
Tape Compression

Theorem: Fix c > 0. If a language L is accepted by a
machine M , with k tapes, that is S(n) space bounded, then
L is accepted by a machine M ′, with k tapes, that is ⌈cS(n)⌉
space bounded.
Proof:
Suppose M is S(n) space bounded and accepts L.
Construct M ′, which simulates M but uses less space.

Each cell of a worktape of M ′ codes m cells of the
corresponding tape of M . (This increases the alphabet size
used by M ′, but that is ok.)

– p. 1/17

Simulation: finite control of M ′ keeps track of which of the m
cells represented by the presently scanned cell of the
tape(s) of M ′ is actually being scanned by M . M ′ accepts
an input iff M does.

Space used by M ′ on input x is:

⌈
SpaceM (x)

m
⌉

Take m > 1
c
.

Thus, space used is at most
⌈c ∗ SpaceM (x)⌉

– p. 2/17

Linear Speedup

Theorem: Fix c > 0. Suppose L is accepted by a machine M ,
with k ≥ 2 tapes, that is T (n) time bounded, where
limn→∞ T (n)/n = ∞.
Then L is also accepted by a machine M ′ that is ⌈cT (n)⌉
time bounded.

Proof:
We use a similar coding as in the tape compression
theorem except that we code the input tape also.

– p. 3/17

Initialization:

First copy the input tape into one of the working tapes,
coding it along the way (m cells to one).

Reset the head of this working tape to the beginning.

From now on use the above working tape as input tape, and
the input tape as a work tape in the simulation below.
(Do not need to reset the head of input tape! — just mark a
special symbol on the tape denoting the new beginning of
the tape).

– p. 4/17

In one “basic step” M ′ will simulate several steps of M . One
basic step of M ′ consists of
1. reading the cells scanned by the heads of M ′ (let us call
them home cells);
2. reading the cells to the left and right of the home cells of
each tape;
3. determine the contents of the home cells and the cells to
the left and right (for each tape) when a head of M first
leaves the cells represented by the corresponding region
4. Updating the home cells and the cells to the left and right
of home cells;
5. Repositioning the heads of M ′ to the new home cells.

If during the process of a basic step, M accepts, then M ′

also accepts.

– p. 5/17

In one basic step M ′ has simulated at least m steps of M
since it takes at least that much time for any head of M to
leave the region represented by the home cells and the
cells to their left and right.

Step 3 can be done in the logic of M ′ and thus can be done
instantly.

Thus only need to count the steps needed to visit the
respective cells to read/write and repositioning the home
cells. This is ≤ 8.
Thus in 8 time steps of M ′ we can simulate m time steps of
M .

– p. 6/17

Thus the total time used by M ′ for the simulation of M on
input x of length n is

≤ n+ ⌈ n
m
⌉+ 8⌈T (n)

m
⌉ ≤ n+ n

m
+ 8T (n)

m
+ 9.

We need to pick m such that

n+
n

m
+

8T (n)

m
+ 9 ≤ cT (n)

Need to worry only about large enough n (smaller values of
n can be easily taken care of).

– p. 7/17

Without loss of generality assume 0 < c < 1.
Pick m > 40/c. Then,

8T (n)

m
≤ cT (n)/4

Since limn→∞ T (n)/n = ∞, for large enough n,

9 ≤ n/m ≤ n ≤
cT (n)

4
,

Thus, for large enough n, time complexity of M ′ is bounded
by ⌈cT (n)⌉.

– p. 8/17

We really do not need limn→∞

T (n)
n

= ∞ to get the linear

speed up. We can get the speed up as long as we can find
m such that

n+ ⌈
n

m
⌉+ 8⌈

T (n)

m
⌉ ≤ cT (n)

Corollary: Fix c > 0. Suppose L is accepted by a machine
M , with k ≥ 2 tapes, that is d ∗ n time bounded, for some
constant d. Then L is also accepted by a machine M ′ that is
(1 + c)n time bounded.
Proof: In the simulation, choose m > max(24d/c, 3/c).

– p. 9/17

Arbitrarily difficult problems

Suppose we are given a total recursive function f .
We want to construct a recursive function g such that no
f(n) time bounded machine can compute g.
Define g as follows:

g(x)

1. Simulate Mx, on input x.
2. If Mx does not halt within f(|x|) steps, then
output 0.
3. Otherwise output something different from the
output of Mx(x). (say Mx(x) + 1).

End

– p. 10/17

Claim: g cannot be computed correctly by any f(n) time
bounded machine.
Proof: Suppose by way of contradiction machine My does
so.
Consider My(y).

If My(y) halts within f(|y|) steps, then by construction of g,

g(y) 6= My(y).

If My(y) does not halt within f(|y|) steps, then My is not f(n)
time bounded.

– p. 11/17

Blum Complexity Measure

A complexity measure Φ is called a Blum Complexity
measure iff Φ(x, y) is a partial recursive function in x and y
and
(A1) ϕx(y)↓⇔Φ(x, y)↓.
(A2) The predicate ‘Φ(x, y) ≤ z?’ is recursive in x, y, z.
We usually write Φx(y) for Φ(x, y).
Note that most complexity measures such as time and
(modified) space complexity measures are Blum complexity
measures.

– p. 12/17

Space/Time constructible functions

A function S(n) is said to be fully space constructible if there
exists a S(n) space bounded Turing machine M such that,
on all inputs of length n, it uses space exactly S(n).

A function T (n) is said to be fully time constructible if there
exists a T (n) time bounded Turing machine M such that, on
every input of length n, it halts and uses time exactly T (n).

– p. 13/17

	Tape Compression
	Linear Speedup

