reduced join of C
fe(fe(c1))

x1 x2 x3 x4 y1 z1
0 0 0 0 0 0
0 0 1 1 1 1
1 1 0 0 2 2

fe(fe(c2))
x2 x3 x5 y1 z2
0 0 0 0 0
0 1 1 1 1
1 0 1 2 2

fe(fe(c3))
x4 x5 x6 z3
0 0 0 0
1 0 1 1
1 1 0 2

fe(frj(C))
x4 y1 x5 z1 z2 z3
0 0 0 0 0 0
1 1 1 1 1 2

(e) The FE of (b) and (d) where fe(fe(ci)) denotes the FE of constraints from (b) with frj(C).

Fig. 2: The pruning power of GAC on (b) + (d) lies between FPWC and FPWC + 3-wise
consistency on (a), whereas GAC on (e) is equal to FPWC + 3-wise consistency on (a).

Sketch of Proof: Consider C = {ci1 , . . . , cik}. It is clear that join(C) forces kWC
on C through GAC. fe(frj(C)) ∈ Q represents all the articulation points of join(C)
and we will show that both have the same restricting effect on the rest of the network
by showing that the “missing columns” can be “rebuilt” via GAC. The proof for (⇐)
is omitted for lack of space. Assume Q is GAC. Let x be a variable in scp(join(C)) \
(
⋃
λ(S)∈mult(C) S)\sing(C). It follows that there is exactly one constraint cij ∈ C such

that x ∈ scp(cij ). Suppose a ∈ Dc(x). BecauseQ is GAC, so is a. By definition, there
exists a valid tuple τij ∈ rel(fe(fe(cij ))) such that τij [x] = a. LetHij = scp(fe(cij ))∩
scp(frj(C)), |Hij | ≥ 1. Because Q is a factor encoding, there exists a variable λ(Hij )
in both scp(fe(fe(cij ))) and scp(fe(frj(C))) (λ(Hij ) is either an ordinary or a factor
variable). Since Hij too is GAC, τij is guaranteed to be extendable to fe(frj(C)). Let ϕ
be such a tuple in fe(frj(C)) such that τij 1 ϕ is a tuple over scp(fe(cij ))∪scp(frj(C)).
For each cil ∈ C \ {cij}, let Hil = scp(fe(cil)) ∩ scp(frj(C)). By the same argument,
there exists a valid tuple τil in fe(fe(cil)) such that τil [Hil ] = ϕ[Hil ]. The join of ϕ,
τij , and every such τil would become a valid support of a in J = (1c∈C fe(fe(c))) 1

fe(frj(C)). Because the projection of J on scp(join(C)) is join(C) and a is arbitrary,
the column x in scp(join(C)) is thus the same as Dc(x). 2

Figure 2e shows another application of the factor encoding on top of fkwc(P, k),
where z1 = x4y1, z2 = x5y1, and z3 = x4x5. GAC on this network would lead to the
inconsistency of (1, 0, 1, 1) in the third table. Since x2x3y1 is redundant according to
Corollary 2 we do not add it to scp(fe(fe(c1))) and scp(fe(fe(c2))).

Property 8 The arity of fe(frj(C)) ranges from 2 to
(|C|

2

)
+ |C|.

Proof The reasoning is similar to the one for Property 2, but here fe(frj(C)) is not
necessarily part of C so the bound on the number of constraints that it may interact with
is |C| not |C| − 1. Coupled with Property 5, we have,



2 ≤ |scp(frj(C))| ≤ |scp(fe(frj(C)))| ≤ |scp(frj(C))|+ |C| ≤
(|C|

2

)
+ |C| 2

Figure 2e demonstrates: we have |C| = |C| = 3, so the upper bound on the arity of
fe(frj(C)) is

(|C|
2

)
+ |C| =

(
3
2

)
+3 = 6, which happens to be the actual arity of fe(frj(C)).

6 Experiments

In this section, we present experimental results on the effectiveness of the FE and the
FKWC in comparison with the kIL and an FPWC algorithm. We will use kFE to denote
fkwc(P, k). Benchmarks are drawn from the CSP solver competition2 in addition to
randomly generated problems. The experiments were conducted on a 2.6GHz quad-
core Intel Core i7 on OS X 10.8. The converters take an input in the XCSP format and
output the result as another text file. As such, we are not restricted to any particular GAC
algorithm and we shall test the encoding on multiple GAC algorithms. Like [7, 11], the
search employed the dom/ddeg variable ordering heuristic and the lex value ordering.
We used AbsCon [15] as the solver. Conversion time is limited to 30 minutes while
memory is limited to 8GB for both the converters and the solver.

Because the kIL and the FE augment the original constraints’ scope with new vari-
ables, the location to which they are inserted has to be considered. Two natural choices
are the front and the back. The front leads to slightly faster running time in our experi-
ments, with a big difference on some problem instances, such as when multi-valued de-
cision diagrams (MDDs) are involved. To simplify the presentation, experiments there-
fore involve only the front insertion. After the conversion the FE and FKWC converters
may have to re-sort the tuples since the front insertion may disrupt the ordering of the
input that is already sorted. The reason is that AbsCon happens to need sorted rela-
tions for some GAC algorithms such as MDDc [3]. The kIL conversion avoids this
overhead because it maintains the tuple ordering of the input. For the 2IL any pair of
constraints is joined only if their scopes share more than one variable. Unused dual
variables are discarded from the output. For instance, consider the 2IL comprising of
c1(x, y, z, v1), c2(x, y, w, v1), c3(w, z, v3), where v1, v2, v3 are the dual variables as-
sociated with c1, c2, c3 and the rest are ordinary variables. Only v1 and v2 are joined to
form a new constraint c4(v1, v2) as c1 and c2 share x and y. Because v3 is not involved
in any constraint it will be removed from X and c3.

Table 1 shows the mean results on some series of benchmarks while Table 2 shows
the results from selected instances. Five algorithms were tested: GACva [12], MDDc
[3], STR3[10], STR2 [9], and an AbsCon’s implementation3 of FPWC based on STR,
which we will call Fabs. Fabs is not eSTR2w [11] but can be regarded as a variant of
eSTRw (or FPWC-STRw). It exhibits a profile similar to that of eSTR2w when com-
pared to STR2 on common benchmarks, except in a few cases where the difference in
performance with respect to STR2 is noticeably smaller (e.g. aim) or larger (e.g. rand-
10-20-10). Among the four GAC algorithms, GACva and STR3 are generally slower
than MDDc and STR2 so for succinctness they do not appear in the main results in

2 Available at http://www.cril.univ-artois.fr/CSC09. The modified renault problems with tables all
positive are taken from http://becool.info.ucl.ac.be/resources/positive-table-constraints-benchmarks.

3 Available in AbsCon 1.418.



Table 1. Their performance on some representative instances can be seen in Table 2.
All algorithms were run on the original instance and its two encodings for FPWC: the
FE and the 2IL. There are three variants depending on how variables are handled dur-
ing search. FE-O and 2IL-O (pref-orig) force the variable ordering heuristic to choose
from the set of original variables until all of them are instantiated before choosing from
the set of auxiliary (compound) variables. FE-A and 2IL-A (pref-aux) are the opposite,
where preference is given to the auxiliary variables. FE-E and 2IL-E (pref-equal) give
equal treatment to all variables with respect to dom/ddeg.

In both tables, tC gives the running time of the converters in seconds, while nV is
the number of the variables, e.g. there are 100 ordinary variables in a2, 99 extra factor
variables in its FE, and 127 extra dual variables in its 2IL. Best times and nodes are set in
bold. A node count of zero means unsatisfiability is detected before the search starts. In
Table 1, SS stands for solving strategy, the combination of GAC algorithm and encoding
(if applicable). STR2 is the main GAC algorithm for solving various encodings unless
specified otherwise (MDDc is ill-suited to the encodings as will be explained later). (#n)
is the number of instances tested in the series. Instances that were not solved within 60
minutes by STR2 (the baseline) or exceeded the memory limit on any solving strategy
are excluded, otherwise there is no time limit. Trivial instances (solved within 1 second)
of the modified renault benchmark (modRenault) are also excluded (17 out of 50). The
mdd-r-n-d series are randomly generated, based on the RD model [19], by building an
MDD in a post-order manner with probability 0.5 that a previously created sub-MDD
is reused [3]. The parameters are: arity (r), number of variables (n), and domain size
(d). In Table 2, ENC is the encoding used. The columns GACva, MDDc, STR3, STR3,
and Fabs give their running times. As Fabs reaches the same node count as GAC on the
respective FE/2IL encoding, cells on these rows are left blank.

It is worth mentioning that dom/ddeg may not produce the same search tree in both
the original network and in its encoding, even when only the ordinary variables are in-
stantiated. Because the dynamic degree counts the number of constraints in which there
are at least two uninstantiated variables, the fact that an encoding’s scopes have more
variables may steer dom/ddeg to pick a different variable than in the original problem.
As a result, a weaker consistency may generate lower nodes than a stronger one (e.g.
Fabs’s node count on r19 is lower than GAC’s on the FE-O and the 2IL-O). Another
source of the difference in node count lies in how AbsCon explicitly instantiates all
variables, even the ones that are already singletons. For example, both encodings for a2
are backtrack-free for GAC, but the node count for the FE is 199 because there are 99
more variables, while the 2IL’s is 277 because there are 127 additional dual variables.

We make the following observations on these data:
– The FE’s conversion time is mostly inconsequential compared to the solver’s running
time whereas the 2IL’s can be a lot more expensive as it is based on the join of tables.
The conversion time of the FE can be improved since we have not made an attempt
to optimize our converter. For one thing, it always re-sorts relations before writing the
output regardless of the solver’s requirement.
– The fastest GAC on the original problem is either MDDc or STR2. The best variant of
the FE largely improves the running time of STR2 and STR3, while it may help or hurt
MDDc and Fabs. The 2IL has mixed results and the conversion can be very slow due



series SS tC nV time nodes
rand-3-20-20-fcd STR2 – 20 39.61 130,327
(#50) MDDc – 20 21.00 130,327

Fabs – 20 34.28 37,727
FE-O 0.21 +45 22.07 40,289
FE-A 0.21 +45 32.94 71,568
FE-E 0.21 +45 22.82 36,195
2IL-O 2.83 +55 68.79 40,299
2IL-A 2.83 +55 105.40 59,885
2IL-E 2.83 +55 73.09 36,227

rand-3-20-20 STR2 – 20 83.27 256,958
(#50) MDDc – 20 40.94 256,958

Fabs – 20 74.39 83,529
FE-O 0.22 +45 41.76 74,825
FE-A 0.22 +45 54.85 108,696
FE-E 0.22 +45 42.53 66,850
2IL-O 2.89 +55 130.38 74,830
2IL-A 2.89 +55 269.64 137,301
2IL-E 2.89 +55 129.68 66,853

dubois STR2 – 71 528.45 100.27M
(#8) MDDc – 71 541.67 100.27M

Fabs – 71 298.35 75.20M

STR2


FE-O 0.00 +2 92.88 41.78M
FE-A 0.00 +2 198.42 66.85M
FE-E 0.00 +2 63.91 16.71M

Fabs + FE-E 0.00 +2 50.90 16.71M
MDDc + FE-E 0.00 +2 64.63 16.71M

2IL-O 0.00 +4 96.74 41.78M
2IL-A 0.00 +4 196.88 66.85M
2IL-E 0.00 +4 73.79 16.71M
4FE-O 0.08 +2 81.88 41.78M
4FE-A 0.08 +2 194.64 66.85M
4FE-E 0.08 +2 192.52 66.85M
4IL-O 0.08 +47 89.80 29.25M
4IL-A 0.08 +47 76.61 20.89M
4IL-E 0.08 +47 65.68 8.36M

aim-200 STR2 – 200 45.54 637,085
(#6) MDDc – 200 32.95 637,085

Fabs – 200 25.42 377,682
FE-O 0.03 +354 3.85 32,354
FE-A 0.03 +354 0.85 1,767
FE-E 0.03 +354 2.96 11,397
2IL-O 0.03 +551 4.36 32,552
2IL-A 0.03 +551 3.45 22,968
2IL-E 0.03 +551 3.72 11,594
3FE-O 79.03 +354 1.39 5,561
3FE-A 80.52 +354 2.79 19,002
3FE-E 79.23 +354 1.00 1,434
3IL-O 31.32 +769 34.73 4,854
3IL-A 31.28 +769 8.32 690
3IL-E 31.64 +769 7.73 683

instance SS tC nV time nodes
rand-8-20-5 STR2 – 20 12.50 101,301
(#20) MDDc – 20 22.26 101,301
(2IL T/O) Fabs – 20 32.74 18,709

FE-O 5.87 +130 12.57 5,302
FE-A 5.87 +130 22.64 3,111
FE-E 5.87 +130 12.73 4,985

mdd-5-15-7 STR2 – 15 18.48 50,402
(#30) MDDc – 15 5.95 50,402
(e = 42) Fabs – 15 36.26 3,996
(t = 8403) FE-O 1.05 +175 11.80 1,569
(2IL M/O) FE-A 1.05 +175 13.63 1,816

FE-E 1.05 +175 12.33 1,512
mdd-7-25-4 STR2 – 25 79.18 231,364
(#10) MDDc – 25 26.19 231,364
(e = 50) Fabs – 25 287.36 34,636
(t = 8192) FE-O 1.85 +466 79.95 12,037
(2IL M/O) FE-A 1.85 +466 71.90 39,366

FE-E 1.85 +466 73.99 10,523
mdd-9-30-3 STR2 – 30 73.16 349,073
(#10) MDDc – 30 39.00 349,073
(e = 47) Fabs – 30 396.88 66,109
(t = 9,841) FE-O 2.80 +723 83.68 12,963
(2IL M/O) FE-A 2.80 +723 79.79 23,578

FE-E 2.80 +723 84.28 10,603
rand-10-20-10 STR2 – 20 0.64 830
(#20) MDDc – 20 2.06 830

Fabs – 20 0.60 0
FE-O 0.24 +10 0.69 0
FE-A 0.24 +10 0.69 0
FE-E 0.24 +10 0.70 0
2IL-O 4.37 +5 1.41 0
2IL-A 4.37 +5 1.45 0
2IL-E 4.37 +5 1.45 0

dag-rand STR2 – 23 17.48 57,969
(#25 ) MDDc – 23 123.83 57,969

Fabs – 23 12.56 0
(2IL T/O) FE-O 14.07 +120 9.45 0

FE-A 14.07 +120 9.30 0
FE-E 14.07 +120 9.12 0

modRenault STR2 – 110 317.18 6.40M
(#12) MDDc – 110 295.45 6.40M

Fabs – 110 2.19 30
FE-O 0.71 +102 1.19 54
FE-A 0.71 +102 1.22 58
FE-E 0.71 +102 1.20 53
2IL-O 81.16 +148 158.40 66
2IL-A 81.45 +148 159.93 1023
2IL-E 80.96 +148 159.14 2411

Table 1: Mean results for selected benchmarks. T/O indicates the converter was timed
out. M/O is out-of-memory failure. M stands for millions. For the mdd series, e is the
number of constraints while t is the number of tuples in a relation.



instance ENC tC nV nodes GACva MDDc STR3 STR2 Fabs nodes
rand-3-20-20-60-632-19 None – 20 252,803 49.15 36.59 82.39 73.05 64.94 74,509
(abbrv. as “r19”) FE-O 0.22 +47 87,674 119.53 197.73 90.55 49.78 226.84

FE-A 0.22 +47 145,296 145.12 296.61 128.35 73.93 301.83
FE-E 0.22 +47 77,483 125.08 197.09 97.32 53.58 207.95
2IL-O 3.03 +57 87,674 258.08 341.64 222.87 143.26 218.48
2IL-A 3.03 +57 147,978 416.86 488.22 340.66 230.14 395.93
2IL-E 3.03 +57 77,483 245.40 355.73 222.59 156.22 243.80

rand-3-20-20-60-632-26 None – 20 442,871 74.65 67.24 147.71 127.00 35.34 29,765
(abbrv. as “r26”) FE-O 0.21 +48 34,200 53.73 82.02 32.71 19.54 72.07

FE-A 0.21 +48 23,498 24.58 52.54 17.64 10.95 40.86
FE-E 0.21 +48 30,957 53.02 85.44 32.94 19.37 72.55
2IL-O 2.73 +57 34,209 117.34 159.62 97.49 62.93 93.67
2IL-A 2.73 +57 31,907 117.13 156.49 112.07 66.98 90.20
2IL-E 2.73 +57 30,966 117.26 159.61 98.58 63.29 92.36

dag-rand-1 None – 23 43,994 74.37 109.04 259.00 15.52 11.68 0
(2IL T/O) FE-O 14.28 +120 0 18.44 15.39 12.30 9.14 20.57

FE-A 14.28 +120 0 18.66 15.53 12.54 9.24 21.91
FE-E 14.28 +120 0 18.74 15.65 13.79 9.91 20.47

rand-8-20-5-18-800-7 None – 20 11,063 4.75 4.94 32.95 4.43 8.81 980
(2IL T/O) FE-O 5.71 +128 573 22.77 M/O 10.82 5.98 M/O

FE-A 5.71 +128 177 6.79 M/O 5.93 4.47 M/O
FE-E 5.71 +128 546 23.00 M/O 11.40 6.27 M/O

aim-100-1-6-sat-2 None – 100 95.79M 498.67 446.68 1015.90 577.23 163.12 23.11M
(abbrv. as “a2”) FE-O 0.01 +99 199 0.43 0.50 0.48 0.45 0.47

FE-A 0.01 +99 199 0.44 0.50 0.46 0.43 0.45
FE-E 0.01 +99 199 0.44 0.49 0.46 0.46 0.47
2IL-O 0.00 +127 227 0.47 0.48 0.52 0.49 0.51
2IL-A 0.00 +127 227 0.47 0.48 0.49 0.48 0.52
2IL-E 0.00 +127 227 0.46 0.47 0.52 0.49 0.51

mdd-5-15-7-inst-1 None – 15 9,975 3.56 2.13 10.39 4.33 8.88 694
(2IL M/O) FE-O 1.05 +190 594 16.58 91.49 5.84 4.11 52.74

FE-A 1.05 +190 1,383 35.54 201.29 12.10 9.33 155.91
FE-E 1.05 +190 572 16.50 88.07 6.01 4.35 52.40

Table 2: Results from selected instances.

to the join. The FE clearly outperforms the 2IL on the same variant and benchmark, but
enforcing MDDc on the original problems is frequently faster than any solving strat-
egy (e.g. rand-3-20-20 and the fcd variation). The implication here is that switching
GAC algorithm may improve the running time better than equipping a GAC algorithm
with stronger consistency. Experiments in previous works [11, 13, 16] neither consid-
ered MDDc nor included more than one GAC algorithm in the same study.

– For MDD compression, a larger scope is associated with lower probability of getting
well-compacted MDDs. Any transformation which enlarges the scope may be unfa-
vorable to MDDc. This is especially true with the kIL, which interferes directly with
the compression by assigning different index to different tuples. The FE too causes the
same problem, but to a lesser extent. However, the pruning from FPWC can more than
compensate for this drawback in many cases (e.g. dubois, dag-rand-1), although it is
not enough to win over STR2 on the same encoding. Since auxiliary variables are put



in front of the scope, they will be placed on top of the MDDs by MDDc and this makes
the pruning from FPWC more effective. By comparison, putting auxiliary variables in
the back of the scope lessens the impact of FPWC to the point where running MDDc
on an encoding is always worse off.
– Due to stronger consistency, maintaining Fabs leads to a lower node count than main-
taining GAC during search, but the lower number of nodes does not always translate to
faster running time. Fabs can be faster or slower than STR2. By contrast, all variants of
the FE are faster than Fabs although the node count can be higher.
– When a problem does not present an opportunity for additional pruning beyond GAC,
running a stronger algorithm is counterproductive. Given that FPWC is both GAC and
PWC, as the FE and the 2IL already builds in PWC propagation into the encoding, the
portion of an FPWC algorithm that administers PWC becomes useless and simply in-
curs overhead when executed. Running an FPWC algorithm on the encoding therefore
gets the same number of nodes as running any GAC algorithm on the encoding. It is
interesting that the FE can make Fabs faster in some cases. The reason is that Fabs en-
forces only partial FPWC while the encoding provides complete FPWC. When Fabs’s
pruning capability happens to reach the level of complete FPWC on the original prob-
lem (i.e. its node count is already the lowest or not too much higher) running it on the
FE would be slower (e.g. r19, dag-rand-1). Otherwise if Fabs’s node count is consider-
ably larger, that means there is still room for improvement and running Fabs on the FE
(or 2IL) could make it faster (e.g. dubois, a2). On dubois, the combination of Fabs and
FE-E is the fastest, offering an order-of-magnitude improvement over STR2.
– Variable preferences have a strong influence on the performance: the best can be twice
as fast and/or halves the node count of the worst. Wide fluctuation also exists within the
same series (e.g. in Table 2 FE-A is the best on r26 but the worst on r19). Generally
pref-equal has an advantage over pref-orig, while pref-aux is consistently the worst
(FE-A on aim is the exception). This pattern holds for both the FE and the 2IL.
– As is the case with Fabs, the node count of various encodings does not correlate well
with the running time. However, too many overlapping constraints or factor variables
clearly has an adverse effect on the running time. The three mdd series illustrate. As ar-
ity and number of variable increases, so does the number of overlapping constraints and
factor variables. Keep in mind that the latter’s number can be lower than the former’s.
For example, the instance mdd-9-30-3-inst-1 has 47 relations, so the maximum number
of intersecting constraints is

(
47
2

)
= 1081, whereas the actual number is 930 and the

number of factor variables in the FE is 718. The ratio of the number of factor variables
to the number of original variables goes from 11.67 for mdd-5-15-7 to 18.64 for mdd-
7-25-4 to 24.1 for mdd-9-30-3. The ratio of Fabs’s running time to STR2’s increases
accordingly from 1.96 to 3.63 to 5.42. The ratio of the FE’s running time increases too,
but at a lower pace of 0.54, 0.93, and 1.51 respectively. We also experimented with
restricting the number of factor variables allowed in the FE for the mdd series but this
does not improve the running time.

We have performed initial experiments with the FKWC and compare it with the kIL.
For k ≥ 3, [13] suggested the cycle heuristic to reduce the number of constraints: each
constraint must share at least one variable with the previous and the next constraint in a
circular manner. Our converters for the kIL and the FKWC employ this heuristic. Both



the kIL and the FKWC are not practical beyond small k (3 or 4) since they are based on
join which suffers from exponential growth in computation. The 3IL and 3FE are either
timed out or ran out of memory on all the benchmarks in Table 1 except for dubois and
aim-200. On dubois, no new constraint is created by the 3IL and the only constraints
created by the 3FE are universal (where every combination of value is allowed) so they
are useless and ignored. The 4FE does not improve on the FE. The 4IL is better than
the 2IL and has the best node count but it is still slower than the FE. Similarly, the 3FE
and the 3IL brings down the node count for aim but does not improve the running time.
We also tried other benchmarks from the solver competition but most exceeded time or
memory limit for conversion. Some benchmarks, such as pret or ramsey, produce only
universal constraints for the 3FE. For the benchmarks that can be converted, we found
the FKWC to be slower than the FE although the node count is lower.

7 Conclusion

We have introduced a new encoding for non-binary constraint networks that enables
stronger consistencies to be acquired through GAC. Thus, this allows stronger consis-
tencies to be incorporated into existing (state-of-the-art) CP solvers. Our experiments
suggest FE to be the better method for achieving FPWC than both the 2IL and AbsCon’s
FPWC algorithm. Unlike specialized FPWC algorithms which are usually slower than
GAC when there is little or no overlapping constraint, the preprocessors like the FE
or the 2IL converter do not suffer from such computational overhead. Unlike the 2IL
which joins constraints to achieve PWC, the FE is more precise and does not require
any new constraint to be posted. As a converter, the FE benefits from flexibility: any
solver using any GAC algorithm can be used as long as it is able to read the file in
the specified format. At the same time, passing information to the solver this way can
become a significant expense when large files are involved. Integrating the converter
with the solver would eliminate this problem. As for the encodings for general kWC,
we found they are not as effective as the FE. Similar to the kIL, the FKWC encoding
has limited practical benefits due to the high cost of joins in both time and space and
the need for good heuristics that pick only the useful pieces from the large number of
possible joins. Success hinges on fine-tuning these heuristics and implementing better
join algorithms. Constructing the frj constraints directly through search [8] instead of
deriving them from join is also less expensive and could be examined in future works.

The MDDc algorithm is faster than STR2 on some sets of benchmarks but its per-
formance on the FE is generally poor due to the factor variable’s larger domains and
the drop in compression rate as arity increases. Modifying the MDDc algorithm itself
to make it aware of factor variables is a promising direction.
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