Context Free Languages: Properties

Normal Forms.

Chomsky Normal Form.
All productions are of the form A — BC or A — a (where
aceT and A, B,C €V).
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Useless symbols: Symbols which do not appear in any
derivation of a string from the start symbol. That is, the
symbol does not appear in any derivation S =7 w, for
any w € T™*.

We want to eliminate useless symbols.

Symbol A is said to be useful if it appears as
S =75 aAB = w, for some w € T™.

We say that a symbol A is generating if A =, w, for
some w € T*.

We say that a symbol A is reachable if S =, aAg, for
some a, 3 € (VUT)*.
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Surely a symbol is useful only if it is reachable and T
generating (though vice-versa need not be the case).

What we will show is that if we get rid of non-generating
symbols first and then the non-reachable symbols in the
remaining grammar, then we will only be left with useful

symbols.
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Theorem: Suppose G = (V, T, P, S) is a grammar which T
generates at least one string.

Then, if

1) First eliminate all symbols (and productions involving
these symbols) which are non-generating. Let this grammar
be Gy = (VQ,T, P, S).

2) Remove all non-reachable symbols (and corresponding
productions for them) from the grammar G5. Suppose the
resulting grammar is Gs.

Then G35 contains no useless symbols and generates the
same language as G.
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Generating Symbols

Base Case: All symbols in T" are generating. T
Induction: If there is a production of the form A — «, where

« consists only of generating symbols, then A is generating.
lterate the above process until no more symbols can be

added.
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Reachable symbols
. -

Base Case: S is reachable.
Induction Case: If A is reachable,and A — «ais a

production, then every symbol in « is reachable.

A symbol is non-reachable, iff it is not reachable.
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Converting a Grammar into Chomsky Normal Form:

1. Eliminate ¢ productions.

2. Eliminate unit-productions.

3. Convert the productions to productions of length 2
(involving non-terminals on RHS) or productions of length 1
(involving terminal on RHS).
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Eliminating ¢ productions
1. We first find all nonterminals A such that A =% e. These T

nonterminals are called nullable.

2. Then, we get rid of ¢ productions, and for each production
B — «, we replace it with all possible productions, B — o/,
where o’ can be formed from o by possibly deleting some of
the nonterminals which are nullable.

Note: If S is nullable, then our method only generates the

language L — {¢}.
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Theorem: If we modify the grammar as above, then T
L(G") = L(G) — {e€}.

Proof: We prove a more general statement:

Forall AcV,forallweT* —{e}, A= w,iff A=7, w.

Claim: Suppose A =7, w. Then we claim that A =7, w.
Proof:

In the derivation A =, w, “drop” each symbol which
eventually produces empty string in the derivation.
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Claim: Forall A e V, forall w € T* — {¢}, If A =¢, w then T
A= w.

Proof: Consider the first step in the derivation:

A= a=r w.

Suppose the corresponding production in G was

A= d.

Then, we have that o =7, «, by having the “nulled” symbols

generate e.
Now the claim follows by induction.

|
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Identifying nullable symbols
. -

Base: If A — ¢, then A is nullable.
Induction: If A — «, and every symbol in « is nullable, then

A is nullable.
Apply the induction step until no more nullable symbols can

be found.

|
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Eliminating Unit Productions

-

First determine for each pair of non-terminals A, B, if
A= B.

Then we need to add A — ~, for all non unit productions of
the form B — ~.

Base: (A, A) is a unit pair.

Induction: If (A, B) is a unit pair, and B — C, then (A,C) is
a unit pair.

Do the induction step until no more new pairs can be added.
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All productions of length > 2 can be changed to (a set of)
productions of length 2 (involving only non-terminals on
RHS) or productions of length 1 (involving terminals on
RHS) as follows:

Given Production: A — X1 Xs ... X

Is changed to the following set of productions:

A— ZlBQ,

BQ — ZQBg, ey

Br_1 = Zp_1Zk,

Zi — X, If X; €T,

Z; = X;, If X; 18 a nonterminal,

where B; (and possibly) Z; are new non-terminals.
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Size of Parse Tree T

Theorem: Suppose we have a parse tree using a Chomsky
Normal Form Grammar. If the length of the longest path
from root to a node is s, then size of the string w generated
is at most 2571,

- |
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Pumping Lemma

Pumping Lemma for CFL: Let L be a CFL. Then there T
exists a constant n such that, if z is any string in L such that
12| > n, then we can write z = wvwzy such that:

1. Jowz| < n
2. vx #£ €
3. Foralli > 0, w'wxy € L.

|
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Example: L = {a™b™c™ : m > 1} is not a CFL. T
Suppose by way of contradiction that L is a CFL.

Then, let n > 1 be as in the pumping lemma.

Consider z = a"b"c".

Let z = wvwzxy be as in the pumping lemma.

Now, |vwz| < n. Thus, vwa cannot contain both « and c.

In case vwx does not contain an a, then

uwv?wr?y contains n a’s, though |uv*wa?y| > 3n. Thus,

wv?wz?y is not in L.

Similarly, if vwz does not contain a ¢, then

wv?wz?y contains n ¢’'s, though |uv?wz?y| > 3n. Thus,

wv?wz?y is not in L.

Thus, in all cases, we have that L does not satisfy the
pumping lemma. Hence, L cannot be CFL. J
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Proof of Pumping Lemma for CFL. T
Let L be a context free language.

Without loss of generality, we assume L # () and L # {e}.
Choose a Chomsky Normal Form grammar G = (V,T, P, S)
for L — {e}.

Letm = |V|. Let n = 2™,

Suppose a string z € L of length at least n = 2™ is given.
Consider the parse tree for z. This parse tree must have a
path from the root to a leaf of length at least m + 1 (by
Theorem proved earlier).

Consider the path from the root to a leaf at largest depth.

In this path, among the last m + 1 non-terminals, there must
be two nonterminals which are same (by pigeonhole

principle). (See picture: PL-figure) J
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nen, z = wvwzy, Where S =7, vAy =5 wAzy =7, uvway.
nus, we have A =7 vAz, A =7 w.

nus, A =7, vt Azt = viwz?.

us, S =5 udy =5 w'Ax'y =% wlwa'y, for all i.

Note that length of vwz Is at most 2™.

Also, note that vz # ¢, as A =7 vAz, using 1 or more steps
in the derivation, and G is a Chomsky Normal Form

grammar (which does not have unit productions or ¢
productions).
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Example: L = {aa : a € {a,b}*} is not a CFL. T
Suppose by way of contradiction that L is a CFL.

Then, let n > 1 be as in the pumping lemma.

Now consider z = g"t1pnH1gntipntl,

Let z = wvwzy be as in the pumping lemma.

Now consider the following cases based on where v and «
lie in an—l—lbn—l—lan—l—lbn—l—l:

|
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Case 1: vwz is contained in the first "+ 1p7*1, T
In this case, uwy is of the form ¢ t1—kpntl=syntipnt+l

where, vz = a*b%, and thus 0 < k + s < n.

This string cannot be written as aa. Suppose otherwise.

Then, the second a must end with 5”*! (as

‘Oz| _ 4n—|—42—k—s > n)

Thus, the first « ends somewnhere in the first sequence of
b's: ptl=s,

Thus, the second o ends with "1+,

But this means |a| > 2n + 2, and thus £+ s <0, a

contradiction.
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Case 2: vwz is contained in v"*1a" ™! part of 2. T
Thus, wwy is of the form " +1pnt1-kgntl=spnt+l where,

ve = bka®, and thus 0 < k + s < n.

This string cannot be written as aa. Suppose otherwise.

Then, a must start with ¢”*! and end with v"*! (as

‘Oz| _ 4n+42—k—s ~ n)

But then |a| > 2n 4 2, and thus k£ + s < 0, a contradiction.

|
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Case 3: vwz is contained in the second o™t part of z.
Thus, wwy is of the form " +1pntlgnti=Fkpntl=s where,

vx—akbs andthus 0 < k + s < n.

"his string cannot be written as a«. Suppose otherwise.

nen, o must start with o™ (as |a| = #2+5-5=5 > ),

Nus, the second « starts somewhere in the second
sequence of a’s: " t17%.

Thus, the first o starts with ¢ T1pn+1,

But this means |a| > 2n + 2, and thus £k + s <0, a
contradiction.

|
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Thus, in all cases, we have that L does not satisfy the T
pumping lemma.

Hence, L cannot be CFL.
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Closure Properties:

Substitution:

Consider mapping each terminal a to a CFL L,.
s(a) = Lg.

For a string w define s(w) as follows:

s(e) = {e}.

s(wa) = s(w) - s(a), fora € X, w € X*.

Thatis, s(ajas...ay) = s(ay) - s(az) - ... - s(ay).

Theorem: Suppose L is CFL over X and s is a substitution
on X such that s(a) = L, i1s GFL, for each a € . Then,
Uwers(w) is a GFL.

|
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Let G = (V,T, P,S) be a grammar for L. For each a, let T
Go = Vo, Ty, Py, S,) be a grammar for L.

Assume without loss of generality that V,,’s are pairwise
disjoint among themselves as well as with V.

Then, G' = (V',T', P',S) is a grammar for U,,cr,s(w),
where V'is V U U,er V.

T"is UgerT,.

P/:PnewUUaETPa,

where P,.,, 1S formed using the productions in P, where in
each of the productions, terminal « is replaced by S,.
Now, (V', T, P’,S) is a grammar for U,z s(w).

S =5 wift § =7, a, where a has each symbol a in w
replaced by S,. Thatis, if w = ajas ... ay,, then

o= S5¢,5q, ---Oa, - J
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Reversal T
Lt ={w":we L}

If L is CFL, then L is CFL.

To see this, suppose G = (V, T, P, S) is a grammar for L.

Then, grammar for L is obtained by considering

G = (V,T, P%,S), where P consists of productions

obtained by “reversing” the productions in P. That is,

A — «Is a production in P then

A — o't is a production in PE,

where o' is the reverse of a.

|

—p. 26/32



y N

If L is CFL and R is regular, then L N R is CFL.

For this, one can run the PDA for L and DFA for R in
parallel. Note that for this, one needs only one stack for the
PDA: DFA can be run without using the stack.

Suppose P = (Q, %, 1,9, qu, Zy, F) is a PDA for L, and
A=(Q,% ¥, q,F")isaDFAfor R

Then, form PDA P" = (Q",%,T',¢", qp, Zo, F") as follows:
Q” — Q % Q/

¢ = (90, 90)

F"=F x F'

ForZel',pe @, qe Q" ((p.q).e.2) =d(p.e, Z) x {q}
ForaceX, Zcl,pec@,qec Q'

0" ((p,q),a,Z) = d(p,a, Z) x {6'(q,a)}. |
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Example: L = {w : w € {a,b,c}" and T
#a(w) = #4(w) = #c(w)} is not a CFL.

If L were a CFL, then
LNa*b*c* = {a"b"c" : n > 0} would also be a CFL,
contradicting a result proved earlier.

|
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Note that CFLs are not closed under intersection in general:T
L1 ={ad"b"c™ :m,n > 1}

and

Lo = {a™b"c" : m,n > 1}

are both context free. However, their intersection

L3 =L1NLy = {anbncn n > 1}

IS ot context free.

|
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Testing whether CFL is () or not.

We can check if S is a useless symbol or not. If S'is
useless, then the language is (. Otherwise it is non-empty.

- |
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Testing membership in a CFL.

CYK algorithm.

Using Chomsky Normal Form.

We use a dynamic programming algorithm.

For w =aj ...a,, we determine the set X; ; of nonterminals
which generate the string a;a;+1 ... a;.

Base Case: Note that X; ; is just the set of non-terminals
which generate a;.

Induction step: X; ; then contains all A such that A — BC
and B € X, C € Xyy, 5, fori <k < j. Thatis, B generates
a;ai+1 - ..ax and C generates aiy; ... a;.

Now, w = a; ... ay IS In the language iff X, , contains S.
Running Time of the algorithm is O(n?).

- |
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Fori=1tondo T
Let Xm' — {A A — CLZ'}.
EndFor
Fors=1ton—1do
Fori=1ton —sdo
Let j =i+ s.
Let Xi,j = {A . A— BC B e Xijk,C’ c Xk—l—l,jai <k< ]}
EndFor
EndFor
Note that in the above algorithm, X; ; and X;., ; are
already computed by the time X; ; is computed, since k — i

and j — (k+ 1) are both < j — 1.

|

—p. 32/32



	Context Free Languages: Properties
	Generating Symbols
	Reachable symbols
	Eliminating $epsilon $ productions
	Identifying nullable symbols
	Eliminating Unit Productions
	Pumping Lemma

