
Context Free Languages: Properties

Normal Forms.

Chomsky Normal Form.
All productions are of the form A → BC or A → a (where
a ∈ T and A,B,C ∈ V).

– p. 1/32

Useless symbols: Symbols which do not appear in any
derivation of a string from the start symbol. That is, the
symbol does not appear in any derivation S ⇒∗

G w, for
any w ∈ T ∗.

We want to eliminate useless symbols.

Symbol A is said to be useful if it appears as
S ⇒∗

G αAβ ⇒∗

G w, for some w ∈ T ∗.

We say that a symbol A is generating if A ⇒∗

G w, for
some w ∈ T ∗.

We say that a symbol A is reachable if S ⇒∗

G αAβ, for

some α, β ∈ (V ∪ T)∗.

– p. 2/32

Surely a symbol is useful only if it is reachable and
generating (though vice-versa need not be the case).
What we will show is that if we get rid of non-generating
symbols first and then the non-reachable symbols in the
remaining grammar, then we will only be left with useful
symbols.

– p. 3/32

Theorem: Suppose G = (V, T, P, S) is a grammar which
generates at least one string.
Then, if
1) First eliminate all symbols (and productions involving
these symbols) which are non-generating. Let this grammar
be G2 = (V2, T, P2, S).
2) Remove all non-reachable symbols (and corresponding
productions for them) from the grammar G2. Suppose the
resulting grammar is G3.
Then G3 contains no useless symbols and generates the
same language as G.

– p. 4/32

Generating Symbols

Base Case: All symbols in T are generating.
Induction: If there is a production of the form A → α, where
α consists only of generating symbols, then A is generating.
Iterate the above process until no more symbols can be
added.

– p. 5/32

Reachable symbols

Base Case: S is reachable.
Induction Case: If A is reachable, and A → α is a
production, then every symbol in α is reachable.

A symbol is non-reachable, iff it is not reachable.

– p. 6/32

Converting a Grammar into Chomsky Normal Form:
1. Eliminate ǫ productions.
2. Eliminate unit-productions.
3. Convert the productions to productions of length 2
(involving non-terminals on RHS) or productions of length 1
(involving terminal on RHS).

– p. 7/32

Eliminating ǫ productions

1. We first find all nonterminals A such that A ⇒∗

G ǫ. These

nonterminals are called nullable.
2. Then, we get rid of ǫ productions, and for each production
B → α, we replace it with all possible productions, B → α′,
where α′ can be formed from α by possibly deleting some of
the nonterminals which are nullable.
Note: If S is nullable, then our method only generates the
language L− {ǫ}.

– p. 8/32

Theorem: If we modify the grammar as above, then
L(G′) = L(G)− {ǫ}.
Proof: We prove a more general statement:
For all A ∈ V , for all w ∈ T ∗ − {ǫ}, A ⇒∗

G w, iff A ⇒∗

G′ w.

Claim: Suppose A ⇒∗

G w. Then we claim that A ⇒∗

G′ w.

Proof:
In the derivation A ⇒∗

G w, “drop” each symbol which

eventually produces empty string in the derivation.

– p. 9/32

Claim: For all A ∈ V , for all w ∈ T ∗ − {ǫ}, if A ⇒∗

G′ w then
A ⇒∗

G w.

Proof: Consider the first step in the derivation:
A ⇒G′ α ⇒∗

G′ w.

Suppose the corresponding production in G was
A → α′.
Then, we have that α′ ⇒∗

G α, by having the “nulled” symbols
generate ǫ.
Now the claim follows by induction.

– p. 10/32

Identifying nullable symbols

Base: If A → ǫ, then A is nullable.
Induction: If A → α, and every symbol in α is nullable, then
A is nullable.
Apply the induction step until no more nullable symbols can
be found.

– p. 11/32

Eliminating Unit Productions

First determine for each pair of non-terminals A,B, if
A ⇒∗

G B.

Then we need to add A → γ, for all non unit productions of
the form B → γ.

Base: (A,A) is a unit pair.
Induction: If (A,B) is a unit pair, and B → C, then (A,C) is
a unit pair.
Do the induction step until no more new pairs can be added.

– p. 12/32

All productions of length ≥ 2 can be changed to (a set of)
productions of length 2 (involving only non-terminals on
RHS) or productions of length 1 (involving terminals on
RHS) as follows:
Given Production: A → X1X2 . . . Xk

is changed to the following set of productions:
A → Z1B2,
B2 → Z2B3, . . .,
Bk−1 → Zk−1Zk,
Zi → Xi, if Xi ∈ T ,
Zi = Xi, if Xi is a nonterminal,
where Bi (and possibly) Zi are new non-terminals.

– p. 13/32

Size of Parse Tree

Theorem: Suppose we have a parse tree using a Chomsky
Normal Form Grammar. If the length of the longest path
from root to a node is s, then size of the string w generated

is at most 2s−1.

– p. 14/32

Pumping Lemma

Pumping Lemma for CFL: Let L be a CFL. Then there
exists a constant n such that, if z is any string in L such that
|z| ≥ n, then we can write z = uvwxy such that:
1. |vwx| ≤ n

2. vx 6= ǫ

3. For all i ≥ 0, uviwxiy ∈ L.

– p. 15/32

Example: L = {ambmcm : m ≥ 1} is not a CFL.
Suppose by way of contradiction that L is a CFL.
Then, let n > 1 be as in the pumping lemma.
Consider z = anbncn.
Let z = uvwxy be as in the pumping lemma.
Now, |vwx| ≤ n. Thus, vwx cannot contain both a and c.
In case vwx does not contain an a, then
uv2wx2y contains n a’s, though |uv2wx2y| > 3n. Thus,

uv2wx2y is not in L.
Similarly, if vwx does not contain a c, then

uv2wx2y contains n c’s, though |uv2wx2y| > 3n. Thus,

uv2wx2y is not in L.
Thus, in all cases, we have that L does not satisfy the
pumping lemma. Hence, L cannot be CFL.

– p. 16/32

Proof of Pumping Lemma for CFL.
Let L be a context free language.
Without loss of generality, we assume L 6= ∅ and L 6= {ǫ}.
Choose a Chomsky Normal Form grammar G = (V, T, P, S)
for L− {ǫ}.
Let m = |V |. Let n = 2m.
Suppose a string z ∈ L of length at least n = 2m is given.
Consider the parse tree for z. This parse tree must have a
path from the root to a leaf of length at least m+ 1 (by
Theorem proved earlier).
Consider the path from the root to a leaf at largest depth.
In this path, among the last m+ 1 non-terminals, there must
be two nonterminals which are same (by pigeonhole
principle). (See picture: PL-figure)

– p. 17/32

Then, z = uvwxy, where S ⇒∗

G uAy ⇒∗

G uvAxy ⇒∗

G uvwxy.

Thus, we have A ⇒∗

G vAx, A ⇒∗

G w.

Thus, A ⇒∗

G viAxi ⇒∗

G viwxi.

Thus, S ⇒∗

G uAy ⇒∗

G uviAxiy ⇒∗

G uviwxiy, for all i.

Note that length of vwx is at most 2m.
Also, note that vx 6= ǫ, as A ⇒∗

G vAx, using 1 or more steps

in the derivation, and G is a Chomsky Normal Form
grammar (which does not have unit productions or ǫ
productions).

– p. 18/32

Example: L = {αα : α ∈ {a, b}∗} is not a CFL.
Suppose by way of contradiction that L is a CFL.
Then, let n > 1 be as in the pumping lemma.

Now consider z = an+1bn+1an+1bn+1.
Let z = uvwxy be as in the pumping lemma.
Now consider the following cases based on where v and x

lie in an+1bn+1an+1bn+1:

– p. 19/32

Case 1: vwx is contained in the first an+1bn+1.
In this case, uwy is of the form an+1−kbn+1−san+1bn+1,

where, vx = akbs, and thus 0 < k + s ≤ n.
This string cannot be written as αα. Suppose otherwise.

Then, the second α must end with bn+1 (as

|α| = 4n+4−k−s
2

> n).

Thus, the first α ends somewhere in the first sequence of

b’s: bn+1−s.
Thus, the second α ends with an+1bn+1.
But this means |α| ≥ 2n+ 2, and thus k + s ≤ 0, a
contradiction.

– p. 20/32

Case 2: vwx is contained in bn+1an+1 part of z.

Thus, uwy is of the form an+1bn+1−kan+1−sbn+1, where,

vx = bkas, and thus 0 < k + s ≤ n.
This string cannot be written as αα. Suppose otherwise.

Then, α must start with an+1 and end with bn+1 (as

|α| = 4n+4−k−s
2

> n).

But then |α| ≥ 2n+ 2, and thus k + s ≤ 0, a contradiction.

– p. 21/32

Case 3: vwx is contained in the second an+1bn+1 part of z.

Thus, uwy is of the form an+1bn+1an+1−kbn+1−s, where,

vx = akbs, and thus 0 < k + s ≤ n.
This string cannot be written as αα. Suppose otherwise.

Then, α must start with an+1 (as |α| = 4n+4−k−s
2

> n).

Thus, the second α starts somewhere in the second

sequence of a’s: an+1−k.

Thus, the first α starts with an+1bn+1.
But this means |α| ≥ 2n+ 2, and thus k + s ≤ 0, a
contradiction.

– p. 22/32

Thus, in all cases, we have that L does not satisfy the
pumping lemma.
Hence, L cannot be CFL.

– p. 23/32

Closure Properties:

Substitution:
Consider mapping each terminal a to a CFL La.
s(a) = La.
For a string w define s(w) as follows:
s(ǫ) = {ǫ}.
s(wa) = s(w) · s(a), for a ∈ Σ, w ∈ Σ∗.
That is, s(a1a2 . . . an) = s(a1) · s(a2) · . . . · s(an).

Theorem: Suppose L is CFL over Σ and s is a substitution
on Σ such that s(a) = La is CFL, for each a ∈ Σ. Then,
∪w∈Ls(w) is a CFL.

– p. 24/32

Let G = (V, T, P, S) be a grammar for L. For each a, let
Ga = (Va, Ta, Pa, Sa) be a grammar for La.
Assume without loss of generality that Va’s are pairwise
disjoint among themselves as well as with V .
Then, G′ = (V ′, T ′, P ′, S) is a grammar for ∪w∈Ls(w),
where V ′ is V ∪ ∪a∈TVa.
T ′ is ∪a∈TTa.
P ′ = Pnew ∪ ∪a∈TPa

where Pnew is formed using the productions in P , where in
each of the productions, terminal a is replaced by Sa.
Now, (V ′, T ′, P ′, S) is a grammar for ∪w∈Ls(w).
S ⇒∗

G w iff S ⇒∗

G′ α, where α has each symbol a in w

replaced by Sa. That is, if w = a1a2 . . . an, then
α = Sa1

Sa2
. . . San

.

– p. 25/32

Reversal
LR = {wR : w ∈ L}

If L is CFL, then LR is CFL.
To see this, suppose G = (V, T, P, S) is a grammar for L.

Then, grammar for LR is obtained by considering

GR = (V, T, PR, S), where PR consists of productions
obtained by “reversing” the productions in P . That is,
A → α is a production in P then

A → αR is a production in PR,

where αR is the reverse of α.

– p. 26/32

If L is CFL and R is regular, then L ∩ R is CFL.

For this, one can run the PDA for L and DFA for R in
parallel. Note that for this, one needs only one stack for the
PDA: DFA can be run without using the stack.
Suppose P = (Q,Σ,Γ, δ, q0, Z0, F) is a PDA for L, and
A = (Q′,Σ, δ′, q′0, F

′) is a DFA for R

Then, form PDA P ′′ = (Q′′,Σ,Γ, δ′′, q′′0 , Z0, F
′′) as follows:

Q′′ = Q×Q′

q′′0 = (q0, q
′

0)

F ′′ = F × F ′

For Z ∈ Γ, p ∈ Q, q ∈ Q′: δ′′((p, q), ǫ, Z) = δ(p, ǫ, Z)× {q}
For a ∈ Σ, Z ∈ Γ, p ∈ Q, q ∈ Q′:
δ′′((p, q), a, Z) = δ(p, a, Z)× {δ′(q, a)}.

– p. 27/32

Example: L = {w : w ∈ {a, b, c}∗ and
#a(w) = #b(w) = #c(w)} is not a CFL.

If L were a CFL, then
L ∩ a∗b∗c∗ = {anbncn : n ≥ 0} would also be a CFL,
contradicting a result proved earlier.

– p. 28/32

Note that CFLs are not closed under intersection in general:
L1 = {anbncm : m,n ≥ 1}
and
L2 = {ambncn : m,n ≥ 1}
are both context free. However, their intersection
L3 = L1 ∩ L2 = {anbncn : n ≥ 1}
is not context free.

– p. 29/32

Testing whether CFL is ∅ or not.

We can check if S is a useless symbol or not. If S is
useless, then the language is ∅. Otherwise it is non-empty.

– p. 30/32

Testing membership in a CFL.
CYK algorithm.
Using Chomsky Normal Form.
We use a dynamic programming algorithm.
For w = a1 . . . an, we determine the set Xi,j of nonterminals
which generate the string aiai+1 . . . aj .

Base Case: Note that Xi,i is just the set of non-terminals
which generate ai.
Induction step: Xi,j then contains all A such that A → BC

and B ∈ Xi,k, C ∈ Xk+1,j, for i ≤ k < j. That is, B generates

aiai+1 . . . ak and C generates ak+1 . . . aj .

Now, w = a1 . . . an is in the language iff X1,n contains S.

Running Time of the algorithm is O(n3).

– p. 31/32

For i = 1 to n do
Let Xi,i = {A : A → ai}.

EndFor
For s = 1 to n− 1 do
For i = 1 to n− s do

Let j = i+ s.
Let Xi,j = {A : A → BC,B ∈ Xi,k, C ∈ Xk+1,j, i ≤ k < j}.

EndFor
EndFor
Note that in the above algorithm, Xi,k and Xk+1,j are

already computed by the time Xi,j is computed, since k − i

and j − (k + 1) are both < j − i.

– p. 32/32

	Context Free Languages: Properties
	Generating Symbols
	Reachable symbols
	Eliminating $epsilon $ productions
	Identifying nullable symbols
	Eliminating Unit Productions
	Pumping Lemma

