
Equivalence Classes

Consider any regular language L.

u ≡L w iff for all x, ux ∈ L iff wx ∈ L.

Note that ≡L is indeed an equivalence relation, as it is
reflexive, symmetric and transitive.

Let equiv(w) denote the equivalence class of w.

If the number of equivalence classes as above is finite,
then form a DFA (Q,Σ, δ, q0, F ) as follows:
Q = {equiv(w) : w ∈ Σ∗}.
q0 = equiv(ǫ).
F = {equiv(w) : w ∈ L}.
δ(equiv(w), a) = equiv(wa).

Note that δ is well defined as u ≡L w implies ua ≡L wa.

– p. 1/11



The method in previous slide gives the minimal DFA for L.
Why cannot there be a smaller DFA accepting the same
language?
Suppose A′ = (Q′,Σ, δ′, q′

0
, F ′) is an automata accepting L.

Claim: u 6≡L w implies δ̂′(q′
0
, u) 6= δ̂′(q′

0
, w).

Proof: Suppose otherwise, that is u 6≡L w but

δ̂′(q′
0
, u) = δ̂′(q′

0
, w).

Then, there exists a string x such that ux ∈ L but wx 6∈ L (or
vice versa), by definition of ≡L.

But δ̂′(q′
0
, ux) = δ̂′(q′

0
, wx) and thus A′ accepts both ux and

wx or accepts none of ux,wx. A contradiction.

– p. 2/11



Let u ≡A′ w iff δ̂′(q′
0
, u) = δ̂′(q′

0
, w).

By above claim it follows that ≡A′ divides the equivalence
classes ≡L into finer equivalence classes.
Thus, the DFA given using ≡L is minimal. Furthermore, it is
same as any other minimal automata except for renaming
of the states.
Thus, the method given above gives minimal DFA, and it is
unique!

– p. 3/11



We will use the above result for finding a minimal equivalent
DFA for a language L, from a given DFA A = (Q,Σ, δ, q0, F )
for L.
Note that if δ̂(q0, u) = δ̂(q0, v), then u ≡L v.
However, it is possible that there are further equivalences:

that is it may be true that δ̂(q0, u) 6= δ̂(q0, v), but u ≡L v.
The aim of next algorithm is to find such u, v and then

merge the states q = δ̂(q0, u) and q′ = δ̂(q0, v).

– p. 4/11



Minimization of Automata; Equivalence

Suppose we are given A = (Q,Σ, δ, q0, F ).

(a) We say that (p, q) are distinguishable iff there exists a
string w such that either

δ̂(p, w) ∈ F , δ̂(q, w) 6∈ F , or

δ̂(p, w) 6∈ F , δ̂(q, w) ∈ F .

(b) In other words, (p, q) are indistinguisable iff for all w,

δ̂(p, w) ∈ F iff δ̂(q, w) ∈ F .

– p. 5/11



Table building algorithm for determining all pairs that are
distinguishable.
1. Base Case: Initially, each pair (p, q) such that p ∈ F and
q 6∈ F (or vice versa), is distinguishable.
2. Inductive Step: For any a ∈ Σ, if δ(p, a) and δ(q, a) are
distinguishable, then (p, q) are distinguishable.
3. Continue the inductive step, until it can add no more
pairs of distinguishable states.
Then the remaining pairs are nondistinguishable states.

– p. 6/11



Form a new DFA as follows:
0. First delete all non-reachable states.
1. Find all nondistinguishable pairs of states.
2. Each pair of non-distinguishable states is equivalent, and
it gives an equivalence relation.
3(a). States of the new DFA are these equivalence classes.
3(b). Transition from each equivalence class above on input
a is based on the corresponding transition in original DFA,
i.e., if δ(p, a) = q in the original automata, then
δnew(Ep, a) = Eq, where Ep and Eq are equivalence classes
corresponding to p and q respectively.
3(c). Initial state of the new automata is the equivalence
class containing the starting state of original automata, and
final states of the new automata are all the equivalence
classes containing a final state.

– p. 7/11



Why does above work?

For automata A accepting L, let

u ≡A w iff δ̂(q0, u) = δ̂(q0, w).

u ≡A w implies u ≡L w,
as for all x, ux ∈ L(A) = L iff wx ∈ L(A) = L.

Thus, we are looking for which ≡A classes are to be
merged together to form ≡L.

Distinguishablity of p, q thus tells us that p, q cannot be
merged together.

Indistinguishablity of p, q tells us that p, q can be merged
together.

– p. 8/11



Why does the algorithm find all and only pairs of
distinguishable states?

– p. 9/11



By induction on number of steps, if our induction algorithm
says two states p, q are distinguishable, then they are
distinguishable.
Base case: ǫ distinguishes the accepting and
non-accepting states.
Induction step: Suppose we add (p, q) to distinguishable
state pairs, due to (δ(p, a) = p′, δ(q, a) = q′) being
distinguishable.

Then as (p′, q′) are distinguishable, for some x, δ̂(p′, x) ∈ F

and δ̂(q′, x) 6∈ F (or vice versa).

But then, δ̂(p, ax) ∈ F and δ̂(q, ax) 6∈ F (or vice versa).
Thus, (p, q) are distinguishable.

– p. 10/11



Algorithm finds all pairs of distinguishable states.
By induction on the length of strings which distinguish the
states.
Base case: Clearly, the algorithm finds all pairs of states
which can be distinguished using strings of length 0 (that is
by using ǫ).
Induction: Suppose the algorithm finds all pairs of states
which can be distinguished using strings of length at most k.
Then, consider any pair of states (p, q) which can be
distinguished using string w = ax of length k + 1.
Then, since the algorithm finds the pair (δ(p, a), δ(q, a)) as
distinguishable (by induction), we have that the algorithm in
the induction step will find that (p, q) are distinguishable.

– p. 11/11


	Equivalence Classes
	Minimization of Automata; Equivalence

