

Context Free Languages and Grammar

Example: Palindromes can be expressed by the following

$$S \rightarrow \epsilon$$

$$S \rightarrow a$$

$$S \rightarrow b$$

$$S \rightarrow aSa$$

$$S \rightarrow bSb$$

Another Example

$E \rightarrow id$

$E \rightarrow E + E$

$E \rightarrow E * E$

Another Example:

$S \rightarrow id = E$

$S \rightarrow \text{If } E \text{ Then } id = E \text{ Else } id = E \text{ EndIf}$

$S \rightarrow S; S$

CFG

$G = (V, T, P, S)$,
where

- V : A finite set of variables or non-terminals.
- T : A finite set of terminals
($V \cap T = \emptyset$).
- P : finite set of productions. Each production is of the form $A \rightarrow \gamma$, where $A \in V$ and $\gamma \in (V \cup T)^*$.
- S : start symbol, a member of V

Simpler notation to make writing shorter:

$S \rightarrow a|b|\epsilon|aSa|bSb$

Derivations

$\alpha A\beta \Rightarrow_G \alpha\gamma\beta$, if there is a production of the form $A \rightarrow \gamma$.

We now define $\alpha \Rightarrow_G^* \beta$.

Base case: $\alpha \Rightarrow_G^* \alpha$ for all $\alpha \in (V \cup T)^*$.

Induction: If $\alpha \Rightarrow_G^* \beta$ and $\beta \Rightarrow_G \gamma$, then $\alpha \Rightarrow_G^* \gamma$.

$L(G) = \{w \in T^* \mid S \Rightarrow_G^* w\}$.

If clear from context, we drop G from \Rightarrow_G^* , and just write \Rightarrow^* .

Derivations

Consider the grammar

$$S \rightarrow A1B$$

$$A \rightarrow 0A \mid \epsilon$$

$$B \rightarrow 0B \mid 1B \mid \epsilon$$

The above generates the language $0^*1(0 + 1)^*$

Consider the derivation of 00110.

$$\begin{aligned} S &\Rightarrow A1B \Rightarrow A11B \Rightarrow 0A11B \Rightarrow 00A11B \Rightarrow 00A110B \Rightarrow \\ &00A110 \Rightarrow 00110 \end{aligned}$$

Another possible derivation is:

$$\begin{aligned} S &\Rightarrow A1B \Rightarrow 0A1B \Rightarrow 00A1B \Rightarrow 001B \Rightarrow 0011B \Rightarrow 00110B \Rightarrow \\ &00110 \end{aligned}$$

Sentential Forms

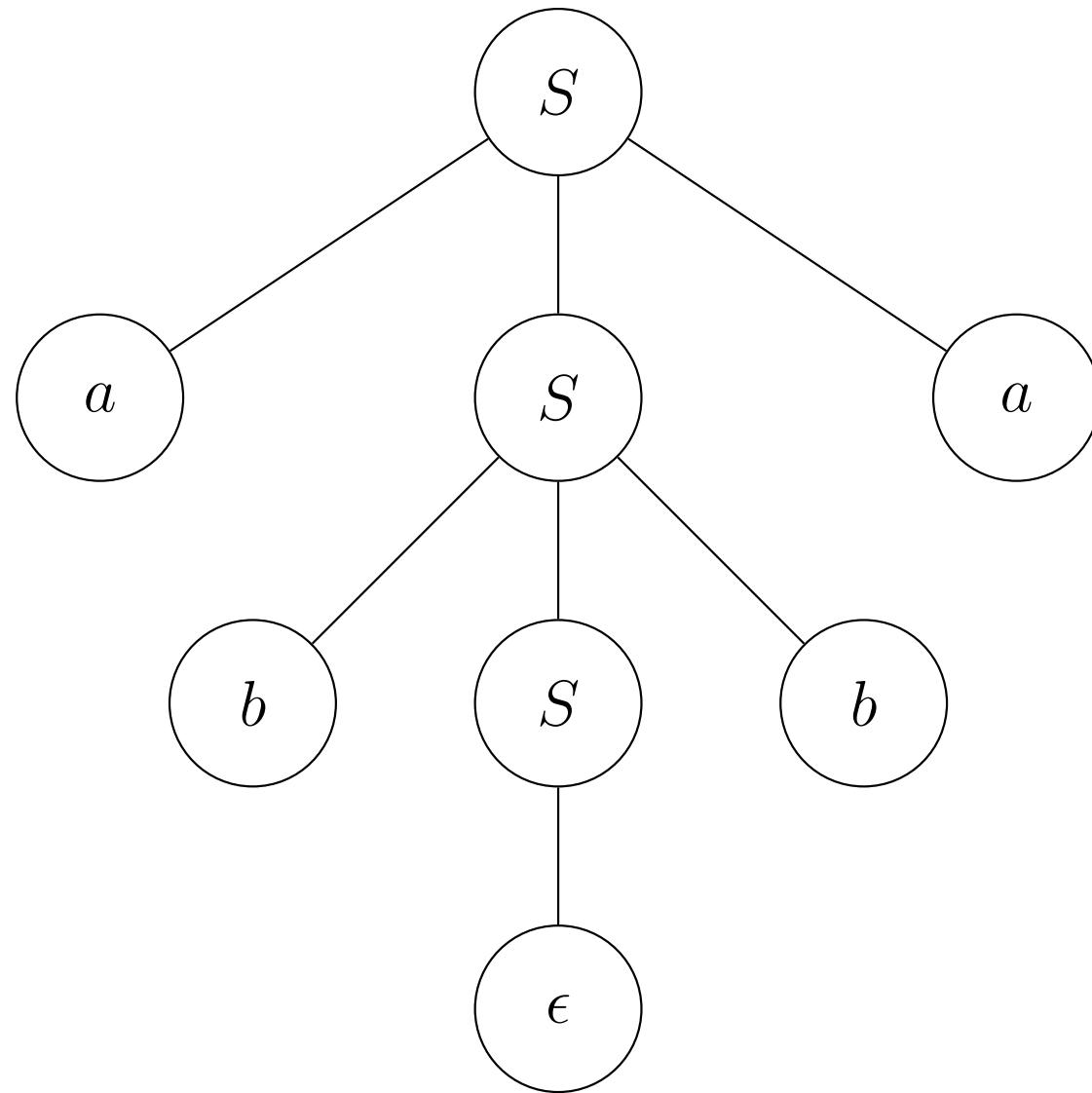
If $S \Rightarrow_G^* \alpha$, then α is called a sentential form.

Left Most and Right Most Derivations

In Left Most Derivation, in each step of the derivation, one replaces the leftmost non-terminal in the sentential form.

In Right Most Derivation, in each step of the derivation, one replaces the rightmost non-terminal in the sentential form.

Parse Trees



Right-Linear Grammars

A CFG is called right linear if all the productions in it are of the form:

$A \rightarrow wB$, for $B \in V$ and $w \in T^*$, or
 $A \rightarrow w$, for $w \in T^*$.

Theorem: Every regular language can be generated by some right-linear grammar.

Theorem: Language generated by a right-linear grammar is regular.

Theorem: Every regular language can be generated by some right-linear grammar.

Suppose L is accepted by DFA $A = (Q, \Sigma, \delta, q_0, F)$.

(Without loss of generality, assume that $Q \cap \Sigma = \emptyset$).

Then, let $G = (Q, \Sigma, P, q_0)$, where

i) For $q, p \in Q, a \in \Sigma$,

if $\delta(q, a) = p$, then we have a production in P of the form $q \rightarrow ap$.

ii) We also have productions, $q \rightarrow \epsilon$, for each $q \in F$.

Prove by induction on length of w that $\hat{\delta}(q_0, w) = p$ iff $q_0 \Rightarrow_G^* wp$.

This would also give us that

$\hat{\delta}(q_0, w) \in F$ iff $q_0 \Rightarrow_G^* w$.

Inductive proof for: $\hat{\delta}(q_0, w) = p$ iff $q_0 \Rightarrow_G^* wp$.

If w is of length 0, then clearly, $\hat{\delta}(q_0, \epsilon) = p$ iff $p = q_0$, and $q_0 \Rightarrow_G^* p$ iff $q_0 = p$.

Suppose by induction, the claim holds for all w of length k , then we show that it holds for all w of length $k + 1$.

So consider any $w = ua$, where length of u is k .

Then, $\hat{\delta}(q_0, ua) = p'$ iff $(\exists p)[\hat{\delta}(q_0, u) = p \text{ and } \delta(p, a) = p']$ iff $(\exists p)[q_0 \Rightarrow_G^* up \text{ and } p \rightarrow ap']$ iff $[q_0 \Rightarrow_G^* uap']$.

Theorem: Language generated by a right-linear grammar is regular.

Suppose $G = (V, \Sigma, P, S)$.

(Without loss of generality, assume that $V \cap \Sigma = \emptyset$).

Assume without loss of generality that each production is of the form $A \rightarrow bC$, or of the form $A \rightarrow \epsilon$, where $b \in \Sigma \cup \{\epsilon\}$, $A, C \in V$.

Then, define NFA $A = (V, \Sigma, \delta, S, F)$, as follows.

If there is a production of the form $A \rightarrow aB$, then $B \in \delta(A, a)$.

$F = \{A \mid A \rightarrow \epsilon \text{ is a production in } P\}$.

Show by induction that

$A \Rightarrow_G^* wB$ iff $B \in \hat{\delta}(A, w)$.

This would also give,

$A \Rightarrow_G^* w$ iff $\hat{\delta}(A, w) \cap F \neq \emptyset$

and thus,

$S \Rightarrow_G^* w$ iff $\hat{\delta}(S, w) \cap F \neq \emptyset$

To see that we can assume without loss of generality that every production in a right linear grammar is of the form $A \rightarrow bB$ or $A \rightarrow \epsilon$, where $B \in V$ and $b \in \Sigma \cup \{\epsilon\}$, we can do as follows.

If $A \rightarrow b_1b_2 \dots b_nB$ is a production, where $n \geq 1$, then it can be replaced by the productions:

$$A \rightarrow b_1B_1$$

$$B_1 \rightarrow b_2B_2$$

...

$$B_{n-1} \rightarrow b_nB$$

where B_1, B_2, \dots, B_{n-1} are new non-terminals.

A production of the form $A \rightarrow b_1b_2 \dots b_n$, where $n \geq 1$ can be replaced by

$$A \rightarrow b_1B_1$$

$$B_1 \rightarrow b_2B_2 \dots$$

$$B_{n-1} \rightarrow b_nB_n$$

$$B_n \rightarrow \epsilon$$

where B_1, B_2, \dots, B_n are new non-terminals.

Ambiguous Grammars

Consider

$$E \rightarrow E + E$$

$$E \rightarrow E * E$$

$$E \rightarrow id.$$

Consider derivation of $id + id * id.$

It can be done in 2 ways:

$$E \Rightarrow E + E \Rightarrow id + E \Rightarrow id + E * E \Rightarrow id + id * E \Rightarrow id + id * id.$$

$$E \Rightarrow E * E \Rightarrow E + E * E \Rightarrow id + E * E \Rightarrow id + id * E \Rightarrow id + id * id.$$

└

$S \rightarrow S + T$

$S \rightarrow T$

$T \rightarrow T * id$

$T \rightarrow id$

└

Inherently ambiguous languages

$$L = \{a^n b^n c^m d^m \mid n, m \geq 1\} \cup \{a^n b^m c^m d^n \mid n, m \geq 1\}.$$

Any grammar for above language is ambiguous.

Note that above is a context free language as shown by following grammar:

$$S \rightarrow A|B$$

$$A \rightarrow CD$$

$$B \rightarrow aBd|aEd$$

$$C \rightarrow aCb|ab$$

$$D \rightarrow cDd|cd$$

$$E \rightarrow bEc|bc$$