Q1. Basically this means that L does not have aaa as a substring.

Q=1{q9:q1,q, ¢} X ={a,b}. F= {QO,C_I17(12}-

3(qi,a) = qig1, if i < 2.

5(q37 CL) = 5((]37 b) = gs.

Q2. The statement is false.

Let R =a, S =0b. Then, bb is in Lang((R+€)(S +¢€)*) but not in Lang((R+€)*(S +¢)).

Q3.

S — aaSb
S—ablh|T|X
T —bbTh |Y

X —aXalY

Y —-bYa|c

Intuitively, S first matches off the (pair of) a’s to the left of ¢ with the b’s to the right of
c. Then it goes to T' (abTh) or X depending on whether the number of a’s to the left of ¢ is
less or at least double the number of b’s to the right of c.

T matches the (pair of) b’s to the left of ¢ with the b’s to the right of c.

X matches the a’s to the left of ¢ with the a’s to the right of c.

Y matches the b’s to the left of ¢ with the a’s to the right of c.

They are done in appropriate order to maintain the order of a’s and b’s.

Q4. The grammar is ambiguous because bba has the following two different leftmost
derivation.

S = bbSa = bbRa = bbT'a = bba

S = R = bRa = bTa = bbT'a = bba

Basically, the above grammar generates the language {b'a’ : i > j}. The unambiguous
grammar for it is:

S—=bSa|T

T =0T e

It is unambiguous, as any a is only generated by using the production S — bSa. After
using S — T, only b’s are generated, one by one.

Q5. True. Let X = {w : aba is a substring of w}. Note that X is regular. Now, Lang(G)
is good iff Lang(G) N X is empty. This is used in the following algorithm to decide the
question in the claim.

(0): If G is not a context free grammar, output false.

(1): Now assume G is a CFG. Convert it to a NPDA P such that Lang(G) = Lang(P)
as done in class.

(2): Let A be a DFA for accepting (a + b)*aba(a + b)*.

(3): Let B be a DFA for accepting the complement of Lang(A).

(4): Let P" be a NPDA for accepting Lang(P) N Lang(B) as done in class.
(5): Let G’ be a grammar for Lang(P’) as done in class.

(6): Check if Lang(G") = 0 as done in class.

(7): Output yes, iff the above check is true.

Q6. False.
Let L = {ba'ba’ba’ : M; accepts w; in < t time steps }.
Note that L is recursive as shown in tutorials.



Now suppose L' = substring(L) is recursive. Then, L’ N ba*ba*b must also be recursive.

But This means {ba'ba’b : M; accepts w;} is recursive, a contradiction to result done in
class.

Thus, Claim is false.

Q7.

Given M;, design My ;) such that:

My accepts (ab)? for all j.

Furthermore, My accepts aa iff Lang(M;) is not empty.

Then, af® € L; iff M; € L. (where L, = {M : Lang(M) = 0}). Thus, L. <,, L. As L,
is not r.e., we have that L, is not r.e.

Q8. To see that the problem is in NP, consider the following: Guess a sequence of results
of the games and check if each member of the audience has their prediction true for at least
one game.

To see NP-hardness, we do a reduction from 3-SAT. Suppose an instance of 3-SAT is
given, which has n variables and m clauses, C,Cy, ..., C),.

Then, form an instance of the problem in Q8 as follows. There are n games and m
members of the audience. If z; € Cj, then i-th member of the audience predicts that A wins
game j. If —z; € C;, then i-th member of the audience predicts that B wins game j.

Now, if 3-SAT formula is satisfiable using truth function ¢(z;), then we have match fixer
have A win game j iff ¢(z;) is true. It is easy to verify that, for 1 < ¢ < m, the i-th member
of the audience has at least one prediction true since clause C; is satisfied. On the other
hand, if match fixer can have the results of the games such that each member of the audience
has at least one prediction true, then let t(z;) = true iff A wins game j. Now, C; is satisfied
as at least one of the predictions of the i-th member of the audience is true.



