

Tape Compression

Theorem: Fix $c > 0$. If a language L is accepted by a machine M , with k tapes, that is $S(n)$ space bounded, then L is accepted by a machine M' , with k tapes, that is $\lceil cS(n) \rceil$ space bounded.

Proof:

Suppose M is $S(n)$ space bounded and accepts L .
Construct M' , which simulates M but uses less space.

Each cell of a worktape of M' codes m cells of the corresponding tape of M . (This increases the alphabet size used by M' , but that is ok.)

Simulation: finite control of M' keeps track of which of the m cells represented by the presently scanned cell of the tape(s) of M' is actually being scanned by M . M' accepts an input iff M does.

Space used by M' on input x is:

$$\lceil \frac{\text{Space}_M(x)}{m} \rceil$$

Take $m > \frac{1}{c}$.

Thus, space used is at most

$$\lceil c * \text{Space}_M(x) \rceil$$

Linear Speedup

Theorem: Fix $c > 0$. Suppose L is accepted by a machine M , with $k \geq 2$ tapes, that is $T(n)$ time bounded, where $\lim_{n \rightarrow \infty} T(n)/n = \infty$.

Then L is also accepted by a machine M' that is $\lceil cT(n) \rceil$ time bounded.

Proof:

We use a similar coding as in the tape compression theorem except that we code the input tape also.

Initialization:

First copy the input tape into one of the working tapes, coding it along the way (m cells to one).

Reset the head of this working tape to the beginning.

From now on use the above working tape as input tape, and the input tape as a work tape in the simulation below.
(Do not need to reset the head of input tape! — just mark a special symbol on the tape denoting the new beginning of the tape).

In one “basic step” M' will simulate several steps of M . One basic step of M' consists of

1. reading the cells scanned by the heads of M' (let us call them home cells);
2. reading the cells to the left and right of the home cells of each tape;
3. determine the contents of the home cells and the cells to the left and right (for each tape) when a head of M first leaves the cells represented by the corresponding region
4. Updating the home cells and the cells to the left and right of home cells;
5. Repositioning the heads of M' to the *new* home cells.

If during the process of a basic step, M accepts, then M' also accepts.

In one basic step M' has simulated at least m steps of M since it takes at least that much time for any head of M to leave the region represented by the home cells and the cells to their left and right.

Step 3 can be done in the logic of M' and thus can be done instantly.

Thus only need to count the steps needed to visit the respective cells to read/write and repositioning the home cells. This is ≤ 8 .

Thus in 8 time steps of M' we can simulate m time steps of M .

Thus the total time used by M' for the simulation of M on input x of length n is

$$\leq n + \lceil \frac{n}{m} \rceil + 8 \lceil \frac{T(n)}{m} \rceil \leq n + \frac{n}{m} + \frac{8T(n)}{m} + 9.$$

We need to pick m such that

$$n + \frac{n}{m} + \frac{8T(n)}{m} + 9 \leq cT(n)$$

Need to worry only about large enough n (smaller values of n can be easily taken care of).

Without loss of generality assume $0 < c < 1$.

Pick $m > 40/c$. Then,

$$\frac{8T(n)}{m} \leq cT(n)/4$$

Since $\lim_{n \rightarrow \infty} T(n)/n = \infty$, for large enough n ,

$$9 \leq n/m \leq n \leq \frac{cT(n)}{4},$$

Thus, for large enough n , time complexity of M' is bounded by $\lceil cT(n) \rceil$.

We really do not need $\lim_{n \rightarrow \infty} \frac{T(n)}{n} = \infty$ to get the linear speed up. We can get the speed up as long as we can find m such that

$$n + \lceil \frac{n}{m} \rceil + 8 \lceil \frac{T(n)}{m} \rceil \leq cT(n)$$

Corollary: Fix $c > 0$. Suppose L is accepted by a machine M , with $k \geq 2$ tapes, that is $d * n$ time bounded, for some constant d . Then L is also accepted by a machine M' that is $(1 + c)n$ time bounded.

Proof: In the simulation, choose $m > \max(24d/c, 3/c)$.

Arbitrarily difficult problems

Suppose we are given a total recursive function f .

We want to construct a recursive function g such that no $f(n)$ time bounded machine can compute g .

Define g as follows:

$g(x)$

1. Simulate M_x , on input x .
2. If M_x does not halt within $f(|x|)$ steps, then output 0.
3. Otherwise output something different from the output of $M_x(x)$. (say $M_x(x) + 1$).

End

Claim: g cannot be computed correctly by any $f(n)$ time bounded machine.

Proof: Suppose by way of contradiction machine M_y does so.

Consider $M_y(y)$.

If $M_y(y)$ halts within $f(|y|)$ steps, then by construction of g , $g(y) \neq M_y(y)$.

If $M_y(y)$ does not halt within $f(|y|)$ steps, then M_y is not $f(n)$ time bounded.

Blum Complexity Measure

A complexity measure Φ is called a Blum Complexity measure iff $\Phi(x, y)$ is a partial recursive function in x and y and

(A1) $\varphi_x(y) \downarrow \Leftrightarrow \Phi(x, y) \downarrow$.

(A2) The predicate ' $\Phi(x, y) \leq z$ ' is recursive in x, y, z .

We usually write $\Phi_x(y)$ for $\Phi(x, y)$.

Note that most complexity measures such as time and (modified) space complexity measures are Blum complexity measures.

Space/Time constructible functions

A function $S(n)$ is said to be fully space constructible if there exists a $S(n)$ space bounded Turing machine M such that, on all inputs of length n , it uses space exactly $S(n)$.

A function $T(n)$ is said to be fully time constructible if there exists a $T(n)$ time bounded Turing machine M such that, on every input of length n , it halts and uses time exactly $T(n)$.