Regular Languages: Properties

Pumping Lemma: Let *L* be a regular language. Then there exists a constant *n* (which depends on *L*) such that for every string *w* in *L* satisfying $|w| \ge n$, we can break *w* into three strings w = xyz, such that (a) $y \ne \epsilon$, (b) $|xy| \le n$

(c) For all $k \ge 0$, the string $xy^k z$ is also in L.

Examples:

Let $L = \{a^m b^m \mid m \ge 1\}$. Then *L* is not regular. Proof: Suppose by way of contradiction that *L* is regular. Let *n* be as in the Pumping Lemma. Let $w = a^n b^n$. Let w = xyz be as in the Pumping Lemma. Note that *y* consists only of *a*s.

Thus, $xy^2z \in L$, however, xy^2z contains more *a*'s than *b*'s.

Examples:

Let $L = \{a^i b^j \mid i < j\}$. Then *L* is not regular. Proof: Suppose by way of contradiction that *L* is regular. Let *n* be as in the Pumping Lemma.

Let $w = a^{n}b^{n+1}$.

Let w = xyz be as in the Pumping Lemma.

Note that *y* consists only of *a*s.

Thus, $xy^3z \in L$, however, xy^3z contains more *a*'s than *b*'s.

Examples:

Let $L = \{a^p \mid p \text{ is prime}\}$. Then L is not regular. Proof: Suppose by way of contradiction that L is regular. Let n be as in the Pumping Lemma. Let $w = a^p$, where p is prime, and p > n. Let w = xyz be as in the Pumping Lemma. Thus, $xy^kz \in L$, for all k. Choose k = ?. Thus, $xy^kz = a^r$, where r is not a prime number.

Proof of the Pumping Lemma

Suppose $A = (Q, \Sigma, \delta, q_0, F)$ is a DFA which accepts L. Let n be the number of states in Q. Suppose $w = a_1 a_2 \dots a_n \dots a_m$ is as given, where $m \ge n$. For $i \geq 1$, let $q_i = \hat{\delta}(q_0, a_1 \dots a_i)$. Then, by Pigeonhole principle, there exists $i, j \leq n, i < j$, such that $q_i = q_j$. Let $x = a_1 \dots a_i$, $y = a_{i+1} \dots a_j$, $z = a_{j+1} \dots a_m$. As $\hat{\delta}(q_i, y) = q_i$, we have: for all k, $\hat{\delta}(q_i, y^k) = q_i$. Thus, $\hat{\delta}(q_0, xyz) = \hat{\delta}(q_0, xy^k z)$, for all k. QED

Closure Properties

- If L_1, L_2 are regular, then so is $L_1 \cup L_2$.
- If L_1, L_2 are regular, then so is $L_1 \cdot L_2$.
- If *L* is regular, then so is $\overline{L} = \Sigma^* L$.
- If L_1, L_2 are regular, then so is $L_1 \cap L_2$.
- If L_1, L_2 are regular, then so is $L_1 L_2$.
- If *L* is regular, then so is L^R .
- Let *h* be a homomorphism. If *L* is regular, then so is h(L).

Homomorphism: $h(a) \in B^*$, where *B* is an alphabet set. $h(\epsilon) = \epsilon$. $h(a_1a_2...) = h(a_1)h(a_2)...$

Decision Problems on Regular Languages

 $L = \emptyset?$ $L = \Sigma^*?$ L(A) = L(A')? $w \in L?$