Context Free Languages: Properties

Normal Forms.

Chomsky Normal Form.
All productions are of the form A — BC or A — a (where
aceT and A, B,C €V).

-

-

Useless symbols: Symbols which do not appear in any
derivation of a string from the start symbol. That is, the
symbol does not appear in any derivation S =7 w, for
any w € T™*.

We want to eliminate useless symbols.

Symbol A is said to be useful if it appears as
S =75 aAB = w, for some w € T™.

We say that a symbol A is generating if A =, w, for
some w € T*.

We say that a symbol A is reachable if S =, aAg, for
some a, 3 € (VUT)*.

|

—p. 2/32

Surely a symbol is useful only if it is reachable and T
generating (though vice-versa need not be the case).

What we will show is that if we get rid of non-generating
symbols first and then the non-reachable symbols in the
remaining grammar, then we will only be left with useful

symbols.

—p.3/32

Theorem: Suppose G = (V, T, P, S) is a grammar which T
generates at least one string.

Then, if

1) First eliminate all symbols (and productions involving
these symbols) which are non-generating. Let this grammar
be Gy = (VQ,T, P, S).

2) Remove all non-reachable symbols (and corresponding
productions for them) from the grammar G5. Suppose the
resulting grammar is Gs.

Then G35 contains no useless symbols and generates the
same language as G.

—p. 4/32

Generating Symbols

Base Case: All symbols in T" are generating. T
Induction: If there is a production of the form A — «, where

« consists only of generating symbols, then A is generating.
lterate the above process until no more symbols can be

added.

—p. 5/32

Reachable symbols
. -

Base Case: S is reachable.
Induction Case: If A is reachable,and A — «ais a

production, then every symbol in « is reachable.

A symbol is non-reachable, iff it is not reachable.

—p. 6/32

-

Converting a Grammar into Chomsky Normal Form:

1. Eliminate ¢ productions.

2. Eliminate unit-productions.

3. Convert the productions to productions of length 2
(involving non-terminals on RHS) or productions of length 1
(involving terminal on RHS).

—p. 7/32

Eliminating ¢ productions
1. We first find all nonterminals A such that A =% e. These T

nonterminals are called nullable.

2. Then, we get rid of ¢ productions, and for each production
B — «, we replace it with all possible productions, B — o/,
where o’ can be formed from o by possibly deleting some of
the nonterminals which are nullable.

Note: If S is nullable, then our method only generates the

language L — {¢}.

—p. 8/32

Theorem: If we modify the grammar as above, then T
L(G") = L(G) — {e€}.

Proof: We prove a more general statement:

Forall AcV,forallweT* —{e}, A= w,iff A=7, w.

Claim: Suppose A =7, w. Then we claim that A =7, w.
Proof:

In the derivation A =, w, “drop” each symbol which
eventually produces empty string in the derivation.

—p. 9/32

Claim: Forall A e V, forall w € T* — {¢}, If A =¢, w then T
A= w.

Proof: Consider the first step in the derivation:

A= a=r w.

Suppose the corresponding production in G was

A= d.

Then, we have that o =7, «, by having the “nulled” symbols

generate e.
Now the claim follows by induction.

|

—p. 10/32

Identifying nullable symbols
. -

Base: If A — ¢, then A is nullable.
Induction: If A — «, and every symbol in « is nullable, then

A is nullable.
Apply the induction step until no more nullable symbols can

be found.

|

—p.11/32

Eliminating Unit Productions

-

First determine for each pair of non-terminals A, B, if
A= B.

Then we need to add A — ~, for all non unit productions of
the form B — ~.

Base: (A, A) is a unit pair.

Induction: If (A, B) is a unit pair, and B — C, then (A,C) is
a unit pair.

Do the induction step until no more new pairs can be added.

- |

—p.12/32

-

All productions of length > 2 can be changed to (a set of)
productions of length 2 (involving only non-terminals on
RHS) or productions of length 1 (involving terminals on
RHS) as follows:

Given Production: A — X1 Xs ... X

Is changed to the following set of productions:

A— ZlBQ,

BQ — ZQBg, ey

Br_1 = Zp_1Zk,

Zi — X, If X; €T,

Z; = X;, If X; 18 a nonterminal,

where B; (and possibly) Z; are new non-terminals.

- |

—p. 13/32

Size of Parse Tree T

Theorem: Suppose we have a parse tree using a Chomsky
Normal Form Grammar. If the length of the longest path
from root to a node is s, then size of the string w generated
is at most 2571,

- |

—p. 14/32

Pumping Lemma

Pumping Lemma for CFL: Let L be a CFL. Then there T
exists a constant n such that, if z is any string in L such that
12| > n, then we can write z = wvwzy such that:

1. Jowz| < n
2. vx #£ €
3. Foralli > 0, w'wxy € L.

|

—p. 15/32

Example: L = {a™b™c™ : m > 1} is not a CFL. T
Suppose by way of contradiction that L is a CFL.

Then, let n > 1 be as in the pumping lemma.

Consider z = a"b"c".

Let z = wvwzxy be as in the pumping lemma.

Now, |vwz| < n. Thus, vwa cannot contain both « and c.

In case vwx does not contain an a, then

uwv?wr?y contains n a’s, though |uv*wa?y| > 3n. Thus,

wv?wz?y is not in L.

Similarly, if vwz does not contain a ¢, then

wv?wz?y contains n ¢’'s, though |uv?wz?y| > 3n. Thus,

wv?wz?y is not in L.

Thus, in all cases, we have that L does not satisfy the
pumping lemma. Hence, L cannot be CFL. J

—p. 16/32

Proof of Pumping Lemma for CFL. T
Let L be a context free language.

Without loss of generality, we assume L # () and L # {e}.
Choose a Chomsky Normal Form grammar G = (V,T, P, S)
for L — {e}.

Letm = |V|. Let n = 2™,

Suppose a string z € L of length at least n = 2™ is given.
Consider the parse tree for z. This parse tree must have a
path from the root to a leaf of length at least m + 1 (by
Theorem proved earlier).

Consider the path from the root to a leaf at largest depth.

In this path, among the last m + 1 non-terminals, there must
be two nonterminals which are same (by pigeonhole

principle). (See picture: PL-figure) J

—p.17/32

nen, z = wvwzy, Where S =7, vAy =5 wAzy =7, uvway.
nus, we have A =7 vAz, A =7 w.

nus, A =7, vt Azt = viwz?.

us, S =5 udy =5 w'Ax'y =% wlwa'y, for all i.

Note that length of vwz Is at most 2™.

Also, note that vz # ¢, as A =7 vAz, using 1 or more steps
in the derivation, and G is a Chomsky Normal Form

grammar (which does not have unit productions or ¢
productions).

- |

—p. 18/32

Example: L = {aa : a € {a,b}*} is not a CFL. T
Suppose by way of contradiction that L is a CFL.

Then, let n > 1 be as in the pumping lemma.

Now consider z = g"t1pnH1gntipntl,

Let z = wvwzy be as in the pumping lemma.

Now consider the following cases based on where v and «
lie in an—l—lbn—l—lan—l—lbn—l—l:

|

—p. 19/32

Case 1: vwz is contained in the first "+ 1p7*1, T
In this case, uwy is of the form ¢ t1—kpntl=syntipnt+l

where, vz = a*b%, and thus 0 < k + s < n.

This string cannot be written as aa. Suppose otherwise.

Then, the second a must end with 5”*! (as

‘Oz| _ 4n—|—42—k—s > n)

Thus, the first « ends somewnhere in the first sequence of
b's: ptl=s,

Thus, the second o ends with "1+,

But this means |a| > 2n + 2, and thus £+ s <0, a

contradiction.

|

—p. 20/32

Case 2: vwz is contained in v"*1a" ™! part of 2. T
Thus, wwy is of the form " +1pnt1-kgntl=spnt+l where,

ve = bka®, and thus 0 < k + s < n.

This string cannot be written as aa. Suppose otherwise.

Then, a must start with ¢”*! and end with v"*! (as

‘Oz| _ 4n+42—k—s ~ n)

But then |a| > 2n 4 2, and thus k£ + s < 0, a contradiction.

|

—p.21/32

B . -

Case 3: vwz is contained in the second o™t part of z.
Thus, wwy is of the form " +1pntlgnti=Fkpntl=s where,

vx—akbs andthus 0 < k + s < n.

"his string cannot be written as a«. Suppose otherwise.

nen, o must start with o™ (as |a| = #2+5-5=5 >),

Nus, the second « starts somewhere in the second
sequence of a’s: " t17%.

Thus, the first o starts with ¢ T1pn+1,

But this means |a| > 2n + 2, and thus £k + s <0, a
contradiction.

|

—p. 22/32

Thus, in all cases, we have that L does not satisfy the T
pumping lemma.

Hence, L cannot be CFL.

- |

—p. 23/32

Closure Properties:

Substitution:

Consider mapping each terminal a to a CFL L,.
s(a) = Lg.

For a string w define s(w) as follows:

s(e) = {e}.

s(wa) = s(w) - s(a), fora € X, w € X*.

Thatis, s(ajas...ay) = s(ay) - s(az) - ... - s(ay).

Theorem: Suppose L is CFL over X and s is a substitution
on X such that s(a) = L, i1s GFL, for each a € . Then,
Uwers(w) is a GFL.

|

—p. 24/32

Let G = (V,T, P,S) be a grammar for L. For each a, let T
Go = Vo, Ty, Py, S,) be a grammar for L.

Assume without loss of generality that V,,’s are pairwise
disjoint among themselves as well as with V.

Then, G' = (V',T', P',S) is a grammar for U,,cr,s(w),
where V'is V U U,er V.

T"is UgerT,.

P/:PnewUUaETPa,

where P,.,, 1S formed using the productions in P, where in
each of the productions, terminal « is replaced by S,.
Now, (V', T, P’,S) is a grammar for U,z s(w).

S =5 wift § =7, a, where a has each symbol a in w
replaced by S,. Thatis, if w = ajas ... ay,, then

o= S5¢,5q, ---Oa, - J

—p. 25/32

Reversal T
Lt ={w":we L}

If L is CFL, then L is CFL.

To see this, suppose G = (V, T, P, S) is a grammar for L.

Then, grammar for L is obtained by considering

G = (V,T, P%,S), where P consists of productions

obtained by “reversing” the productions in P. That is,

A — «Is a production in P then

A — o't is a production in PE,

where o' is the reverse of a.

|

—p. 26/32

y N

If L is CFL and R is regular, then L N R is CFL.

For this, one can run the PDA for L and DFA for R in
parallel. Note that for this, one needs only one stack for the
PDA: DFA can be run without using the stack.

Suppose P = (Q, %, 1,9, qu, Zy, F) is a PDA for L, and
A=(Q,% ¥, q,F")isaDFAfor R

Then, form PDA P" = (Q",%,T',¢", qp, Zo, F") as follows:
Q” — Q % Q/

¢ = (90, 90)

F"=F x F'

ForZel',pe @, qe Q" ((p.q).e.2) =d(p.e, Z) x {q}
ForaceX, Zcl,pec@,qec Q'

0" ((p,q),a,Z) = d(p,a, Z) x {6'(q,a)}. |

—p. 27/32

Example: L = {w : w € {a,b,c}" and T
#a(w) = #4(w) = #c(w)} is not a CFL.

If L were a CFL, then
LNa*b*c* = {a"b"c" : n > 0} would also be a CFL,
contradicting a result proved earlier.

|

—p. 28/32

Note that CFLs are not closed under intersection in general:T
L1 ={ad"b"c™ :m,n > 1}

and

Lo = {a™b"c" : m,n > 1}

are both context free. However, their intersection

L3 =L1NLy = {anbncn n > 1}

IS ot context free.

|

—p. 29/32

. N

Testing whether CFL is () or not.

We can check if S is a useless symbol or not. If S'is
useless, then the language is (. Otherwise it is non-empty.

- |

—p. 30/32

Testing membership in a CFL.

CYK algorithm.

Using Chomsky Normal Form.

We use a dynamic programming algorithm.

For w =aj ...a,, we determine the set X; ; of nonterminals
which generate the string a;a;+1 ... a;.

Base Case: Note that X; ; is just the set of non-terminals
which generate a;.

Induction step: X; ; then contains all A such that A — BC
and B € X, C € Xyy, 5, fori <k < j. Thatis, B generates
a;ai+1 - ..ax and C generates aiy; ... a;.

Now, w = a; ... ay IS In the language iff X, , contains S.
Running Time of the algorithm is O(n?).

- |

—p. 31/32

Fori=1tondo T
Let Xm' — {A A — CLZ'}.
EndFor
Fors=1ton—1do
Fori=1ton —sdo
Let j =i+ s.
Let Xi,j = {A . A— BC B e Xijk,C’ c Xk—l—l,jai <k<]}
EndFor
EndFor
Note that in the above algorithm, X; ; and X;., ; are
already computed by the time X; ; is computed, since k — i

and j — (k+ 1) are both < j — 1.

|

—p. 32/32

	Context Free Languages: Properties
	Generating Symbols
	Reachable symbols
	Eliminating $epsilon $ productions
	Identifying nullable symbols
	Eliminating Unit Productions
	Pumping Lemma

