
Q1. Basically this means that 𝐿 does not have 𝑎𝑎𝑎 as a substring.
𝑄 = {𝑞0, 𝑞1, 𝑞2, 𝑞3}. Σ = {𝑎, 𝑏}. 𝐹 = {𝑞0, 𝑞1, 𝑞2}.
𝛿(𝑞𝑖, 𝑎) = 𝑞𝑖+1, if 𝑖 ≤ 2.
𝛿(𝑞𝑖, 𝑏) = 𝑞0, if 𝑖 ≤ 2.
𝛿(𝑞3, 𝑎) = 𝛿(𝑞3, 𝑏) = 𝑞3.
Q2. The statement is false.
Let 𝑅 = 𝑎, 𝑆 = 𝑏. Then, 𝑏𝑏 is in 𝐿𝑎𝑛𝑔((𝑅+ 𝜖)(𝑆+ 𝜖)*) but not in 𝐿𝑎𝑛𝑔((𝑅+ 𝜖)*(𝑆+ 𝜖)).
Q3.
𝑆 → 𝑎𝑎𝑆𝑏
𝑆 → 𝑎𝑏𝑇𝑏 | 𝑇 | 𝑋
𝑇 → 𝑏𝑏𝑇𝑏 | 𝑌
𝑋 → 𝑎𝑋𝑎 | 𝑌
𝑌 → 𝑏𝑌 𝑎 | 𝑐
Intuitively, 𝑆 first matches off the (pair of) 𝑎’s to the left of 𝑐 with the 𝑏’s to the right of

𝑐. Then it goes to 𝑇 (𝑎𝑏𝑇𝑏) or 𝑋 depending on whether the number of 𝑎’s to the left of 𝑐 is
less or at least double the number of 𝑏’s to the right of 𝑐.

𝑇 matches the (pair of) 𝑏’s to the left of 𝑐 with the 𝑏’s to the right of 𝑐.
𝑋 matches the 𝑎’s to the left of 𝑐 with the 𝑎’s to the right of 𝑐.
𝑌 matches the 𝑏’s to the left of 𝑐 with the 𝑎’s to the right of 𝑐.
They are done in appropriate order to maintain the order of 𝑎’s and 𝑏’s.
Q4. The grammar is ambiguous because 𝑏𝑏𝑎 has the following two different leftmost

derivation.
𝑆 ⇒ 𝑏𝑏𝑆𝑎 ⇒ 𝑏𝑏𝑅𝑎 ⇒ 𝑏𝑏𝑇𝑎 ⇒ 𝑏𝑏𝑎
𝑆 ⇒ 𝑅 ⇒ 𝑏𝑅𝑎 ⇒ 𝑏𝑇𝑎 ⇒ 𝑏𝑏𝑇𝑎 ⇒ 𝑏𝑏𝑎
Basically, the above grammar generates the language {𝑏𝑖𝑎𝑗 : 𝑖 ≥ 𝑗}. The unambiguous

grammar for it is:
𝑆 → 𝑏𝑆𝑎 | 𝑇
𝑇 → 𝑏𝑇 | 𝜖
It is unambiguous, as any 𝑎 is only generated by using the production 𝑆 → 𝑏𝑆𝑎. After

using 𝑆 → 𝑇 , only 𝑏’s are generated, one by one.
Q5. True. Let 𝑋 = {𝑤 : 𝑎𝑏𝑎 is a substring of 𝑤}. Note that 𝑋 is regular. Now, 𝐿𝑎𝑛𝑔(𝐺)

is good iff 𝐿𝑎𝑛𝑔(𝐺) ∩ 𝑋 is empty. This is used in the following algorithm to decide the
question in the claim.

(0): If 𝐺 is not a context free grammar, output false.
(1): Now assume 𝐺 is a CFG. Convert it to a NPDA 𝑃 such that 𝐿𝑎𝑛𝑔(𝐺) = 𝐿𝑎𝑛𝑔(𝑃 )

as done in class.
(2): Let 𝐴 be a DFA for accepting (𝑎+ 𝑏)*𝑎𝑏𝑎(𝑎+ 𝑏)*.
(3): Let 𝐵 be a DFA for accepting the complement of 𝐿𝑎𝑛𝑔(𝐴).
(4): Let 𝑃 ′ be a NPDA for accepting 𝐿𝑎𝑛𝑔(𝑃 ) ∩ 𝐿𝑎𝑛𝑔(𝐵) as done in class.
(5): Let 𝐺′ be a grammar for 𝐿𝑎𝑛𝑔(𝑃 ′) as done in class.
(6): Check if 𝐿𝑎𝑛𝑔(𝐺′) = ∅ as done in class.
(7): Output yes, iff the above check is true.
Q6. False.
Let 𝐿 = {𝑏𝑎𝑖𝑏𝑎𝑗𝑏𝑎𝑡 : 𝑀𝑖 accepts 𝑤𝑗 in ≤ 𝑡 time steps }.
Note that 𝐿 is recursive as shown in tutorials.



Now suppose 𝐿′ = 𝑠𝑢𝑏𝑠𝑡𝑟𝑖𝑛𝑔(𝐿) is recursive. Then, 𝐿′ ∩ 𝑏𝑎*𝑏𝑎*𝑏 must also be recursive.
But This means {𝑏𝑎𝑖𝑏𝑎𝑗𝑏 : 𝑀𝑖 accepts 𝑤𝑗} is recursive, a contradiction to result done in

class.
Thus, Claim is false.
Q7.
Given 𝑀𝑖, design 𝑀𝑓(𝑖) such that:
𝑀𝑓(𝑖) accepts (𝑎𝑏)

𝑗 for all 𝑗.
Furthermore, 𝑀𝑓(𝑖) accepts 𝑎𝑎 iff 𝐿𝑎𝑛𝑔(𝑀𝑖) is not empty.
Then, 𝑎𝑓(𝑖) ∈ 𝐿7 iff 𝑀𝑖 ∈ 𝐿𝑒 (where 𝐿𝑒 = {𝑀 : 𝐿𝑎𝑛𝑔(𝑀) = ∅}). Thus, 𝐿𝑒 ≤𝑚 𝐿7. As 𝐿𝑒

is not r.e., we have that 𝐿7 is not r.e.
Q8. To see that the problem is in NP, consider the following: Guess a sequence of results

of the games and check if each member of the audience has their prediction true for at least
one game.

To see NP-hardness, we do a reduction from 3-SAT. Suppose an instance of 3-SAT is
given, which has 𝑛 variables and 𝑚 clauses, 𝐶1, 𝐶2, . . . , 𝐶𝑚.

Then, form an instance of the problem in Q8 as follows. There are 𝑛 games and 𝑚
members of the audience. If 𝑥𝑗 ∈ 𝐶𝑖, then 𝑖-th member of the audience predicts that 𝐴 wins
game 𝑗. If ¬𝑥𝑗 ∈ 𝐶𝑖, then 𝑖-th member of the audience predicts that 𝐵 wins game 𝑗.

Now, if 3-SAT formula is satisfiable using truth function 𝑡(𝑥𝑗), then we have match fixer
have 𝐴 win game 𝑗 iff 𝑡(𝑥𝑗) is true. It is easy to verify that, for 1 ≤ 𝑖 ≤ 𝑚, the 𝑖-th member
of the audience has at least one prediction true since clause 𝐶𝑖 is satisfied. On the other
hand, if match fixer can have the results of the games such that each member of the audience
has at least one prediction true, then let 𝑡(𝑥𝑗) = 𝑡𝑟𝑢𝑒 iff 𝐴 wins game 𝑗. Now, 𝐶𝑖 is satisfied
as at least one of the predictions of the 𝑖-th member of the audience is true.
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